Mittuniversitetet

miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Lightweight Machine Learning-Based Approach for Supervision of Fitness Workout
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2019, artikel-id 8706106Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

It is widely known that physical activity helps preventing several diseases. However, unsupervised training often results in low exercise quality, ineffective training, and, in worst cases, injuries. Automatic tracking and quantification of exercises by means of wearable devices could be an effective mean for the monitoring of exercise correctness. As a consequence, such devices could help motivating people, thus improving the quantity of performed physical exercise, with positive effects on users' health conditions. However, despite the availability of several commercial devices, the performance and effectiveness are not well documented. This work proposes a new solution for fitness workout supervision exploiting machine learning techniques, in particular Linear Discriminant Analysis for analyzing data coming from wearable Inertial Measurement Units. Efforts have been done in order to reduce the computational requirements, thus assuring compatibility in perspective of embedded implementation. The experimental tests carried out to assess the proposed approach performance showed an accuracy in exercise detection over 93% and error in exercise counting less than 6%. © 2019 IEEE.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2019. artikel-id 8706106
Nyckelord [en]
data classification, embedded systems, machine learning, mHealth, wearables, Discriminant analysis, Health, Learning algorithms, Learning systems, Computational requirements, Embedded implementation, Inertial measurement unit, Linear discriminant analysis, Machine learning techniques, Unsupervised training, Wearable sensors
Identifikatorer
URN: urn:nbn:se:miun:diva-41478DOI: 10.1109/SAS.2019.8706106ISI: 000474727000092Scopus ID: 2-s2.0-85065913971ISBN: 9781538677131 (tryckt)OAI: oai:DiVA.org:miun-41478DiVA, id: diva2:1534303
Konferens
SAS 2019 - 14th IEEE Sensors Applications Symposium, SAS 2019; Sophia Antipolis; France; 11 March 2019 through 13 March 2019
Tillgänglig från: 2021-03-05 Skapad: 2021-03-05 Senast uppdaterad: 2021-04-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Sisinni, E.

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf