miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating the effect of different distances on the pixels per object and image classification
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
2015 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

In the last decades camera systems have continuously evolved and have

found wide range of applications. One of the main applications of a

modern camera system is surveillance in outdoor areas. The camera

system, based on local computations, can detect and classify objects

autonomously. However, the distance of the objects from the camera

plays a vital role on the classification results. This could be specially

challenging when lighting conditions are varying.

Therefore, in this thesis, we are examining the effect of changing dis-tances on object in terms of number of pixels. In addition, the effect of

distance on classification is studied by preparing four different sets. For

consideration of high signal to noise ratio, we are integrating thermal

and visual image sensors for the same test in order to achieve better

spectral resolution. In this study, four different data sets, thermal, visu-al, binary from visual and binary from thermal have been prepared to

train the classifier. The categorized objects include bicycle, human and

vehicle.

Comparative studies have been performed in order to identify the data

sets accuracy. It has been demonstrated that for fixed distances bi-level

data sets, obtained from visual images, have better accuracy. By using

our setup, the object (human) with a length of 179 and width of 30 has

been classified correctly with minor error up to 150 meters for thermal,

visual as well as binary from visual. Moreover, for bi-level images from

thermal, the human object has been correctly classified as far away as

250 meters.

Ort, förlag, år, upplaga, sidor
2015. , s. 56
Nyckelord [en]
MATLAB, image processing, surveillance, image classification, segmentation, bag of words, thermal, visual, black and white
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:miun:diva-25880OAI: oai:DiVA.org:miun-25880DiVA, id: diva2:854818
Utbildningsprogram
Internationellt kandidatprogram i elektronik TIELG 180 hp
Presentation
2015-07-16, S113, holmgatan 10, Sundsvall, 10:30 (Engelska)
Handledare
Examinatorer
Tillgänglig från: 2015-09-21 Skapad: 2015-09-17 Senast uppdaterad: 2015-09-21Bibliografiskt granskad

Open Access i DiVA

fulltext(1483 kB)366 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1483 kBChecksumma SHA-512
9b9f55f6e35900d24673170f676044798cf0cd7e6b2d14f64ea015bc5353697c52fa15bc3a1b4aefc46b58cfa00c05f52ef0fc7576b04faafc5bdff2471b9754
Typ fulltextMimetyp application/pdf

Av organisationen
Avdelningen för elektronikkonstruktion
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 366 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 611 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf