Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimization algorithm selection for object detection and segmentation with Mask R-CNN
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för informationssystem och –teknologi.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Deep learning is a field within machine learning that has grown in popularity. It is used in areas such as: image classification, speech recognition, market price predictions, object detection and much more. The main objective of this study has been to, on the requests of a company, train a model using deep learning to be able to classify and produce masks of objects of interest within images. A comparison of different optimization algorithms was done in order to identify the optimal one for the task at hand. Pixel-wise annotations of the objects were produced in order to train the model. By altering the code of Matterports implementation of Mask R-CNN to train on the dataset (of images) provided by HIAB, the goals were achieved. The optimization algorithm best suited for the conditions of this study was concluded to be AdaGrad. This was concluded based on the mean value of the total loss for each optimization algorithm. In future work, the dataset would preferably be larger in order to increase the predictive quality of the model.

sted, utgiver, år, opplag, sider
2019. , s. 55
Emneord [en]
deep learning, optimization algorithms, object detection, Mask R-CNN
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-36438Lokal ID: DT-V19-G3-001OAI: oai:DiVA.org:miun-36438DiVA, id: diva2:1328039
Fag / kurs
Computer Engineering DT1
Utdanningsprogram
Master of Science in Engineering - Computer Engineering TDTEA 300 higher education credits
Veileder
Examiner
Tilgjengelig fra: 2019-06-20 Laget: 2019-06-20 Sist oppdatert: 2019-08-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Yildirim, Kani
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 1219 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf