Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Accuracy Impact of Increased Measurement Quality when using Pretrained Networks for Classification
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och elektroteknik (2023-). (STC)ORCID-id: 0000-0003-1819-6200
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och elektroteknik (2023-). (STC)ORCID-id: 0000-0002-8253-7535
Vise andre og tillknytning
2024 (engelsk)Inngår i: Conference Record - IEEE Instrumentation and Measurement Technology Conference, IEEE conference proceedings, 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The field of Metrology has seen great use of Machine Learning and Deep Learning models, improving existing Metrology and enabling measurements and estimations that were previously not possible. In the challenging task of gathering training data in various areas of Metrology, a question arises; is it necessary to gather a completely new dataset every time a quality upgrade is done to a measurement system, method or model, or can the formerly trained model be used for new data with higher Signal-to-Noise Ratio (SNR)? This paper investigates how trained neural networks react to new data coming into the testing, with a higher SNR than the training data. In the experiments, Convolutional Neural Networks (CNN), in 1D and 2D, are used on heart sound data, as a test case. The initial results show that the classification accuracy for the new data, with a higher SNR, coming into the 1D CNN is almost as high as if the network had been trained on the higher SNR data. For a 2D CNN working with spectrograms instead of time series data, the change in accuracy is not nearly as high, as the 2D CNN model seems more robust to noise differences. 

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2024.
Emneord [en]
Classification, Data Quality, Deep Learning, Machine Learning, Neural Networks, Pretrained, SNR
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-52050DOI: 10.1109/I2MTC60896.2024.10561016ISI: 001261521400247Scopus ID: 2-s2.0-85197767566ISBN: 9798350380903 (tryckt)OAI: oai:DiVA.org:miun-52050DiVA, id: diva2:1887370
Konferanse
Conference Record - IEEE Instrumentation and Measurement Technology Conference
Tilgjengelig fra: 2024-08-07 Laget: 2024-08-07 Sist oppdatert: 2024-11-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Lundgren, JanJiang, MengNnonyelu, Chibuzo Joseph

Søk i DiVA

Av forfatter/redaktør
Lundgren, JanJiang, MengNnonyelu, Chibuzo Joseph
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 37 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf