miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning Analytics For Programming Education: Obstacles And Opportunities
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och systemvetenskap.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och systemvetenskap.
2019 (Engelska)Ingår i: 12th International Conference of Education, Research and Innovation, Seville (Spain), 11-13 November 2019, Valencia (SPAIN), 2019, Vol. 12, s. 6159-6166Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

During recent years the field of Learning Analytics have been frequently mentioned in discussions of addressing challenges in education, as well as a means to analyse and draw upon students' strengths in educational contexts. Prognoses for the future labour market show an increasing need of programmers, yet studies show that programming education struggle with student dropout, poor academic performance and low pass rates. The aim of this study was to analyse and discuss potential obstacles and opportunities in using learning analytics tools for forecasting student success in relation to course outcomes in programming education.

This study was carried out as a literature review with a theorical framework for Learning Analytics presented by Yassine, Kadry and Sicilia (2016) in “A framework for learning analytics in moodle for assessing course outcomes”. In 2016 IEEE Global Engineering Education Conference (EDUCON) (pp. 261-266). IEEE.” as the basis for a content analysis with deductive coding. Main keywords in the literature search was: learning analytics, programming, education, course, tool, obstacles, opportunities. Keywords were combined with the Boolean operators “and” and “or”. The literature search was limited to recently published research (between years 2015 and 2019).

The study shows that learning analytics tools, if thoughtfully used, is an opportunity to forecast student success and improve educational design, both from the student perspective and from the teacher perspective. Learning analytics tools does not necessarily have to build on quantitative big data analyses only. From a teacher perspective it could be more valuable with a mixed method approach in the strive to improve existing course design. As pointed out in several research studies students’ and teachers’ integrity have to be respected. Today’s virtual learning environments provide huge amounts of learning data, but as in all other types of research, this should build on informed consent. Finally, in a new approach of learning analytics the analyses preferably should include some teaching analytics as well, to better improve course design and learning outcomes.

Ort, förlag, år, upplaga, sidor
Valencia (SPAIN), 2019. Vol. 12, s. 6159-6166
Nyckelord [en]
Learning analytics, Programming education, Programming, Obstacles, Opportunities
Nationell ämneskategori
Utbildningsvetenskap
Identifikatorer
URN: urn:nbn:se:miun:diva-37750ISBN: 978-84-09-14755-7 (digital)OAI: oai:DiVA.org:miun-37750DiVA, id: diva2:1371855
Konferens
International Conference of Education, Research and Innovation 2019 (ICERI2019)
Tillgänglig från: 2019-11-21 Skapad: 2019-11-21 Senast uppdaterad: 2019-11-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Humble, NiklasMozelius, Peter

Sök vidare i DiVA

Av författaren/redaktören
Humble, NiklasMozelius, Peter
Av organisationen
Institutionen för data- och systemvetenskap
Utbildningsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf