miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structure Information in Decision Trees and Similar Formalisms
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för informationsteknologi och medier.ORCID-id: 0000-0002-0665-1889
2007 (Engelska)Ingår i: Structure Information in Decision Trees and Similar Formalisms: Proceedings of the Twentieth International Florida Artificial Intelligence Research Society Conference, 2007, Menlo Park, California: AAAI Press, 2007, s. 62-67Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In attempting to address real-life decision problems, where uncertainty about input data prevails, some kind of representation of imprecise information is important and several have been proposed over the years. In particular, first-order representations of imprecision, such as sets of probability measures, upper and lower probabilities, and interval probabilities and utilities of various kinds, have been suggested for enabling a better representation of the input sentences. A common problem is, however, that pure interval analyses in many cases cannot discriminate sufficiently between the various strategies under consideration, which, needless to say, is a substantial problem in real-life decision making in agents as well as decision support tools. This is one reason prohibiting a more wide-spread use. In this article we demonstrate that in many situations, the discrimination can be made much clearer by using information inherent in the decision structure. It is discussed using second-order probabilities which, even when they are implicit, add information when handling aggregations of imprecise representations, as is the case in decision trees and probabilistic networks. The important conclusion is that since structure carries information, the structure of the decision problem influences evaluations of all interval representations and is quantifiable.

Ort, förlag, år, upplaga, sidor
Menlo Park, California: AAAI Press, 2007. s. 62-67
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:miun:diva-4227Lokalt ID: 4964ISBN: 978-1-57735-319-5 (tryckt)OAI: oai:DiVA.org:miun-4227DiVA, id: diva2:29259
Tillgänglig från: 2008-09-30 Skapad: 2008-09-30 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Ekenberg, Love

Sök vidare i DiVA

Av författaren/redaktören
Ekenberg, Love
Av organisationen
Institutionen för informationsteknologi och medier
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 34 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf