miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sensing the online social sphere using a sentiment analytical approach
University of Ravensburg-Weingarten. (ETOUR)
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi. (ETOUR)ORCID-id: 0000-0003-3964-2716
University of Ravensburg-Weingarten. (ETOUR)
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi. (ETOUR)ORCID-id: 0000-0002-6610-9303
2016 (Engelska)Ingår i: Analytics in smart tourism design: Concepts and methodologies / [ed] Z. Xiang and D. R. Fesenmaier, Springer, 2016, s. 129-146Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Customer online feedback in the form of user-generated content (UGC) has become one of the most contentful and influential source of information in the process of customers’ as well as suppliers’ decision making. Thus, extracting customer feedback from online platforms and detecting its sentiment as well as related topics, known as sentiment analysis or opinion mining, not surprisingly, became one of the most important and vivid research veins within the area of web mining. This chapter gives an overview of different approaches to tackle the problem of sentiment analysis, like simple word-list-based approaches or more complex machine learning approaches, making use of statistical language models or part-of-speech (POS) tagging, and discusses current applications in the field of tourism. Subsequently, the chapter describes selected sentiment analytical approaches in more detail. Sentiment detection is tackled by simple word-list-based approaches and by typical supervised learning approaches, like k-nearest neighbor, support vector machines and Naive Bayes. Additionally to these approaches, topic detection is tackled by methods of unsupervised learning, like cluster analysis and single value decomposition. All presented techniques are demonstrated and validated based on a prototypical implementation as part of a destination management information system (DMISTM) for the leading Swedish mountain destination Åre.

Ort, förlag, år, upplaga, sidor
Springer, 2016. s. 129-146
Nyckelord [en]
Sentiment analysis; opinion mining; UGC; Knowledge management; Tourism
Nationell ämneskategori
Ekonomisk geografi
Identifikatorer
URN: urn:nbn:se:miun:diva-29231DOI: 10.1007/978-3-319-44263-1Lokalt ID: ETOURISBN: 978-3-319-44263-1 (tryckt)OAI: oai:DiVA.org:miun-29231DiVA, id: diva2:1045148
Projekt
Kunskapsdestinationen IITillgänglig från: 2016-11-08 Skapad: 2016-11-08 Senast uppdaterad: 2017-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Fuchs, MatthiasLexhagen, Maria

Sök vidare i DiVA

Av författaren/redaktören
Fuchs, MatthiasLexhagen, Maria
Av organisationen
Avdelningen för turismvetenskap och geografi
Ekonomisk geografi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 339 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf