Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predictive machine learning in assessing materiality: The global reporting initiative standard and beyond
Högskolan i Gävle.
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism. (CER)ORCID-id: 0000-0001-5731-0489
Stockholms universitet.
West Virginia University.
Vise andre og tillknytning
2024 (engelsk)Inngår i: Artificial intelligence for sustainability innovations in business and financial services / [ed] Walker, T., Wendt, S., Goubran, S. och Schwartz, T., Cham: Palgrave Macmillan, 2024, 1, s. 105-131Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Sustainability reporting standards state that material information should be disclosed, but materiality is not easily nor consistently defined across companies and sectors. Research finds that materiality assessments by reporting companies and sustainability auditors are uncertain, discretionary, and subjective. This chapter investigates a machine learning approach to sustainability reporting materiality assessments that has predictive validity. The investigated assessment methodology provides materiality assessments of disclosed as well as non-disclosed sustainability items consistent with the impact materiality GRI (Global Reporting Initiative) reporting standard. Our machine learning model estimates the likelihood that a company fully complies with environmental responsibilities. We then explore how a state-of-the-art model interpretation method, the SHAP (SHapley Additive exPlanations) developed by Lundberg and Lee (A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-December, pp 4766–4775, 2017), can be used to estimate impact materiality.

sted, utgiver, år, opplag, sider
Cham: Palgrave Macmillan, 2024, 1. s. 105-131
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-50980DOI: 10.1007/978-3-031-49979-1_6Scopus ID: 2-s2.0-105002205426ISBN: 978-3-031-49978-4 (tryckt)OAI: oai:DiVA.org:miun-50980DiVA, id: diva2:1847968
Tilgjengelig fra: 2024-04-01 Laget: 2024-04-01 Sist oppdatert: 2025-04-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Öhman, Peter

Søk i DiVA

Av forfatter/redaktør
Öhman, Peter
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf