Mittuniversitetet

miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive machine learning in assessing materiality: The global reporting initiative standard and beyond
Högskolan i Gävle.
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism. (CER)ORCID-id: 0000-0001-5731-0489
Stockholms universitet.
West Virginia University.
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Artificial intelligence for sustainability innovations in business and financial services / [ed] Walker, T., Wendt, S., Goubran, S. och Schwartz, T., Cham: Palgrave Macmillan, 2024, 1, s. 105-131Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Sustainability reporting standards state that material information should be disclosed, but materiality is not easily nor consistently defined across companies and sectors. Research finds that materiality assessments by reporting companies and sustainability auditors are uncertain, discretionary, and subjective. This chapter investigates a machine learning approach to sustainability reporting materiality assessments that has predictive validity. The investigated assessment methodology provides materiality assessments of disclosed as well as non-disclosed sustainability items consistent with the impact materiality GRI (Global Reporting Initiative) reporting standard. Our machine learning model estimates the likelihood that a company fully complies with environmental responsibilities. We then explore how a state-of-the-art model interpretation method, the SHAP (SHapley Additive exPlanations) developed by Lundberg and Lee (A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-December, pp 4766–4775, 2017), can be used to estimate impact materiality.

Ort, förlag, år, upplaga, sidor
Cham: Palgrave Macmillan, 2024, 1. s. 105-131
Nationell ämneskategori
Ekonomi och näringsliv
Identifikatorer
URN: urn:nbn:se:miun:diva-50980DOI: 10.1007/978-3-031-49979-1_6Scopus ID: 2-s2.0-105002205426ISBN: 978-3-031-49978-4 (tryckt)OAI: oai:DiVA.org:miun-50980DiVA, id: diva2:1847968
Tillgänglig från: 2024-04-01 Skapad: 2024-04-01 Senast uppdaterad: 2025-04-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Öhman, Peter

Sök vidare i DiVA

Av författaren/redaktören
Öhman, Peter
Av organisationen
Institutionen för ekonomi, geografi, juridik och turism
Ekonomi och näringsliv

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 44 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf