Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Leveraging multi-criteria customer feedback for satisfaction analysis and improved recommendations
TU Dortmund, Dortmund, Germany.
Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria .
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi.ORCID-id: 0000-0003-3964-2716
2014 (engelsk)Inngår i: Information Technology and Tourism, ISSN 1943-4294, Vol. 14, nr 2, s. 119-149Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Travel websites and online booking platforms represent today's major sources for customers when gathering information before a trip. In particular, community-provided customer reviews and ratings of various tourism services represent a valuable source of information for trip planning. With respect to customer ratings, many modern travel and tourism platforms-in contrast to several other e-commerce domains-allow customers to rate objects along multiple dimensions and thus to provide more fine-granular post-trip feedback on the booked accommodation or travel package. In this paper, we first show how this multi-criteria rating information can help to obtain a better understanding of factors driving customer satisfaction for different segments. For this purpose, we performed a Penalty-Reward contrast analysis on a data set from a major tourism platform, which reveals that customer segments significantly differ in the way the formation of overall satisfaction can be explained. Beyond the pure identification of segment-specific satisfaction factors, we furthermore show how this fine-granular rating information can be exploited to improve the accuracy of rating-based recommender systems. In particular, we propose to utilize user- and object-specific factor relevance weights which can be learned through linear regression. An empirical evaluation on datasets from different domains finally shows that our method helps us to predict the customer preferences more accurately and thus to develop better online recommendation services. © 2014 Springer-Verlag Berlin Heidelberg.

sted, utgiver, år, opplag, sider
2014. Vol. 14, nr 2, s. 119-149
Emneord [en]
Customer satisfaction, Multi-criteria rating feedback, Online booking platforms, Recommender systems
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-22623DOI: 10.1007/s40558-014-0010-zScopus ID: 2-s2.0-84904419715Lokal ID: ETOUROAI: oai:DiVA.org:miun-22623DiVA, id: diva2:750123
Merknad

Correspondence Address: Zanker, M.; Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria; email: markus.zanker@aau.at

Tilgjengelig fra: 2014-09-26 Laget: 2014-08-20 Sist oppdatert: 2025-01-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Fuchs, Matthias

Søk i DiVA

Av forfatter/redaktør
Fuchs, Matthias
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 621 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf