miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Association Rules in Parameter Tuning: for Experimental Designs
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem. Sundsvall.
2014 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

The objective of this thesis was to investigate the possibility ofusing association rule algorithms to automatically generaterules for the output of a Parameter Tuning framework. Therules would be the basis for a recommendation to the user regardingwhich parameter space to reduce during experimentation.The parameter tuning output was generated by means ofan open source project (INPUT) example program. InPUT is atool used to describe computer experiment configurations in aframework independent input/output format. InPUT has adaptersfor the evolutionary algorithm framework Watchmakerand the tuning framework SPOT. The output was imported in Rand preprocessed to a format suitable for association rule algorithms.Experiments were conducted on data for which theparameter spaces were discretized in 2, 5, 10 steps. The minimumsupport threshold was set to 1% and 3% to investigatethe amount of rules over time. The Apriori and Eclat algorithmsproduced exactly the same amount of rules, and the top 5rules with regards to support were basically the same for bothalgorithms. It was not possible at the time to automatically distinguishinguseful rules. In combination with the many manualdecisions during the process of converting the tuning output toassociation rules, the conclusion was reached to not recommendassociation rules for enhancing the Parameter Tuningprocess.

sted, utgiver, år, opplag, sider
2014. , s. 54
Emneord [en]
Evolutionary Computation, Evolutionary Algorithms, Data mining, association rules, parameter tuning, In- PUT, SPOT
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-21923OAI: oai:DiVA.org:miun-21923DiVA, id: diva2:716650
Fag / kurs
Computer Engineering DT1
Utdanningsprogram
Computer Science TDATG 180 higher education credits
Presentation
2014-01-31, M312, Holmgatan 10, Sundsvall, 10:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2014-05-16 Laget: 2014-05-12 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

thesis-AssociationRulesInParameterTuning(1046 kB)340 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1046 kBChecksum SHA-512
5f111b6965a0b64d54571dbc85dd6508a6bce35f5d5713851324870d363f1c5d49f6c2ce7c5c9e12efa5239fd864c6b201c77ba11e164777779d2511ac8c3cd4
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Hållén, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 340 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 110 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf