miun.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 55) Show all publications
Olsen, M., Zhang, R., Örtegren, J., Andersson, H., Yang, Y. & Olin, H. (2019). Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator. Scientific Reports, 9(1), Article ID 5543.
Open this publication in new window or tab >>Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator
Show others...
2019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1, article id 5543Article in journal (Refereed) Published
Abstract [en]

Triboelectric nanogenerators (TENG:s) are used as efficient energy transducers in energy harvesting converting mechanical energy into electrical energy. Wind is an abundant source of mechanical energy but how should a good triboelectric wind harvester be designed? We have built and studied a TENG driven by air flow in a table-top sized wind tunnel. Our TENG constitutes of a plastic film of size10 cm × 2 cm which is fluttering between two copper electrodes generating enough power to light up a battery of LED:s. We measured the voltage and frequency of fluttering at different wind speeds from zero up to 8 m/s for three electrode distances 6 mm, 10 mm and 14 mm. We found that the frequency increases linearly with the wind speed with a cutoff at some low speed. Power was generated already at 1.6 m/s. We seem to be able to explain the observed frequency dependence on wind speed by assuming excitation of the film into different harmonics in response to von Kármán vortices. We also find that the voltage increase linearly with frequency. We anticipate that TENG:s of this design could be useful both as generators and speed sensors because they work at low air speeds.

National Category
Natural Sciences Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-35936 (URN)10.1038/s41598-019-42128-7 (DOI)000463178500004 ()30944397 (PubMedID)2-s2.0-85063884794 (Scopus ID)
Funder
J. Gust. Richert stiftelseSwedish Energy AgencyKnowledge FoundationEuropean Regional Development Fund (ERDF)
Note

Forskningsfinansiär: Länsstyrelsen Västernorrland

Available from: 2019-04-03 Created: 2019-04-03 Last updated: 2019-07-08Bibliographically approved
Zhang, R., Hummelgård, M., Örtegren, J., Olsen, M., Andersson, H. & Olin, H. (2019). Interaction of the human body with triboelectric nanogenerators. Nano Energy, 57, 279-292
Open this publication in new window or tab >>Interaction of the human body with triboelectric nanogenerators
Show others...
2019 (English)In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 57, p. 279-292Article in journal (Refereed) Published
Abstract [en]

The use of triboelectric nanogenerators (TENGs) is a new technique for energy harvesting at both small and large scales. Almost all types of mechanical energy can be harvested with TENGs by using four modes of operation that cover almost all mechanical motions. The interactions of the human body with TENGs range from energy harvesting, motion sensing, and biomedical applications to human-computer communications. Different types of TENGs have been developed to directly or indirectly involve the human body. This review will summarize the recent advances in the interaction of the human body with TENGs.

Keywords
Energy harvesting, Healthcare, Human body, Human-robot interactions, Sensors, Triboelectric nanogenerators
National Category
Other Physics Topics
Identifiers
urn:nbn:se:miun:diva-35386 (URN)10.1016/j.nanoen.2018.12.059 (DOI)000458419000028 ()2-s2.0-85059038089 (Scopus ID)
Available from: 2019-01-06 Created: 2019-01-06 Last updated: 2019-03-18Bibliographically approved
Andersson, H., Šuly, P., Thungström, G., Engholm, M., Zhang, R., Mašlík, J. & Olin, H. (2019). PEDOT: PSS thermoelectric generators printed on paper substrates. Journal of Low Power Electronics and Applications, 9(2)
Open this publication in new window or tab >>PEDOT: PSS thermoelectric generators printed on paper substrates
Show others...
2019 (English)In: Journal of Low Power Electronics and Applications, ISSN 2079-9268, Vol. 9, no 2Article in journal (Refereed) Published
Abstract [en]

Flexible electronics is a field gathering a growing interest among researchers and companies with widely varying applications, such as organic light emitting diodes, transistors as well as many different sensors. If the circuit should be portable or off-grid, the power sources available are batteries, supercapacitors or some type of power generator. Thermoelectric generators produce electrical energy by the diffusion of charge carriers in response to heat flux caused by a temperature gradient between junctions of dissimilar materials. As wearables, flexible electronics and intelligent packaging applications increase, there is a need for low-cost, recyclable and printable power sources. For such applications, printed thermoelectric generators (TEGs) are an interesting power source, which can also be combined with printable energy storage, such as supercapacitors. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), or PEDOT:PSS, is a conductive polymer that has gathered interest as a thermoelectric material. Plastic substrates are commonly used for printed electronics, but an interesting and emerging alternative is to use paper. In this article, a printed thermoelectric generator consisting of PEDOT:PSS and silver inks was printed on two common types of paper substrates, which could be used to power electronic circuits on paper. 

Keywords
Paper substrates, PEDOT:PSS, Seebeck coefficient, Stencil print, Thermoelectric generator
Identifiers
urn:nbn:se:miun:diva-36667 (URN)10.3390/jlpea9020014 (DOI)2-s2.0-85065493304 (Scopus ID)
Available from: 2019-07-09 Created: 2019-07-09 Last updated: 2019-07-09Bibliographically approved
Zhang, R., Hummelgård, M., Örtegren, J., Yang, Y., Andersson, H., Balliu, E., . . . Olin, H. (2019). Sensing body motions based on charges generated on the body. Nano Energy, 63, Article ID 103842.
Open this publication in new window or tab >>Sensing body motions based on charges generated on the body
Show others...
2019 (English)In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 63, article id 103842Article in journal (Refereed) Published
Abstract [en]

The sensing of body motions is of great importance in areas such as healthcare, rehabilitation, and human-computer interactions. Different methods have been developed based on visual or electrical signals. However, such signals are acquired by external devices and are not intrinsic signals that are created on the body. Here, we report a new universal body motion sensor (UBS) to detect motions based on the intrinsic contact electrification (CE) of the skin or electrical induction (EI) of the body. The CE or EI generates charges on the body, leading to potential differences between the body and ground that can be measured to identify different body motions, such as motions of the head, arms, fingers, waist, legs, feet and toes. Proof-of-concept experiments have demonstrated that the UBS can be used to monitor the conditions of people with Parkinson's disease (PD) and to quantitatively monitor the recovery of those with a leg injury, suggesting great potential for healthcare applications.

Keywords
Body motions, Sensors, Charges, Contact electrification, Electrical induction, Healthcare
Identifiers
urn:nbn:se:miun:diva-36826 (URN)10.1016/j.nanoen.2019.06.038 (DOI)
Available from: 2019-08-12 Created: 2019-08-12 Last updated: 2019-08-12Bibliographically approved
Zhang, R., Carlsson, F., Edman, M., Hummelgård, M., Jonsson, B.-G., Bylund, D. & Olin, H. (2018). Escherichia coli Bacteria Develop Adaptive Resistance to Antibacterial ZnO Nanoparticles. Advanced Biosystem, 2(5), Article ID 1800019.
Open this publication in new window or tab >>Escherichia coli Bacteria Develop Adaptive Resistance to Antibacterial ZnO Nanoparticles
Show others...
2018 (English)In: Advanced Biosystem, ISSN 2366-7478, Vol. 2, no 5, article id 1800019Article in journal (Refereed) Published
Abstract [en]

Antibacterial agents based on nanoparticles (NPs) have many important applications, e.g., for the textile industry, surface disinfection, wound dressing, water treatment, and food preservation. Because of their prevalent use it is important to understand whether bacteria could develop resistance to such antibacterial NPs similarly to the resistance that bacteria are known to develop to antibiotics. Here, it is reported that Escherichia coli(E. coli) develops adaptive resistance to antibacterial ZnO NPs after several days' exposure to the NPs. But, in contrast to antibiotics‐resistance, the observed resistance to ZnO NPs is not stable—after several days without exposure to the NPs, the bacteria regain their sensitivity to the NPs' antibacterial properties. Based on the analyses it is suggested that the observed resistance is caused by changes in the shape of the bacteria and the expressions of membrane proteins. The findings provide insights into the response of bacteria to antibacterial NPs, which is important to elucidate for designing and evaluating the risk of applications based on antibacterial NPs.

Place, publisher, year, edition, pages
John Wiley & Sons, 2018
National Category
Nano Technology
Identifiers
urn:nbn:se:miun:diva-34436 (URN)10.1002/adbi.201800019 (DOI)000446970000008 ()2-s2.0-85065053901 (Scopus ID)
Available from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-07-08Bibliographically approved
Zhang, R., Örtegren, J., Hummelgård, M., Olsen, M., Andersson, H. & Olin, H. (2018). Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators. Nano Energy, 45, 298-303
Open this publication in new window or tab >>Harvesting triboelectricity from the human body using non-electrode triboelectric nanogenerators
Show others...
2018 (English)In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 45, p. 298-303Article in journal (Refereed) Published
Abstract [en]

Triboelectrification has been known and discussed since antiquity. Triboelectrification occurs in the human body due to friction between human skin and other materials such as clothing. However, charges on the body have not been harvested to power small electronics. Here, we report for the first time that the electricity generated on the human body due to triboelectrification can be measured and harvested using human body-based non-electrode triboelectric nanogenerators (H-TENGs). The H-TENGs can have an output of up to 3.3 W/m(2) and can spontaneously harvest energy from several people. The functions of the human body in the H-TENGs are analyzed and experimentally proven to be those of a triboelectric material, conductor and capacitor. Our results demonstrate that the triboelectricity generated on a human body can be harvested using H-TENGs and provide scientific insights into body functions that will promote further studies of TENGs.

Keywords
Human body, Non-electrode TENG, Mechanisms, Charges
National Category
Medical Biotechnology
Identifiers
urn:nbn:se:miun:diva-33301 (URN)10.1016/j.nanoen.2017.12.053 (DOI)000425396400033 ()2-s2.0-85043782783 (Scopus ID)
Available from: 2018-03-19 Created: 2018-03-19 Last updated: 2018-03-28Bibliographically approved
Zhang, R., Engholm, M., Hummelgård, M., Andersson, H., Örtegren, J. & Olin, H. (2018). High-performance transparent and flexible electrodes made by flash-light sintering of gold nanoparticles. ACS Applied Energy Materials, 1(12), 7191-7198
Open this publication in new window or tab >>High-performance transparent and flexible electrodes made by flash-light sintering of gold nanoparticles
Show others...
2018 (English)In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 1, no 12, p. 7191-7198Article in journal (Refereed) Published
Abstract [en]

Metallic nanowire-based transparent electrodes (TEs) are potential alternatives to indium tin oxide (ITO). To achieve a high performance [sheet resistance (Rs) < 100 Ω/sq, transmittance (T%) > 90%], the nanowires must have a high length-to-diameter (L/D) ratio to minimize the number of wire-to-wire junctions. Attempts to produce TEs with gold nanowires have been made, and the results reveal difficulties in achieving the requirements. A successful strategy involves creating templated gold nanonetworks through multiple procedures. Here, we present a simple and efficient method that uses flash-light sintering of a gold nanonetwork film into gold TEs (Rs: 82.9 Ω/sq, T %: 91.79%) on a thin polycarbonate film (25 μm). The produced gold TEs have excellent mechanical, electrical, optical, and chemical stabilities. Mechanisms of the formation of gold nanonetworks and the effect of flash-light have been analyzed. Our findings provide a scalable process for producing transparent and flexible gold electrodes with a total processing time of less than 8 min without the use of heating, vacuum processing, and organic chemicals and without any material loss. This is possible because all the gold nanoparticles have been aggregated and filtrated on the filter membranes. The area density of gold is 0.094 g/m2 leading low material costs, which is very competitive with the price of commercial TEs.

Keywords
transparent electrode, flexible electrode, gold nanoparticles, flash-light sintering, high performance
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:miun:diva-35380 (URN)10.1021/acsaem.8b01649 (DOI)000458706800063 ()2-s2.0-85064752503 (Scopus ID)
Available from: 2019-01-03 Created: 2019-01-03 Last updated: 2019-07-08Bibliographically approved
Zhang, R., Hummelgård, M., Örtegren, J., Olsen, M., Andersson, H., Yang, Y. & Olin, H. (2018). Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters and motion sensors. ACS Applied Energy Materials, 1(6), 2955-2960
Open this publication in new window or tab >>Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters and motion sensors
Show others...
2018 (English)In: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 1, no 6, p. 2955-2960Article in journal (Refereed) Published
Abstract [en]

Human skin is a dielectric material that can be used as a triboelectric material for harvesting energy from body motions. The output power of such a human skin-based triboelectric nanogenerator (TENG) is relatively low. Here, we assembled high-output human body constituted TENGs (H-TENGs) by taking advantage of the unique electrical properties of the human body, such as high skin impedance, low tissue resistance, body capacitance, and conductivity. The output of a H-TENG can reach 30 W/m2, which is enough to drive small electronic devices, such as a timer or a calculator. The unique feature of the H-TENG is that it can perform the four fundamental modes of TENGs, which has not been reported elsewhere. Such a feature allows the H-TENG to act as a code transmitter to send light and electrical signals, such as Morse code. H-TENGs also benefit the development of high-performance, self-powered body motion sensors. Our findings suggest new strategies for harvesting energy from human body motions, as well as new types of motion sensors and signal senders.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018
Keywords
code transmitters; energy harvesting; human body; motion sensors; triboelectric nanogenerators
National Category
Other Physics Topics
Identifiers
urn:nbn:se:miun:diva-34433 (URN)10.1021/acsaem.8b00667 (DOI)000458705800070 ()
Available from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-03-15Bibliographically approved
Maslik, J., Andersson, H., Forsberg, V., Engholm, M., Zhang, R. & Olin, H. (2018). PEDOT:PSS temperature sensor ink-jet printed on paper substrate. Journal of Instrumentation, 13, Article ID C12010.
Open this publication in new window or tab >>PEDOT:PSS temperature sensor ink-jet printed on paper substrate
Show others...
2018 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, article id C12010Article, review/survey (Refereed) Published
Abstract [en]

In this work we present an ink-jet printed temperature sensor consisting of PEDOT:PSSprinted on paper suitable for packaging, flexible electronics and other printed applications. Thesubstrate showed to have a large influence on both the resistance aswell as the temperature sensitivityof the PEDOT:PSS ink. This effect is most likely due to NaCl content in the photo paper coating,which reacts with the PEDOT:PSS. The temperature coefficient of a prepared device of  α= -0.030 relative to room temperature (22°C) was measured, which is higher than compared to for exampleSilicon α = -0.075.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018
Keywords
Detector design and construction technologies and materials; Manufacturing
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-35891 (URN)10.1088/1748-0221/13/12/C12010 (DOI)000452801600005 ()
Projects
LEAP
Available from: 2019-03-28 Created: 2019-03-28 Last updated: 2019-04-05Bibliographically approved
Zhang, R., Hummelgård, M., Forsberg, V., Andersson, H., Engholm, M., Öhlund, T., . . . Olin, H. (2018). Photoconductivity of acid exfoliated and flash-light-processed MoS2 films. Scientific Reports, 8, Article ID 3296.
Open this publication in new window or tab >>Photoconductivity of acid exfoliated and flash-light-processed MoS2 films
Show others...
2018 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 3296Article in journal (Refereed) Published
Abstract [en]

MoS2 has been studied intensively during recent years as a semiconducting material in several fields, including optoelectronics, for applications such as solar cells and phototransistors. The photoresponse mechanisms of MoS2 have been discussed but are not fully understood, especially the phenomenon in which the photocurrent slowly increases. Here, we report on a study of the photoresponse flash-light-processed MoS2 films of different thicknesses and areas. The photoresponse of such films under different light intensities and bias voltages was measured, showing significant current changes with a quick response followed by a slow one upon exposure to pulsed light. Our in-depth study suggested that the slow response was due to the photothermal effect that heats the MoS2; this hypothesis was supported by the resistivity change at different temperatures. The results obtained from MoS2 films with various thicknesses indicated that the minority-carrier diffusion length was 1.36 mu m. This study explained the mechanism of the slow response of the MoS2 film and determined the effective thickness of MoS2 for a photoresponse to occur. The method used here for fabricating MoS2 films could be used for fabricating optoelectronic devices due to its simplicity.

National Category
Physical Sciences
Identifiers
urn:nbn:se:miun:diva-33302 (URN)10.1038/s41598-018-21688-0 (DOI)000425380900079 ()29459668 (PubMedID)2-s2.0-85061713034 (Scopus ID)
Available from: 2018-03-19 Created: 2018-03-19 Last updated: 2019-03-20Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-2873-7875

Search in DiVA

Show all publications