Mittuniversitetet

miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
UGC-Based Factors Influencing Customer Satisfaction Pre and Post COVID-19: The Case of Lake Constance
Ravensburg Weingarten Univ Appl Sci, Inst Digital Transformat, Weingarten, Germany..
Ravensburg Weingarten Univ Appl Sci, Inst Digital Transformat, Weingarten, Germany..
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism. (ETOUR)ORCID-id: 0000-0003-3964-2716
2024 (Engelska)Ingår i: INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2024, ENTER 2024 / [ed] Berezina, K Nixon, L Tuomi, A, Springer, 2024, s. 373-384Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

User-generated content (UGC) created and distributed through social media and tourism-related websites provides potential travelers the opportunity to gain first-hand experiences about destination products and services. UGC is also of great value to tourism service providers. Since UGC represents customers' opinions and experience outcomes, potential problems, but also drivers behind customer delight can be identified. In this regard, also temporal changes regarding customer requirements can be determined. The aim of this paper is to identify how certain topic areas mentioned in UGC affect customer satisfaction, exemplarily analyzed for the Lake of Constance Region. Furthermore, potential temporal changes regarding customer satisfaction since the outbreak of the COVID-19 pandemic will be examined. A sentiment analysis, topic detection and regression analysis are carried out on two datasets containing UGC before and after the outbreak of the pandemic. Findings show that the pandemic has changed customers' attitudes towards certain topic areas.

Ort, förlag, år, upplaga, sidor
Springer, 2024. s. 373-384
Serie
Springer Proceedings in Business and Economics, ISSN 2198-7246
Nyckelord [en]
Text Mining, Linear Regression, Sentiment Analysis, Topic Detection, User Generated Content, COVID-19
Nationell ämneskategori
Företagsekonomi
Identifikatorer
URN: urn:nbn:se:miun:diva-52203DOI: 10.1007/978-3-031-58839-6_39ISI: 001265165600039ISBN: 978-3-031-58841-9 (tryckt)OAI: oai:DiVA.org:miun-52203DiVA, id: diva2:1891788
Konferens
31st Annual International eTourism Conference (ENTER) - Challenging the Next 30 Years of Tourism, JAN 17-19, 2024, Izmir, TURKEY
Tillgänglig från: 2024-08-23 Skapad: 2024-08-23 Senast uppdaterad: 2024-08-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Fuchs, Matthias

Sök vidare i DiVA

Av författaren/redaktören
Fuchs, Matthias
Av organisationen
Institutionen för ekonomi, geografi, juridik och turism
Företagsekonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 41 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf