miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kemiteknik. (Surface and Colloid Engineering)ORCID-id: 0000-0001-6270-2970
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för naturvetenskap.ORCID-id: 0000-0001-8868-4766
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kemiteknik. (Surface and Colloid Engineering)ORCID-id: 0000-0003-3407-7973
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för kemiteknik. (Surface and Colloid Engineering)
2018 (Engelska)Ingår i: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 93, nr 5, s. 1421-1431Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

BACKGROUND

The electrochemical recovery of copper from DTPA and C12-DTPA (a surface-active derivative of DTPA) complex solutions was investigated in a membrane flow cell. Electrolysis time, solution flow rate, applied current density, and solution pH were evaluated.

RESULTS

The chelating surfactant C12-DTPA can promote the kinetics of copper electrodeposition more than DTPA depending on the experimental conditions. At a current density of 30 A m–2, a solution flow rate of 0.6 L min–1, and pH 10 after 180 min treatment, the copper recovery and current efficiency were 50% and 43.3%, respectively, in the Cu(II)-DTPA system and about 65% and 53.6%, respectively, in the Cu(II)-C12-DTPA system. The differences in the amount of recovery could be explained in terms of differences in the diffusion of copper complexes with DTPA and C12-DTPA to the cathode, as well as their solution behavior and pH-dependent conditional stability constants (log10 K’CuDTPA3-).

CONCLUSION

Electrochemical methods could be effectively combined with foam flotation for the chelating surfactant C12-DTPA, to recover copper and C12-DTPA. This makes the overall treatment more sustainable, and can be helpful in complying with the increasingly stringent environmental regulations

Ort, förlag, år, upplaga, sidor
2018. Vol. 93, nr 5, s. 1421-1431
Nationell ämneskategori
Kemi
Identifikatorer
URN: urn:nbn:se:miun:diva-32251DOI: 10.1002/jctb.5510ISI: 000429714500022Scopus ID: 2-s2.0-85040192944OAI: oai:DiVA.org:miun-32251DiVA, id: diva2:1162671
Anmärkning

Tillgänglig från: 2017-12-05 Skapad: 2017-12-05 Senast uppdaterad: 2019-03-15Bibliografiskt granskad
Ingår i avhandling
1. Metal-Chelate Complexes in Alkaline Solution: On Recovery Techniques and Cellulose-based Hybrid Material Synthesis
Öppna denna publikation i ny flik eller fönster >>Metal-Chelate Complexes in Alkaline Solution: On Recovery Techniques and Cellulose-based Hybrid Material Synthesis
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

For decades, aminopolycarboxylate chelating agents have been extensively used in various industrial applications. The ability of chelating agents to form stable metal-chelate complexes is the main reason for using them to manage metal ions within water-based industrial processes. Considerable quantities of industrial effluent containing chelating agents and heavy metals are produced and often discharged into the environment. The toxicity of heavy metals and the non-biodegradability of the chelating agents, as well as their accumulation in the environment, has become cause for concern. The main purpose of this thesis was to evaluate and develop processes for recovery of chelated metal complexes from aqueous solution. In this regard, the membrane electrolysis technique was evaluated for recovery of copper and aminopolycarboxylic chelating ligands such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and a surface-active derivative of DTPA, 2-dodecyldiethylenetriaminepentaacetic acid (C12-DTPA) from aqueous solution. By using this method, it was possible to simultaneously recover the chelating ligand for further reuse and collect the metals by electrodeposition, making the process more cost-effective and hindering the discharge of copper ions and chelating ligands as pollutants into the environment. In addition, the ion flotation technique with the chelating surfactant C12-DTPA could be employed to separate metal ions, especially from their dilute solutions, and concentrate them in a foam phase. This is because C12-DTPA has a purpose-built functionality; besides forming strong coordination complexes with metal ions, it is also surface-active and will readily adsorb at air-water interfaces. In this study, C12-DTPA was effectively used in combination with foaming agents for the removal of toxic metal ions such as Cd2+, Zn2+, and Sr2+ from aqueous solution using ion flotation. From an economical perspective, this method could be combined with the membrane electrolysis technique to recover metal and regenerate chelating surfactant so that it can be reused.

The present work also shows the synthesis of metal and metal oxide(s) nanoparticles (NPs) in alkaline aqueous solution containing chelated metal ions, in order to fabricate metal NPs–cellulose hybrid materials. Cellulose is the most abundant renewable material, with good mechanical performance and chemical resistivity in a wide range of solvents, which makes it a promising material to support metal NPs. In this respect, we developed a rapid and inexpensive one-pot synthesis of spherical copper NPs in a cellulose matrix. The hybrid material displayed antibacterial properties for both the gram-negative and gram-positive bacteria. The synthesis was further developed by studying the influence of various chelating ligands and surfactants on the NPs’ morphology and chemical composition. According to the results, DDAO, a zwitterionic surfactant, was found to mediate the formation of pure octahedral Cu2O NPs. In addition, a hybrid material film composed of regenerated cellulose and synthesized Cu2O nano-octahedrons was fabricated by spin-coating.

Ort, förlag, år, upplaga, sidor
Sundsvall: Mid Sweden University, 2018. s. 68
Serie
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 282
Nationell ämneskategori
Annan kemiteknik
Identifikatorer
urn:nbn:se:miun:diva-33975 (URN)978-91-88527-54-7 (ISBN)
Disputation
2018-06-05, M102, Sundsvall, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-06-28 Skapad: 2018-06-28 Senast uppdaterad: 2018-06-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Eivazihollagh, AlirezaBäckström, JoakimNorgren, MagnusEdlund, Håkan

Sök vidare i DiVA

Av författaren/redaktören
Eivazihollagh, AlirezaBäckström, JoakimNorgren, MagnusEdlund, Håkan
Av organisationen
Avdelningen för kemiteknikAvdelningen för naturvetenskap
I samma tidskrift
Journal of chemical technology and biotechnology (1986)
Kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 44648 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf