miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive finite element methods for parameter estimation problems in partial differential equations
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för teknik, fysik och matematik. (FSCN - Fibre Science and Communication Network)
2005 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Physical and chemical phenomena are often described by a system of partial di®erential equations. These equations usually involve unknown parameters, which cannot be measured directly but which can be adjusted to make the model predictions match the observed data. The process of ¯tting these para- meters to laboratory or plant data is called parameter estimation. In order to recover these parameters, the well-known output least squares formulation is of- ten utilized. To solve the optimization problem governed by partial di®erential equations, the in¯nite-dimensional problem must be approximated by introduc- ing discretizations such as a ¯nite elements or di®erences. It is clear that the e±ciency of the numerical methods dealt with here will be in°uenced by the discretization scheme. The goal of this thesis is to develop e±cient numerical methods for the parameter estimation problems governed by partial di®erential equations, based on adaptive ¯nite element methods. This work was initiated by an investigation into an a posteriori error esti- mator of residual type for parameter estimation problems with a ¯nite number of unknown parameters. It appears that an adaptive ¯nite element algorithm guided by the derived a posteriori error estimator produces a sequence of eco- nomical, locally re¯ned meshes. The methods are then applied to the identi¯ca- tion of elastic constants in paper from measured displacements. Further, some a posteriori error estimators of gradient recovery type are derived for the error in parameters due to the discretization. The main advantages of using error estimators of this type are the simplicity of their implementation and their cost e®ectiveness. Often, the unknown parameters are functions, which also need to be dis- cretized. Adaptive ¯nite element method is developed for the estimation of distributed parameters in elliptic equations with multi-mesh techniques. Finally, a goal-oriented adaptive method, dual weighted residual methods (DWR methods) are employed determining the elastic constants in paper from measured displacements.

Ort, förlag, år, upplaga, sidor
Sundsvall: Mittuniversitetet , 2005. , s. 30
Serie
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 4
Nyckelord [en]
parameter estimation, ¯nite element approximation, adaptive ¯nite element methods, a posteriori error estimates, least squares.
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:miun:diva-8866OAI: oai:DiVA.org:miun-8866DiVA, id: diva2:214920
Disputation
2005-10-22, 00:00 (Engelska)
Tillgänglig från: 2009-05-06 Skapad: 2009-05-06 Senast uppdaterad: 2009-09-21Bibliografiskt granskad
Delarbeten
1. Adaptive finite element methods for parameter estimation problems in linear elasticity
Öppna denna publikation i ny flik eller fönster >>Adaptive finite element methods for parameter estimation problems in linear elasticity
2009 (Engelska)Ingår i: International Journal of Numerical Analysis & Modeling, ISSN 1705-5105, Vol. 6, nr 1, s. 17-32Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, the Lame coefficients in the linear elasticity problem are estimated by using the measurements of displacement. Some a posteriori error estimators for the approximation error of the parameters are derived, and then adaptive finite element schemes are developed for the discretization of the parameter estimation problem, based on the error estimators. The Gauss-Newton method is employed to solve the discretized nonlinear least-squares problem. Some numerical results are presented.

Nyckelord
finite element methods, inverse problems, paramater estimation
Nationell ämneskategori
Matematik Beräkningsmatematik
Identifikatorer
urn:nbn:se:miun:diva-8788 (URN)000264008000002 ()2-s2.0-62749179686 (Scopus ID)
Tillgänglig från: 2009-04-15 Skapad: 2009-04-15 Senast uppdaterad: 2017-12-13Bibliografiskt granskad
2. Adaptive finite element methods for the identification of elastic constants
Öppna denna publikation i ny flik eller fönster >>Adaptive finite element methods for the identification of elastic constants
2006 (Engelska)Ingår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 26, nr 2, s. 217-235Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, the elastic constants of a material are recovered from measured displacements where the model is the equilibrium equations for the orthotropic case. The finite element method is used for the discretization of the state equation and the Gauss–Newton method is used to solve the nonlinear least squares problem attained from the parameter estimation problem. A posteriori error estimators are derived and used to improve the accuracy by an appropriate mesh refinement. A numerical experiment is presented to show the applicability of the approach.

Nyckelord
Parameter estimation, finite element approximation, adaptive finite element methods, least squares, Gauss–Newton
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:miun:diva-3242 (URN)10.1007/s10915-004-4935-9 (DOI)000235445800004 ()2-s2.0-32944461738 (Scopus ID)3196 (Lokalt ID)3196 (Arkivnummer)3196 (OAI)
Tillgänglig från: 2008-09-30 Skapad: 2008-09-30 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
3. A Posteriori Error Estimators of Recovery Type for Parameter Estimation Problem in Linear Elastic Problem
Öppna denna publikation i ny flik eller fönster >>A Posteriori Error Estimators of Recovery Type for Parameter Estimation Problem in Linear Elastic Problem
2007 (Engelska)Ingår i: Free and Moving Boundaries: Analysis, Simulation and Control, Boca Raton: CRC Press, 2007, s. 395-410Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Boca Raton: CRC Press, 2007
Serie
Lecture notes in pure and applied mathematics ; 252
Nyckelord
finite element, parameter estimation
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:miun:diva-3421 (URN)3406 (Lokalt ID)9781584886068 (ISBN)3406 (Arkivnummer)3406 (OAI)
Tillgänglig från: 2008-09-30 Skapad: 2008-09-30 Senast uppdaterad: 2011-12-22Bibliografiskt granskad
4. Adaptive finite element methods for the identification of distributed parameters in elliptic equation
Öppna denna publikation i ny flik eller fönster >>Adaptive finite element methods for the identification of distributed parameters in elliptic equation
2008 (Engelska)Ingår i: Advances in Computational Mathematics, ISSN 1019-7168, E-ISSN 1572-9044, Vol. 29, nr 1, s. 27-53Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper, adaptive finite element method is developed for the estimation of distributed parameter in elliptic equation. Both upper and lower error bound are derived and used to improve the accuracy by appropriate mesh refinement. An efficient preconditioned project gradient algorithm is employed to solve the nonlinear least-squares problem arising in the context of parameter identification problem. The efficiency of our error estimators is demonstrated by some numerical experiments

Nyckelord
Parameter identification - Finite element approximation - Adaptive finite element methods - Least-squares - Gauss–Newton
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:miun:diva-3422 (URN)10.1007/s10444-007-9035-6 (DOI)3407 (Lokalt ID)3407 (Arkivnummer)3407 (OAI)
Tillgänglig från: 2008-09-30 Skapad: 2008-09-30 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
5. Adaptive finite element methods for determining the elastic constants of paper from measured displacements
Öppna denna publikation i ny flik eller fönster >>Adaptive finite element methods for determining the elastic constants of paper from measured displacements
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:miun:diva-9368 (URN)
Tillgänglig från: 2009-07-13 Skapad: 2009-07-13 Senast uppdaterad: 2010-01-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Feng, Tao

Sök vidare i DiVA

Av författaren/redaktören
Feng, Tao
Av organisationen
Institutionen för teknik, fysik och matematik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1931 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf