miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Correspondence-based pairwise depth estimation with parallel acceleration
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informationssystem och -teknologi.
2018 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

This report covers the implementation and evaluation of a stereo vision corre- spondence-based depth estimation algorithm on a GPU. The results and feed- back are used for a Multi-view camera system in combination with Jetson TK1 devices for parallelized image processing and the aim of this system is to esti- mate the depth of the scenery in front of it. The performance of the algorithm plays the key role. Alongside the implementation, the objective of this study is to investigate the advantages of parallel acceleration inter alia the differences to the execution on a CPU which are significant for all the function, the imposed overheads particular for a GPU application like memory transfer from the CPU to the GPU and vice versa as well as the challenges for real-time and concurrent execution. The study has been conducted with the aid of CUDA on three NVIDIA GPUs with different characteristics and with the aid of knowledge gained through extensive literature study about different depth estimation algo- rithms but also stereo vision and correspondence as well as CUDA in general. Using the full set of components of the algorithm and expecting (near) real-time execution is utopic in this setup and implementation, the slowing factors are in- ter alia the semi-global matching. Investigating alternatives shows that results for disparity maps of a certain accuracy are also achieved by local methods like the Hamming Distance alone and by a filter that refines the results. Further- more, it is demonstrated that the kernel launch configuration and the usage of GPU memory types like shared memory is crucial for GPU implementations and has an impact on the performance of the algorithm. Just concurrency proves to be a more complicated task, especially in the desired way of realization. For the future work and refinement of the algorithm it is therefore recommended to invest more time into further optimization possibilities in regards of shared memory and into integrating the algorithm into the actual pipeline.

sted, utgiver, år, opplag, sider
2018. , s. 78
Emneord [en]
Depth estimation, disparity, stereo vision, stereo correspondence, NVIDIA, GPU, CUDA, parallelization
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-34372Lokal ID: DT-V18-G3-002OAI: oai:DiVA.org:miun-34372DiVA, id: diva2:1247193
Fag / kurs
Computer Engineering DT1
Veileder
Examiner
Tilgjengelig fra: 2018-09-11 Laget: 2018-09-11 Sist oppdatert: 2018-09-11bibliografisk kontrollert

Open Access i DiVA

fulltext(2070 kB)24 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2070 kBChecksum SHA-512
d111f4725daed1573b7b6d771ced9823f819ff5168825c22dde094ae9f94f3a50dd1391500f50b96225f0b51e72b4c715229b261f3f03d0042a8565a62ada7b3
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Bartosch, Nadine
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 24 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 53 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf