miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interfaces In Hydraulic Pressure Energy Harvesters
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0003-4531-5893
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The fourth industrial revolution is here and with it a tidal wave of challenges for its prosperous implementation. One of the greatest challenges frustrating the development of the internet of things, and hence the next industrial revolution, is the powering of wireless sensors, as these depend on batteries with a limited lifetime. Recent advances have shown that energy harvesting technologies can be employed to extend the lifetime of batteries and ultimately replace them, thus facilitating the deployment of autonomous self-powered sensors, key components of the internet of things.

Energy harvesting is the process of capturing ambient energy and convertingit into electric power. For energy harvesting devices it is crucial that the transduction of energy is as efficient as possible, meaning that the methods for capturing, interfacing and converting the ambient energy should be understood and characterized for every application. This thesis investigates the harvesting of the energy found in pressure fluctuations in hydraulic systems, a widely used power transmission system used in the industry and consumer applications; the focus is on the fluid interface and energy focusing methods.

In summary, the contributions in this thesis show that the methods for converting pressure fluctuations in hydraulic systems to electrical power depend on the hydraulic system environment, in essence, the static pressure and the frequency of the pressure fluctuations. The results can serve as a starting point in the research, design, and development of hydraulic pressure energy harvesters.

Abstract [sv]

Den fjärde industriella revolutionen är här vilket innebär en rad utmaningar för att dess utveckling ska bli framgångsrik. En av de största utmaningarna som begränsar utvecklingen av sakernas internet för industriella tillämpningar är strömförsörjningen av trådlösa sensorer då dessa är beroende av batterier med begränsad livslängd. Nya framsteg har emellertid gjorts med tekniker för energiskördning som gör att livslängden för batterierna kan förlängas ochi förlängningen helt ersätta batterierna. Det, i sin tur, möjliggör autonoma sensorer som är självförsörjande på energi som är viktiga komponenter i sakernas internet. Energiskördning är den process som omvandlar energi som finns i omgivningen till elektrisk energi. För att kunna få ut så mycket energi som möjligt så är det avgörande att energiskördarna gör energiomvandlingen så effektivt som möjligt. Det gör att inhämtning av omgivande energi samt gränssnitt och energiomvandling måste förstås och karakteriseras för varje tillämpning. Den här avhandlingen undersöker energiskördning för hydrauliskasystem där tryckfluktuationer i dessa system är energikällan. Syftet med den här studien är att ta fram metoder för uppskattning och karakterisering av de nödvändiga gränssnitten för inhämtning, fokusering, och omvandling av fluktuationer i hydraultryck till elektrisk energi. Sammanfattningsvis visar avhandlingen att metoder för att omvandla tryckfluktuationer i hydraulsystem till elektrisk energi beror på den hydrauliska systemmiljön där det statiska trycket och frekvensen av tryckfluktuationerna är de viktigaste parametrarna. Resultaten kan fungera som utgångspunkt för fortsatt forskning och utveckling av energiskördare för hydrauliska system.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University , 2019. , p. 44
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 157
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-36106ISBN: 978-91-88947-00-0 (print)OAI: oai:DiVA.org:miun-36106DiVA, id: diva2:1314388
Presentation
2019-04-26, O102, Sundsvall, 10:00 (English)
Opponent
Supervisors
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)Available from: 2019-05-08 Created: 2019-05-08 Last updated: 2019-06-13Bibliographically approved
List of papers
1. An Apparatus For The Performance Estimation Of Pressure Fluctuation Energy Harvesters
Open this publication in new window or tab >>An Apparatus For The Performance Estimation Of Pressure Fluctuation Energy Harvesters
2018 (English)In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 67, no 11, p. 2705-2713Article in journal (Refereed) Published
Abstract [en]

Hydraulic pressure fluctuation energy harvesters are promising alternatives to power up wireless sensor nodes in hydraulic systems. The characterization of these harvesters under dynamic and band-limited pressure signals is imperative for the research and development of novel concepts. To generate and control these signals in a hydraulic medium, a versatile apparatus capable of reproducing pressure signals is proposed. In this paper, a comprehensive discussion of the design considerations for this apparatus and its performance is given. The suggested setup enables the investigation of devices tailored for the harvesting of energy in conventional hydraulic systems. To mimic these systems, static pressures can be tuned up to 300 bar, and the pressure amplitudes with a maximum of 28 Bar at 40 Hz and 0.5 bar at 1000 Hz can be generated. In addition, pressure signals found in commercial hydraulic systems can be reproduced with good accuracy. This apparatus proves to be an accessible, robust, and versatile experimental setup to create environments for the complete performance estimation of pressure fluctuation energy harvesters. 

Place, publisher, year, edition, pages
IEEE, 2018
Keywords
Characterization, energy harvesting (EH), experimental setup, pressure fluctuations, wireless sensors.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-34109 (URN)10.1109/TIM.2018.2828701 (DOI)000448720700017 ()2-s2.0-85046721477 (Scopus ID)
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2018-07-04 Created: 2018-07-04 Last updated: 2019-09-09Bibliographically approved
2. Fluid coupling interfaces for hydraulic pressure energy harvesters
Open this publication in new window or tab >>Fluid coupling interfaces for hydraulic pressure energy harvesters
2017 (English)In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2017, p. 1556-1562, article id 8014240Conference paper, Published paper (Refereed)
Abstract [en]

The need for wireless sensor networks that can run for long times without the need of battery replacement has risen the need for energy harvesters. Industrial environments have plenty of energy sources that can be harvested; pressure fluctuations are a high energy density source that can be harvested using piezoelectric devices. Present devices have introduced flat metallic plates as the main force transmission elements for hydraulic fluctuations energy harvesters. In this paper, we analyze the force transmission efficiency of flat plates when used as the primary fluid coupling interface in hydraulic energy harvesters. Previous work has been focused on the optimization of circuit matching and pressure ripple amplification. In this work, we offer a look into the efficiencies of flat plates in different configurations and pressure loads. The analysis shows that despite the reasonable force transmission efficiency of flat plates in low-pressure environments, the overall efficiency of hydraulic energy harvesters can be improved if instead of flat plates, conventional hydraulic actuators, such as piston cylinders, could be used. 

Place, publisher, year, edition, pages
IEEE, 2017
Series
IEEE ASME International Conference on Advanced Intelligent Mechatronics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-32205 (URN)10.1109/AIM.2017.8014240 (DOI)000426448500256 ()2-s2.0-85028761212 (Scopus ID)9781509059980 (ISBN)
Conference
2017 IEEE International Conference on Advanced Intelligent Mechatronics, AIM 2017, Germany, 3 July 2017 through 7 July 2017
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2017-12-01 Created: 2017-12-01 Last updated: 2019-09-09Bibliographically approved
3. Force Transmission Interfaces for Pressure Fluctuation Energy Harvesters
Open this publication in new window or tab >>Force Transmission Interfaces for Pressure Fluctuation Energy Harvesters
2018 (English)In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2018, p. 4230-4235, article id 8591058Conference paper, Published paper (Refereed)
Abstract [en]

Wireless sensor nodes in state of the art fluid power systems used in monitoring and maintenance prediction demand long lasting power sources that do not rely on batteries. Energy harvesting is a promising technology that can provide the required energy to power wireless sensors. Pressure fluctuation energy harvesters can be employed in conventional hydraulic systems to convert the acoustic pressure fluctuation to electrical power. Present studies have explored the overall efficiency of these devices while experimentally describing losses in piezoelectric and circuit interfaces, nevertheless there is no study on the fluid to mechanical force transmission efficiency. In this paper we investigate the pressure to force transmission rate of two types of fluid to mechanical interfaces: a flat metal plate and a conventional hydraulic piston. The interfaces are investigated in conditions similar to those found in conventional hydraulic systems. The study shows that flat plate exhibit good force transmission for low pressure applications with a constant rate across frequencies, while exhibiting a decrease in force transmission at higher pressures. On the other hand the piston exhibit a more robust pressure design, with a constant force transmission rate at all pressures but with a dampening of force at higher frequencies. It is shown that small differences in force transmission ratios can have a considerable impact on the power generation.

Place, publisher, year, edition, pages
IEEE, 2018
Series
IEEE Industrial Electronics Conference
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-35532 (URN)10.1109/IECON.2018.8591492 (DOI)2-s2.0-85061540327 (Scopus ID)978-1-5090-6684-1 (ISBN)
Conference
IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2019-01-28 Created: 2019-01-28 Last updated: 2019-09-09Bibliographically approved
4. A space-coiling resonator for improved energy harvesting in fluid power systems
Open this publication in new window or tab >>A space-coiling resonator for improved energy harvesting in fluid power systems
2019 (English)In: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 291, p. 58-67Article in journal (Refereed) Published
Abstract [en]

Pressure fluctuation energy harvesting devices are promising alternatives to power up wireless sensors in fluid power systems. In past studies, classical Helmholtz resonators have been used to enhance the energy harvesting capabilities of these harvesters. Nevertheless, for fluctuations with frequency components in the range of less than 1000 Hz, the design of compact resonators is difficult, mostly for their poor acoustic gain. This paper introduces a space-coiling resonator fabricated using 3D printing techniques. The proposed resonator can achieve a better acoustic gain bounded by a small bulk volume compared to a classic Helmholtz resonator, improving the energy harvesting capabilities of pressure fluctuation energy harvesters. The resonator is designed and evaluated using finite-element-method techniques and examined experimentally. Three space-coiling-resonators are designed, manufactured and compared to classic Helmholtz resonators for three frequencies: 280 Hz, 480 Hz and 920 Hz. This work displays the possibility of compact, high-performance pressure fluctuation energy harvesters and the advantages of the space-coiling printed resonators to enhance the harvesting performance.

Place, publisher, year, edition, pages
Elsevier: Elsevier, 2019
Keywords
Energy harvesting, Acoustic pressure, Acoustic resonator, Sensors systems, Space-coiling resonator
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-36105 (URN)10.1016/j.sna.2019.01.022 (DOI)000468259200008 ()2-s2.0-85063744403 (Scopus ID)
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2019-05-08 Created: 2019-05-08 Last updated: 2019-09-09Bibliographically approved

Open Access in DiVA

fulltext(2164 kB)96 downloads
File information
File name FULLTEXT02.pdfFile size 2164 kBChecksum SHA-512
f8bb530eab44b248d4a4d73b80a915f289ea9666f53cfe86781d7700efa92c6e1acb32b4326ddc50cd35a0a623cc8a22ad97010bdc718e3202882ca4979025e2
Type fulltextMimetype application/pdf

Authority records BETA

Lechuga Aranda, Jesus Javier

Search in DiVA

By author/editor
Lechuga Aranda, Jesus Javier
By organisation
Department of Electronics Design
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 96 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf