miun.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Gebremichael, TeklayORCID iD iconorcid.org/0000-0001-7873-3499
Publications (5 of 5) Show all publications
Gebremichael, T. (2019). Lightweight Cryptographic Group Key Management Protocols for the Internet of Things. (Licentiate dissertation). Sundsvall: Mid Sweden University
Open this publication in new window or tab >>Lightweight Cryptographic Group Key Management Protocols for the Internet of Things
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The Internet of Things (IoT) is increasingly becoming an integral component of many applications in consumer, industrial and other areas. Notions such as smart industry, smart transport, and smart world are, in large part, enabled by IoT. At its core, the IoT is underpinned by a group of devices, such as sensors and actuators, working collaboratively to provide a required service. One of the important requirements most IoT applications are expected to satisfy is ensuring the security and privacy of users. Security is an umbrella term that encompasses notions such as confidentiality, integrity and privacy, that are typically achieved using cryptographic encryption techniques.

A special form of communication common in many IoT applications is group communication, where there are two or more recipients of a given message. In or-der to encrypt a message broadcast to a group, it is required that the participating parties agree on a group key a priori. Establishing and managing a group key in IoT environments, where devices are resources-constrained and groups are dynamic, is a non-trivial problem. The problem presents unique challenges with regard to con-structing protocols from lightweight and secure primitives commensurate with the resource-constrained nature of devices and maintaining security as devices dynamically leave or join a group.

This thesis presents lightweight group key management protocols proposed to address the aforementioned problem, in a widely adopted model of a generic IoT network consisting of a gateway with reasonable computational power and a set of resource-constrained nodes. The aim of the group key management protocols is to enable the gateway and the set of resource-constrained devices to establish and manage a group key, which is then used to encrypt group messages. The main problems the protocols attempt to solve are establishing a group key among participating IoT devices in a secure and computationally feasible manner; enabling additionor removal of a device to the group in a security preserving manner; and enabling generation of a group session key in an efficient manner without re-running the protocol from scratch. The main challenge in designing such protocols is ensuring that the computations that a given IoT device performs as part of participating in the protocol are computationally feasible during initial group establishment, group keyupdate, and adding or removing a node from the group.

The work presented in this thesis shows that the challenge can be overcome by designing protocols from lightweight cryptographic primitives. Specifically, protocols that exploit the lightweight nature of crypto-systems based on elliptic curves and the perfect secrecy of the One Time Pad (OTP) are presented. The protocols are designed in such a way that a resource-constrained member node performs a constant number of computationally easy computations during all stages of the group key management process.

To demonstrate that the protocols are practically feasible, implementation resultof one of the protocols is also presented, showing that the protocol outperforms similar state-of-the-art protocols with regard to energy consumption, execution time, memory usage and number of messages generated.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2019. p. 54
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 154
Keywords
Privacy and security of the IoT, IoT group key management, lightweight key management protocols, elliptic curve cryptography, proximity-based authentication
National Category
Computer Sciences
Identifiers
urn:nbn:se:miun:diva-35607 (URN)978-91-88527-91-2 (ISBN)
Presentation
2019-03-07, C326, Holmgatan 10, Sundsvall, 11:00 (English)
Opponent
Supervisors
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete 3 (manuskript).

At the time of the defence the following paper was unpublished: paper 3 (manuscript).

Available from: 2019-02-08 Created: 2019-02-07 Last updated: 2019-06-13Bibliographically approved
Gebremichael, T., Jennehag, U. & Gidlund, M. (2019). Lightweight IoT Group Key Establishment Scheme from the One Time Pad. In: 2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud): . Paper presented at 2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Newark, CA, USA, 4-9 April 2019. IEEE
Open this publication in new window or tab >>Lightweight IoT Group Key Establishment Scheme from the One Time Pad
2019 (English)In: 2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), IEEE, 2019Conference paper, Published paper (Other academic)
Abstract [en]

Secure group communication in the Internet ofThings (IoT) entails the establishment and management of one or more group keys to provide group security services such as confidentiality of group messages. The main challenges in establishing a group key consist in designing a group key establishment scheme that is feasible for nodes with limited computational capabilities. In this paper, we propose a lightweight group key establishment scheme based on fast symmetric-key encryption. We show a mechanism for designing a lightweight and secure IoT group key establishment and management scheme whose security is underpinned by the perfect secrecy provided by the One-time-pad. We then argue that the scheme is convenient for IoT group applications where nodes are resource-constrained. We prove that our scheme is secure under a threat model where the attacker has sufficiently large computational power. We also prove that the scheme provides desired group security properties such as confidentiality, key secrecy and independent group session keys generation.

Place, publisher, year, edition, pages
IEEE, 2019
Keywords
IoT Group Key, One-time Pad, Lightweight Cryptography, Unconditional Security, IoT Security and Privacy
National Category
Computer Sciences
Identifiers
urn:nbn:se:miun:diva-35608 (URN)10.1109/MobileCloud.2019.00021 (DOI)
Conference
2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Newark, CA, USA, 4-9 April 2019
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2019-02-07 Created: 2019-02-07 Last updated: 2019-09-09Bibliographically approved
Ferrari, N., Gebremichael, T., Jennehag, U. & Gidlund, M. (2018). Lightweight Group-Key Establishment Protocol for IoT Devices: Implementation and Performance Analyses. In: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security. Paper presented at The Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2018). IEEE
Open this publication in new window or tab >>Lightweight Group-Key Establishment Protocol for IoT Devices: Implementation and Performance Analyses
2018 (English)In: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, IEEE, 2018Conference paper, Published paper (Refereed)
Abstract [en]

In the context of Internet of Things (IoT), groupcommunication is an efficient and fast way of broadcastinggroup messages. The message needs to be sent securely tomaintain confidentiality of data and privacy of users. Estab-lishing cryptographically secure communication links betweena group of transceivers requires the pre-agreement upon somekey, unknown to an external attacker. Complex and resource-intensive security schemes are infeasible for devices with limitedcomputational capabilities. In this paper, we implement alightweight and computationally secure group key establish-ment scheme suitable for resource constrained IoT networks.The proposed scheme is based on elliptic curve cryptographyand cryptographic one-way accumulators. We analyze its fea-sibility by implementing it in the Contiki operating system andsimulating it with the Cooja simulator. The simulation resultsdemonstrate the feasibility of the scheme and its computationaland communication costs are also comparable with otherexisting approaches, with an energy consumption of only 109mJ per node for group key establishment.

Place, publisher, year, edition, pages
IEEE, 2018
Keywords
IoT security, Group communication security, ECC, Cryptographic key establishment, Lightweight cryptography, Contiki, one-way accumulators
National Category
Computer Sciences
Identifiers
urn:nbn:se:miun:diva-34716 (URN)10.1109/IoTSMS.2018.8554829 (DOI)000455671800007 ()2-s2.0-85059989388 (Scopus ID)978-1-5386-9585-2 (ISBN)
Conference
The Fifth International Conference on Internet of Things: Systems, Management and Security (IoTSMS 2018)
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2018-10-12 Created: 2018-10-12 Last updated: 2019-09-09Bibliographically approved
Gebremichael, T., Jennehag, U. & Gidlund, M. (2018). Lightweight IoT Group Key Establishment Scheme Using One-way Accumulator. In: 2018 International Symposium on Networks, Computers and Communications (ISNCC): . Paper presented at International Symposium on Networks, Computers and Communications (ISNCC), Rome, June 19-21, 2018.. IEEE, Article ID 8531034.
Open this publication in new window or tab >>Lightweight IoT Group Key Establishment Scheme Using One-way Accumulator
2018 (English)In: 2018 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, 2018, article id 8531034Conference paper, Published paper (Refereed)
Abstract [en]

Group communication in the context of Internetof Things (IoT) is an efficient and fast way of broadcasting group messages. A message needs to be sent securely to maintain confidentiality of data and privacy of users. The main challenges in sharing group keys consist in designing and implementing a group key establishment scheme that is feasible for devices with limited computational capabilities. Existing group establishment schemes do not offer a good solution for resource-constrained IoTdevices, a solution that provides secure group key management procedures when new nodes join or leave the group without com-promising the security of the system. In this paper, we propose a light weight and computationally secure group key establishment scheme suitable for resource constrained IoT networks. The proposed scheme is based on elliptic curve cryptography and cryptographic one-way accumulators. We show how to combine the aforementioned concepts to design a group key establishment scheme that guarantees both forward and backward secrecy. Finally, we show how the established group key is updated when the group size dynamically changes and how the proposed solution can be used with block and stream ciphers.

Place, publisher, year, edition, pages
IEEE, 2018
Keywords
IoT security, Group communication security, ECC, Cryptographic key establishment, Lightweight cryptogra- phy, One-way cryptographic accumulators
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:miun:diva-34310 (URN)10.1109/ISNCC.2018.8531034 (DOI)2-s2.0-85058484800 (Scopus ID)978-1-5386-3779-1 (ISBN)
Conference
International Symposium on Networks, Computers and Communications (ISNCC), Rome, June 19-21, 2018.
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2018-08-29 Created: 2018-08-29 Last updated: 2019-09-09Bibliographically approved
Qureshi, U. M., Hancke, G. P., Gebremichael, T., Jennehag, U., Forsström, S. & Gidlund, M. (2018). Survey of Proximity Based Authentication Mechanisms for the Industrial Internet of Things. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society: . Paper presented at The 44th Annual Conference of the IEEE Industrial Electronics Society (IECON2018), Washington DC,October 21-23, 2018.. IEEE
Open this publication in new window or tab >>Survey of Proximity Based Authentication Mechanisms for the Industrial Internet of Things
Show others...
2018 (English)In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2018Conference paper, Published paper (Refereed)
Abstract [en]

In this paper we present an overview of the variousproximity based authentication mechanisms that can be usedin the Industrial Internet of Things (IIoT). We seek to identifyand highlight from a holistic point of view which mechanismscan enable proximity based authentication for the IndustrialInternet of Things. In addition, we identify which upcomingproximity authentication mechanisms are most important for theproliferation of the Industrial Internet of Things, and highlightmajor obstacles that remain unsolved with regard to authen-tication. In answering this, we present seven mechanisms forproximity based authentication (i.e. wire, radio, acoustics, light,image, gesture and biometrics) and discuss each mechanism inperspective of their vulnerability to different kind of attacks (suchas eavesdropping, impersonation and denial of service attacksetc.) and their usability (such as proximity range, hardwarerequirement and ease of use) in terms of the practicality in IIoTenvironment in the light of which we present two typical IIoTuse cases that require proximity based authentication.

Place, publisher, year, edition, pages
IEEE, 2018
Keywords
Authentication, Industrial Internet of Things, Proximity, Survey
National Category
Computer Sciences
Identifiers
urn:nbn:se:miun:diva-34718 (URN)10.1109/IECON.2018.8591118 (DOI)2-s2.0-85061559199 (Scopus ID)978-1-5090-6684-1 (ISBN)
Conference
The 44th Annual Conference of the IEEE Industrial Electronics Society (IECON2018), Washington DC,October 21-23, 2018.
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Available from: 2018-10-12 Created: 2018-10-12 Last updated: 2019-09-09Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7873-3499

Search in DiVA

Show all publications