Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Matrix solitons solutions of the modified Korteweg-de Vries equation.
Sapienza Università di Roma, Rome, Italy.
Sapienza Università di Roma, Rome, Italy.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för matematik och ämnesdidaktik. Instytut Matematyki Uniwersytet Jana Kochanowskiego w Kielcach Kielce Poland.
2020 (engelsk)Inngår i: Nonlinear Dynamics of Structures, Systems and Devices: Proceedings of the First International Nonlinear Dynamics Conference (NODYCON 2019) / [ed] W. Lacarbonara, B. Balachandran, J. Ma, J.A. Tenreiro Machado, and G. Stepan, Springer, 2020, Vol. I, s. 75-83Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Nonlinear non-abelian Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations and their links via Bäcklund transformations are considered. The focus is on the construction of soliton solutions admitted by matrix modified Korteweg–de Vries equation. Matrix equations can be viewed as a specialisation of operator equations in the finite dimensional case when operators admit a matrix representation. Bäcklund transformations allow to reveal structural properties Carillo and Schiebold (J Math Phys 50:073510, 2009) enjoyed by non-commutative KdV-type equations, such as the existence of a recursion operator. Operator methods combined with Bäcklund transformations allow to construct explicit solution formulae Carillo and Schiebold (J Math Phys 52:053507, 2011). The latter are adapted to obtain solutions admitted by the 2 × 2 and 3 × 3 matrix mKdV equation. Some of these matrix solutions are visualised to show the solitonic behaviour they exhibit. A further key tool used to obtain the presented results is an ad hoc construction of computer algebra routines to implement non-commutative computations.

sted, utgiver, år, opplag, sider
Springer, 2020. Vol. I, s. 75-83
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-40823DOI: 10.1007/978-3-030-34713-0_8Scopus ID: 2-s2.0-85098616408ISBN: 978-3-030-34712-3 (tryckt)OAI: oai:DiVA.org:miun-40823DiVA, id: diva2:1512771
Konferanse
NODYCON 2019
Tilgjengelig fra: 2020-12-28 Laget: 2020-12-28 Sist oppdatert: 2022-06-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Schiebold, Cornelia

Søk i DiVA

Av forfatter/redaktør
Schiebold, Cornelia
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 141 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf