Mid Sweden University

miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Search engine traffic as input for predicting tourist arrivals.
Universtiy of Applied Sience, Weingarten-Ravensburg, Germany.
University of Applied Science, Weingarten-Ravensburg.
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi. (ETOUR)ORCID-id: 0000-0003-3964-2716
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för turismvetenskap och geografi. (ETOUR)ORCID-id: 0000-0002-6610-9303
2018 (engelsk)Inngår i: Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference in Jönköping, Sweden, January 24-26, 2018 / [ed] Stangl Brigitte & Pesonen Juho, New York: Springer, 2018, s. 381-393Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Due to the perishable nature of tourism services and the limited capacity of tourism firms in serving customers, accurate forecasts of tourism demand are of utmost relevance for the success of tourism businesses. Nowadays, travellers extensively search the web to form expectations and to base their travel decision before visiting a destination. This study presents a novel approach that extends autoregressive forecasting models by considering travellers’ web search behaviour as additional input for predicting tourist arrivals. More precisely, the study presents a method with the capacity to identify relevant search terms and time lags (i.e. time difference between web search activities and corresponding tourist arrivals), and to aggregate these time series into an overall web search index with maximal effect on tourism arrivals. The study is conducted at the leading Swedish mountain destination, Åre, using arrival data and Google web search data for the period 2005-2012. Findings demonstrate the ability of the proposed approach to outperform traditional autoregressive approaches, thus, to increase the predictive power in forecasting tourism demand.

sted, utgiver, år, opplag, sider
New York: Springer, 2018. s. 381-393
Emneord [en]
Tourist arrival prediction, Web search traffic, Google Trends, Data Mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-33173DOI: 10.1007/978-3-319-72923-7_29Lokal ID: ETOURISBN: 978-3-319-72922-0 (tryckt)ISBN: 978-3-319-72923-7 (digital)OAI: oai:DiVA.org:miun-33173DiVA, id: diva2:1188074
Konferanse
Information and Communication Technologies in Tourism 2018
Merknad

Awarded by the 1st place of Best Conference Paper

https://www.miun.se/en/ETOUR/nyheter/nyhetsarkiv/2018-2/enter-best-research-paper-award/

Tilgjengelig fra: 2018-03-06 Laget: 2018-03-06 Sist oppdatert: 2020-07-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Fuchs, MatthiasLexhagen, Maria

Søk i DiVA

Av forfatter/redaktør
Fuchs, MatthiasLexhagen, Maria
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 362 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf