miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Rotational Invariant Object Recognition for Robotic Vision
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för elektronikkonstruktion.
2019 (engelsk)Inngår i: ICACR 2019 Proceedings of the 2019 3rd International Conference on Automation, Control and Robots, ACM Digital Library, 2019, s. 1-6Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Depth cameras have enhanced the environment perception for robotic applications significantly. They allow to measure true distances and thus enable a 3D measurement of the robot surroundings. In order to enable robust robot vision, the objects recognition has to handle rotated data because object can be viewed from different dynamic perspectives when the robot is moving. Therefore, the 3D descriptors used of object recognition for robotic applications have to be rotation invariant and implementable on the embedded system, with limited memory and computing resources. With the popularization of the depth cameras, the Histogram of Gradients (HOG) descriptor has been extended to recognize also 3D volumetric objects (3DVHOG). Unfortunately, both version are not rotation invariant. There are different methods to achieve rotation invariance for 3DVHOG, but they increase significantly the computational cost of the overall data processing. Hence, they are unfeasible to be implemented in a low cost processor for real-time operation. In this paper, we propose an object pose normalization method to achieve 3DVHOG rotation invariance while reducing the number of processing operations as much as possible. Our method is based on Principal Component Analysis (PCA) normalization. We tested our method using the Princeton Modelnet10 dataset.

sted, utgiver, år, opplag, sider
ACM Digital Library, 2019. s. 1-6
Emneord [en]
3D Object Recognition, Histogram of Gradients, Princeton Modelnet10, Principal Component Analysis, Pose Normalization, Image Processing, Depth Camera
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-37973DOI: 10.1145/3365265.3365273Scopus ID: 2-s2.0-85076833711ISBN: 978-1-4503-7288-6 (digital)OAI: oai:DiVA.org:miun-37973DiVA, id: diva2:1377512
Konferanse
2019 3rd International Conference on Automation, Control and Robots, Prague, Czech Republic, 11-13 October, 2019
Tilgjengelig fra: 2019-12-12 Laget: 2019-12-12 Sist oppdatert: 2020-01-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vilar, CristianKrug, SilviaThörnberg, Benny

Søk i DiVA

Av forfatter/redaktør
Vilar, CristianKrug, SilviaThörnberg, Benny
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf