miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Business intelligence and big data in hospitality and tourism: A systematic literature review
University of Reading, Berks, England.
Bocconi University, Italy; Tomsk Polytechnic University, Tomsk, Russia.
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi. (ETOUR)ORCID-id: 0000-0003-3964-2716
Universtiy of Applied Sience, Weingarten-Ravensburg, Germany.
2018 (Engelska)Ingår i: International Journal of Contemporary Hospitality Management, ISSN 0959-6119, E-ISSN 1757-1049, Vol. 30, nr 12, s. 3514-3554Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose

This paper aims to examine the extent to which Business Intelligence and Big Data feature within academic research in hospitality and tourism published until 2016, by identifying research gaps and future developments and designing an agenda for future research.

Design/methodology/approach

The study consists of a systematic quantitative literature review of academic articles indexed on the Scopus and Web of Science databases. The articles were reviewed based on the following features: research topic; conceptual and theoretical characterization; sources of data; type of data and size; data collection methods; data analysis techniques; and data reporting and visualization.

Findings

Findings indicate an increase in hospitality and tourism management literature applying analytical techniques to large quantities of data. However, this research field is fairly fragmented in scope and limited in methodologies and displays several gaps. A conceptual framework that helps to identify critical business problems and links the domains of business intelligence and big data to tourism and hospitality management and development is missing. Moreover, epistemological dilemmas and consequences for theory development of big data-driven knowledge are still a terra incognita. Last, despite calls for more integration of management and data science, cross-disciplinary collaborations with computer and data scientists are rather episodic and related to specific types of work and research.

Research limitations/implications

This work is based on academic articles published before 2017; hence, scientific outputs published after the moment of writing have not been included. A rich research agenda is designed.

Originality/value

This study contributes to explore in depth and systematically to what extent hospitality and tourism scholars are aware of and working intendedly on business intelligence and big data. To the best of the authors’ knowledge, it is the first systematic literature review within hospitality and tourism research dealing with business intelligence and big data.

Ort, förlag, år, upplaga, sidor
Emerald Group Publishing Limited, 2018. Vol. 30, nr 12, s. 3514-3554
Nyckelord [en]
Big Data, Business Intelligence, systematic literature review, hospitality, tourism
Nationell ämneskategori
Samhällsvetenskap
Identifikatorer
URN: urn:nbn:se:miun:diva-33240DOI: 10.1108/IJCHM-07-2017-0461ISI: 000450786100001Scopus ID: 2-s2.0-85053008917OAI: oai:DiVA.org:miun-33240DiVA, id: diva2:1189526
Tillgänglig från: 2018-03-12 Skapad: 2018-03-12 Senast uppdaterad: 2019-03-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Fuchs, Matthias

Sök vidare i DiVA

Av författaren/redaktören
Fuchs, Matthias
Av organisationen
Avdelningen för turismvetenskap och geografi
I samma tidskrift
International Journal of Contemporary Hospitality Management
Samhällsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2215 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf