Mittuniversitetet

miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimization algorithm selection for object detection and segmentation with Mask R-CNN
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för informationssystem och –teknologi.
2019 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Deep learning is a field within machine learning that has grown in popularity. It is used in areas such as: image classification, speech recognition, market price predictions, object detection and much more. The main objective of this study has been to, on the requests of a company, train a model using deep learning to be able to classify and produce masks of objects of interest within images. A comparison of different optimization algorithms was done in order to identify the optimal one for the task at hand. Pixel-wise annotations of the objects were produced in order to train the model. By altering the code of Matterports implementation of Mask R-CNN to train on the dataset (of images) provided by HIAB, the goals were achieved. The optimization algorithm best suited for the conditions of this study was concluded to be AdaGrad. This was concluded based on the mean value of the total loss for each optimization algorithm. In future work, the dataset would preferably be larger in order to increase the predictive quality of the model.

Ort, förlag, år, upplaga, sidor
2019. , s. 55
Nyckelord [en]
deep learning, optimization algorithms, object detection, Mask R-CNN
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:miun:diva-36438Lokalt ID: DT-V19-G3-001OAI: oai:DiVA.org:miun-36438DiVA, id: diva2:1328039
Ämne / kurs
Datateknik DT1
Utbildningsprogram
Civilingenjör i datateknik TDTEA 300 hp
Handledare
Examinatorer
Tillgänglig från: 2019-06-20 Skapad: 2019-06-20 Senast uppdaterad: 2019-08-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Yildirim, Kani
Av organisationen
Institutionen för informationssystem och –teknologi
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1219 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf