Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
IIoT Intrusion Detection using Lightweight Deep Learning Models on Edge Devices
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och elektroteknik (2023-). (Sensible Things that Communicate, STC)ORCID-id: 0009-0004-0913-8097
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och elektroteknik (2023-).ORCID-id: 0000-0002-1797-1095
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och elektroteknik (2023-).
2024 (engelsk)Inngår i: 2024 IEEE 20th International Conference on Factory Communication Systems (WFCS), IEEE conference proceedings, 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In the rapidly evolving cybersecurity landscape, detecting and preventing network attacks has become crucial within the industrial sector. This study aims to explore the potential of intrusion detection by employing deep learning within edge computing, especially for the Industrial Internet of Things. Specifically, TinyML converted CNN, LSTM, Transformer-LSTM, and GCN models on the UNSW-NB15 dataset. A comprehensive dataset analysis gained insights into the nature of attack behavior data. Subsequently, a comparative analysis in an edge computing setup using Raspberry Pi units revealed that the GCN model, with its accuracy of 97.5%, was the best suited of the compared models for this application. However, the study also explored variables like time consumption, where the CNN model was the fastest out of the compared models. This research also highlights the need for continued exploration, especially in addressing dataset imbalances and enhancing model generalizability. By recognizing each model's strengths and areas of improvement, this research serves as a step toward bolstering digital safety and security in an increasingly interconnected industrial world.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2024.
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-51534DOI: 10.1109/wfcs60972.2024.10540991Scopus ID: 2-s2.0-85195372403ISBN: 979-8-3503-1934-7 (digital)OAI: oai:DiVA.org:miun-51534DiVA, id: diva2:1871501
Konferanse
IEEE 20th International Conference on Factory Communication Systems (WFCS), Toulouse, April 17-19, 2024
Tilgjengelig fra: 2024-06-17 Laget: 2024-06-17 Sist oppdatert: 2024-06-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Ericson, AmandaForsström, StefanThar, Kyi

Søk i DiVA

Av forfatter/redaktør
Ericson, AmandaForsström, StefanThar, Kyi
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 129 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf