Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating Tourist Arrivals by User Generated Content Volume in Periods of Extraordinary Demand Fluctuations
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism. (ETOUR)ORCID-id: 0000-0003-3964-2716
2023 (engelsk)Inngår i: Springer Proceedings in Business and Economics, Springer Nature, 2023, s. 221-242Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In extraordinary situations, like the Covid-19 pandemic, irregular demand fluctuations can hardly be predicted by traditional forecasting approaches. Even the current extent of decline of demand is typically unknown since tourism statistics are only available with a time delay. This study presents an approach to benefit from user generated content (UGC) in form of online reviews from TripAdvisor as input to estimate current tourism demand in near real-time. The approach builds on an additive time series component model and linear regression to estimate tourist arrivals. Results indicate that the proposed approach outperforms a traditional seasonal naïve forecasting approach when applied to a period of extraordinary demand fluctuations caused by a crisis, like Covid-19. The approach further enables a real-time monitoring of tourism demand and the benchmarking of tourism business in times of extraordinary demand fluctuations. 

sted, utgiver, år, opplag, sider
Springer Nature, 2023. s. 221-242
Emneord [en]
Additive component model, Covid-19, Extraordinary demand fluctuations, Linear regression, Tourism demand forecasting, User generated content
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-47784DOI: 10.1007/978-3-031-25752-0_25ISI: 001025670500025Scopus ID: 2-s2.0-85148735728ISBN: 9783031257513 (tryckt)OAI: oai:DiVA.org:miun-47784DiVA, id: diva2:1742942
Konferanse
30th Annual International eTourism Conference, ENTER 2023, 18 - 20 January, 2023
Merknad

(1st place at best paper award)

Tilgjengelig fra: 2023-03-13 Laget: 2023-03-13 Sist oppdatert: 2023-08-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Fuchs, Matthias

Søk i DiVA

Av forfatter/redaktør
Fuchs, Matthias
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 63 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf