miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Role of microstructures in the compression response of three-dimensional foam-formed wood fiber networks
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för naturvetenskap. (Complex Materials)ORCID-id: 0000-0003-3977-1892
Division of Solid Mechanics, Department of Management and Engineering, Linköping University, Linköping, Sweden.ORCID-id: 0000-0002-1503-8293
Department of Solid Mechanics, Royal Institute of Technology (KTH), Stockholm, Sweden.ORCID-id: 0000-0003-3611-2250
2018 (engelsk)Inngår i: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 14, nr 44, s. 8945-8955, artikkel-id C7SM02561KArtikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

High-porosity, three-dimensional wood fiber networks made by foam forming present experimentally accessible instances of hierarchically structured, athermal fiber networks. We investigate the large deformation compression behavior of these networks using fiber-resolved finite element analyses to elucidate the role of microstructures in the mechanical response to compression. Three-dimensional network structures are acquired using micro-computed tomography and subsequent skeletonization into a Euclidean graph representation. By using a fitting procedure to the geometrical graph data, we are able to identify nine independent statistical parameters needed for the regeneration of artificial networks with the observed statistics. The compression response of these artificially generated networks and the physical network is then investigated using implicit finite element analysis. A direct comparison of the simulation results from the reconstructed and artificial network reveals remarkable differences already in the elastic region. These can neither be fully explained by density scaling, the size effect nor the boundary conditions. The only factor which provides the consistent explanation of the observed difference is the density and fiber orientation nonuniformities; these contribute to strain-localization so that the network becomes more compliant than expected for statistically uniform microstructures. We also demonstrate that the experimentally manifested strain-stiffening of such networks is due to development of new inter-fiber contacts during compression.

sted, utgiver, år, opplag, sider
2018. Vol. 14, nr 44, s. 8945-8955, artikkel-id C7SM02561K
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-34885DOI: 10.1039/C7SM02561KISI: 000450442300008PubMedID: 30398491Scopus ID: 2-s2.0-85056540966OAI: oai:DiVA.org:miun-34885DiVA, id: diva2:1263280
Tilgjengelig fra: 2018-11-14 Laget: 2018-11-14 Sist oppdatert: 2018-12-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Alimadadi, Majid

Søk i DiVA

Av forfatter/redaktør
Alimadadi, MajidLindström, Stefan B.Kulachenko, Artem
Av organisasjonen
I samme tidsskrift
Soft Matter

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 422 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf