miun.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Abbaszad Rafi, Abdolrahim
Publications (3 of 3) Show all publications
Li, M.-B., Yang, Y., Abbaszad Rafi, A., Oschmann, M., Grape, E. S., Inge, A. K., . . . Bäckvall, J.-E. (2020). Silver-Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie International Edition
Open this publication in new window or tab >>Silver-Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions
Show others...
2020 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773Article in journal (Refereed) Epub ahead of print
Abstract [en]

A silver-triggered heterogeneous Pd-catalyzed oxidative carbonylation has been developed. This heterogeneous process exhibits high efficiency and good recyclability, and was utilized for the one-pot construction of polycyclic compounds with multiple chiral centers. AgOTf was used to remove chloride ions in the heterogeneous catalyst Pd-AmP-CNC, thereby generating highly active Pd-II, which results in high efficiency of the heterogeneous catalytic system.

Keywords
carbonylation, heterogeneous catalysis, palladium, polycyclic compound, silver
National Category
Organic Chemistry
Identifiers
urn:nbn:se:miun:diva-38940 (URN)10.1002/anie.202001809 (DOI)000524269900001 ()32091647 (PubMedID)2-s2.0-85083261002 (Scopus ID)
Available from: 2020-04-23 Created: 2020-04-23 Last updated: 2020-04-29
Alimohammadzadeh, R., Osong, S. H., Abbaszad Rafi, A., Dahlström, C. & Cordova, A. (2019). Cellulosic Materials: Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal-Free Catalysis and Polyelectrolyte Complexes. Global Challenges, 3(7), Article ID 1970071.
Open this publication in new window or tab >>Cellulosic Materials: Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal-Free Catalysis and Polyelectrolyte Complexes
Show others...
2019 (English)In: Global Challenges, ISSN 2056-6646, Vol. 3, no 7, article id 1970071Article in journal (Refereed) Published
Abstract [en]

In article number 1900018 by Armando Cordova and co‐workers, the novel combination of metal‐free catalysis and renewable polyelectrolyte complexes leads to synergistic surface engineering of lignocellulose and cellulose fibers derived from wood. This sustainable strategy allows for improvement and introduction of important properties such as strength (up to 100% in Z‐strength), water resistance, and fluorescence to the renewable fibers and cellulosic materials under eco‐friendly conditions.

National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-37903 (URN)10.1002/gch2.201970071 (DOI)
Available from: 2019-12-06 Created: 2019-12-06 Last updated: 2020-04-01Bibliographically approved
Alimohammadzadeh, R., Osong, S. H., Abbaszad Rafi, A., Dahlström, C. & Cordova, A. (2019). Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal‐Free Catalysis and Polyelectrolyte Complexes. Global Challenges, 3, Article ID 1900018.
Open this publication in new window or tab >>Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal‐Free Catalysis and Polyelectrolyte Complexes
Show others...
2019 (English)In: Global Challenges, E-ISSN 2056-6646, Vol. 3, article id 1900018Article in journal (Refereed) Published
Abstract [en]

A sustainable strategy for synergistic surface engineering of lignocellulose and cellulose fibers derived from wood by synergistic combination of metal‐free catalysis and renewable polyelectrolyte (PE) complexes is disclosed. The strategy allows for improvement and introduction of important properties such as strength, water resistance, and fluorescence to the renewable fibers and cellulosic materials. For example, the “green” surface engineering significantly increases the strength properties (up to 100% in Z‐strength) of chemi‐thermomechanical pulp (CTMP) and bleached sulphite pulp (BSP)‐derived sheets. Next, performing an organocatalytic silylation with a nontoxic organic acid makes the corresponding lignocellulose and cellulose sheets hydrophobic. A selective color modification of polysaccharides is developed by combining metal‐free catalysis and thiol‐ene click chemistry. Next, fluorescent PE complexes based on cationic starch (CS) and carboxymethylcellulose (CMC) are prepared and used for modification of CTMP or BSP in the presence of a metal‐free catalyst. Laser‐scanning confocal microscopy reveals that the PE‐strength additive is evenly distributed on the CTMP and heterogeneously on the BSP. The fluorescent CS distribution on the CTMP follows the lignin distribution of the lignocellulosic fibers.

Keywords
click chemistry, lignocellulose, metal‐free catalysis, selective fluorescent labeling, sustainable polyelectrolyte complex, synergistic surface engineering, water repellent
National Category
Materials Chemistry Organic Chemistry Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:miun:diva-37905 (URN)10.1002/gch2.201900018 (DOI)000518818400001 ()
Available from: 2019-12-06 Created: 2019-12-06 Last updated: 2020-03-26Bibliographically approved
Organisations

Search in DiVA

Show all publications