miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating the effect of different distances on the pixels per object and image classification
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
2015 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

In the last decades camera systems have continuously evolved and have

found wide range of applications. One of the main applications of a

modern camera system is surveillance in outdoor areas. The camera

system, based on local computations, can detect and classify objects

autonomously. However, the distance of the objects from the camera

plays a vital role on the classification results. This could be specially

challenging when lighting conditions are varying.

Therefore, in this thesis, we are examining the effect of changing dis-tances on object in terms of number of pixels. In addition, the effect of

distance on classification is studied by preparing four different sets. For

consideration of high signal to noise ratio, we are integrating thermal

and visual image sensors for the same test in order to achieve better

spectral resolution. In this study, four different data sets, thermal, visu-al, binary from visual and binary from thermal have been prepared to

train the classifier. The categorized objects include bicycle, human and

vehicle.

Comparative studies have been performed in order to identify the data

sets accuracy. It has been demonstrated that for fixed distances bi-level

data sets, obtained from visual images, have better accuracy. By using

our setup, the object (human) with a length of 179 and width of 30 has

been classified correctly with minor error up to 150 meters for thermal,

visual as well as binary from visual. Moreover, for bi-level images from

thermal, the human object has been correctly classified as far away as

250 meters.

sted, utgiver, år, opplag, sider
2015. , s. 56
Emneord [en]
MATLAB, image processing, surveillance, image classification, segmentation, bag of words, thermal, visual, black and white
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-25880OAI: oai:DiVA.org:miun-25880DiVA, id: diva2:854818
Utdanningsprogram
International Bachelor's Programme in Electronics TIELG 180 higher education credits
Presentation
2015-07-16, S113, holmgatan 10, Sundsvall, 10:30 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2015-09-21 Laget: 2015-09-17 Sist oppdatert: 2015-09-21bibliografisk kontrollert

Open Access i DiVA

fulltext(1483 kB)366 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1483 kBChecksum SHA-512
9b9f55f6e35900d24673170f676044798cf0cd7e6b2d14f64ea015bc5353697c52fa15bc3a1b4aefc46b58cfa00c05f52ef0fc7576b04faafc5bdff2471b9754
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 366 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 611 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf