miun.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Norgren, Sven
Publications (10 of 37) Show all publications
Höglund, H., Pettersson, G., Norgren, S. & Engstrand, P. (2018). A paper or paperboard product comprising at least one ply containing high yield pulp and its production method. se 540115 C2.
Open this publication in new window or tab >>A paper or paperboard product comprising at least one ply containing high yield pulp and its production method
2018 (English)Patent (Other (popular science, discussion, etc.))
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:miun:diva-33506 (URN)
Patent
SE 540115 C2
Note

International application WO 2018054957 A1.

Available from: 2018-04-17 Created: 2018-04-17 Last updated: 2018-04-17Bibliographically approved
Pettersson, G., Norgren, S. & Höglund, H. (2017). Strong paper from spruce CTMP - Part I. Nordic Pulp & Paper Research Journal, 32(1), 54-58
Open this publication in new window or tab >>Strong paper from spruce CTMP - Part I
2017 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, no 1, p. 54-58Article in journal (Refereed) Published
Abstract [en]

This study was carried out on sheets from spruce CTMP fibers, which are surface treated with a mix of cationic starch and CMC and blended with 20% bleach softwood chemical pulp fibers before handsheets were prepared in a Rapid Köthen sheet former, where the sheets were dried to 40-55% d.c. The sheets were pressed in a hot press nip in a pilot machine with adjustable pressure and heat. Both low and high nip pressure were used in combination with two different nip temperatures, 80°C and 100°C, to achieve sheets in a broad range of densities. The results show that remarkable improvements are possible, both in terms of tensile index (up to 85 kNm/kg) and compression strength, SCT, (up to 38 kNm/kg) on the CTMP-based sheets under optimal conditions at papermaking, i.e. consolidate the sheet structure in a press nip at evaluated temperatures. It is evident from the current study that there is an as of yet unexploited potential in modifying the conditions of papermaking from spruce CTMP furnishes, which can be utilized for the manufacturing of papers with high requirements on strength and stiffness, e.g. packaging papers.

Keywords
Adsorption, CMC, CTMP, Heat, Polyelectrolytes, Pressure, Starch, Tensile index
National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-30664 (URN)10.3183/NPPRJ-2017-32-01-p054-058 (DOI)000398384400007 ()2-s2.0-85016441688 (Scopus ID)
Available from: 2017-04-26 Created: 2017-04-26 Last updated: 2017-06-09Bibliographically approved
Pettersson, G., Norgren, S., Höglund, H. & Engstrand, P. (2016). Low energy CTMP in strong and bulky paperboard plies. In: Paper Conference and Trade Show, PaperCon 2016: . Paper presented at Paper Conference and Trade Show, PaperCon 2016, 15 May 2016 through 18 May 2016, Cincinnati; United States (pp. 556-564). TAPPI Press, 1
Open this publication in new window or tab >>Low energy CTMP in strong and bulky paperboard plies
2016 (English)In: Paper Conference and Trade Show, PaperCon 2016, TAPPI Press, 2016, Vol. 1, p. 556-564Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
TAPPI Press, 2016
National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-30112 (URN)2-s2.0-85010465464 (Scopus ID)9781510831193 (ISBN)
Conference
Paper Conference and Trade Show, PaperCon 2016, 15 May 2016 through 18 May 2016, Cincinnati; United States
Available from: 2017-02-14 Created: 2017-02-14 Last updated: 2017-02-14Bibliographically approved
Osong, S. H., Dahlström, C., Forsberg, S., Andres, B., Engstrand, P., Norgren, S. & Engström, A.-C. (2016). Nanofibrillated cellulose/nanographite composite films. Cellulose (London), 23(4), 2487-2500
Open this publication in new window or tab >>Nanofibrillated cellulose/nanographite composite films
Show others...
2016 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 4, p. 2487-2500Article in journal (Refereed) Published
Abstract [en]

Though research into nanofibrillated cellulose (NFC) has recently increased, few studies have considered co-utilising NFC and nanographite(NG) in composite films, and, it has, however been a challenge to use high-yield pulp fibres (mechanical pulps) to produce this nanofibrillar material. It is worth noting that there is a significant difference between chemical pulp fibres and high-yield pulp fibres, as the former is composed mainly of cellulose and has a yield of approximately 50 % while the latter is consist of cellulose, hemicellulose and lignin, and has a yield of approximately 90 %. NFC was produced by combining TEMPO (2,2,6,6-tetramethypiperidine-1-oxyl)-mediated oxidation with the mechanical shearing of chemi-thermomechanical pulp (CTMP) and sulphite pulp (SP); the NG was produced by mechanically exfoliating graphite. The different NaClO dosages in the TEMPO system differently oxidised the fibres, altering their fibrillation efficiency. NFC-NG films were produced by casting in a Petri dish. We examine the effect of NG on the sheet-resistance and mechanical properties of NFC films. Addition of 10 wt% NG to 90 wt% NFC of sample CC2 (5 mmol NaClO CTMP-NFC homogenised for 60 min) improved the sheet resistance, i.e. from that of an insulating pure NFC film to 180 Omega/sq. Further addition of 20 (CC3) and 25 wt% (CC4) of NG to 80 and 75 wt% respectively, lowered the sheet resistance to 17 and 9 Omega/sq, respectively. For the mechanical properties, we found that adding 10 wt% NG to 90 wt% NFC of sample HH2(5 mmol NaClO SP-NFC homogenised for 60 min) improved the tensile index by 28 %, tensile stiffness index by 20 %, and peak load by 28 %. The film's surface morphology was visualised using scanning electron microscopy, revealing the fibrillated structure of NFC and NG. This methodology yields NFC-NG films that are mechanically stable, bendable, and flexible.

Keywords
Nanofibrillated cellulose, Nanographite, Nanocomposites, TEMPO, High-speed homogenisation
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-28778 (URN)10.1007/s10570-016-0990-2 (DOI)000380089300017 ()2-s2.0-84975467623 (Scopus ID)
Available from: 2016-09-14 Created: 2016-09-14 Last updated: 2017-11-21Bibliographically approved
Osong, S. H., Norgren, S., Pettersson, G., Engstrand, P., Còrdova, A., Afewerki, S. & Alimohammadzadeh, R. (2016). Processing of nanocellulose and applications relating to CTMP-based paperboard and foams. In: International Mechanical Pulping Conference 2016, IMPC 2016: . Paper presented at International Mechanical Pulping Conference 2016, IMPC 2016; Jacksonville; United States; 26 September 2016 through 28 September 2016 (pp. 87-93). TAPPI Press
Open this publication in new window or tab >>Processing of nanocellulose and applications relating to CTMP-based paperboard and foams
Show others...
2016 (English)In: International Mechanical Pulping Conference 2016, IMPC 2016, TAPPI Press, 2016, p. 87-93Conference paper, Published paper (Refereed)
Abstract [en]

Although remarkable success has been made in the production of nanocellulose through several processing methods, it still remain a challenge to reduce the overall energy consumption, to use green chemistry and sustainable approach in order to make it feasible for industrial production of this novel nanomaterial. Herein, we have developed a new eco-friendly and sustainable approach to produce nanocellulose using organic acid combined with high-shear homogenisation, made hydrophobisation of nanocellulose and cross-linked the modified nanocellulosic material. Also, TEMPO-mediated oxidised nanocellulose was produced in order to compare the processing route with that of mild organic acid hydrolysis. Freeze-dried 3D structure of TEMPO-derived nanocellulose foam materials made fi-om bleached sulphite pulp and CTMP, respectively. Further, there is growing interest in using nanocellulose or microfibrillated cellulose (MFC) as an alternative paper sfrength additive in papermaking, and in using chemi-thermomechanical pulp (CTMP) with high freeness in producing CTMP-based paperboard with high bulk properties. To achieve greater strength improvement results, particularly for packaging paperboards, different proportions of cationic starch (CS) or MFC can be used to significantly improve the z-strength, with only a slight increase in sheet density. Research in this area is exploring CS or MFC as potential strength additives in CTMP-based paperboard, which is interesting from an industrial perspective. The mean grammage of the CTMP handsheets produced was approximately 150 g m~, and it was found that blending CTMP with CS or MFC yielded handsheets with significantly improved z-strength, tensile index, burst index and other strength properties at similar sheet densities.

Place, publisher, year, edition, pages
TAPPI Press, 2016
Keywords
Cationic starch, Chemi-thermomechanical pulp, Microfibrillated cellulose, Paperboard, Strength additive, TEMPO
National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-29834 (URN)2-s2.0-85006448740 (Scopus ID)978-151083073-8 (ISBN)
Conference
International Mechanical Pulping Conference 2016, IMPC 2016; Jacksonville; United States; 26 September 2016 through 28 September 2016
Note

Funding details: Mid Sweden University

Available from: 2017-01-09 Created: 2017-01-09 Last updated: 2017-01-09Bibliographically approved
Osong, S. H., Norgren, S. & Engstrand, P. (2016). Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose (London), 23(1), 93-123
Open this publication in new window or tab >>Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review
2016 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 1, p. 93-123Article, review/survey (Refereed) Published
Abstract [en]

As an emerging cellulosic nanomaterial, microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) have shown enormous potential in the forest products industry. The forest products industry and academia are working together to realise the possibilities of commercializing MFC and NFC. However, there are still needs to improve the processing, characterisation and material properties of nanocellulose in order to realise its full potential. The annual number of research publications and patents on nanocellulose with respect to manufacturing, properties and applications is now up in the thousands, so it is of the utmost importance to review articles that endeavour to research on this explosive topic of cellulose nanomaterials. This review examines the past and current situation of wood-based MFC and NFC in relation to its processing and applications relating to papermaking.

Keywords
Nanocellulose, Microfibrillated cellulose, Nanofibrillated cellulose, Paper, films, coating
National Category
Natural Sciences Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-26353 (URN)10.1007/s10570-015-0798-5 (DOI)000368802700004 ()2-s2.0-84955714542 (Scopus ID)
Available from: 2015-12-03 Created: 2015-12-03 Last updated: 2017-12-01Bibliographically approved
Osong, S. H., Norgren, S., Engstrand, P., Lundberg, M., Reza, M. & Tapani, V. (2016). Qualitative evaluation of microfibrillated cellulose usingthe crill method and some aspects of microscopy. Cellulose (London), 23(6), 3611-3624
Open this publication in new window or tab >>Qualitative evaluation of microfibrillated cellulose usingthe crill method and some aspects of microscopy
Show others...
2016 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 6, p. 3611-3624Article in journal (Refereed) Published
Abstract [en]

It has been a challenge to develop rapid online characterisation techniques for nanocellulose given the fibrillar structure of the nanoparticles. The crill optical analyser uses optical response signals in the infrared (IR) and ultraviolet (UV) wavelength ranges to evaluate the particle size properties of micro/nanofibrillar cellulosic materials. In this work, the crill analyser was used to measure the projected areas of UV and IR light sources by measuring the light blocked by nanocellulosic particles. This work uses the crill methodology as a new, simplified technique to characterise the particle size distribution of nanocellulosic material based on chemi-thermomechanical pulp (CTMP), thermomechanical pulp (TMP), and sulphite pulp (SP). In the first part, hydrogen peroxide pretreatment of CTMP and TMP in a wing mill refiner followed by high-pressure homogenisation to produce microfibrillated cellulose (MFC) was evaluated using the crill method. In the second part, TEMPO oxidation of CTMP and SP combined with high-shear homogenisation to produce MFC was studied using the crill method. With 4 % hydrogen peroxide pretreatment, the crill values of the unhomogenised samples were 218 and 214 for the TMP and CTMP, respectively, improving to 234 and 229 after 18 homogenisation passes. The results of the TEMPO method indicated that, for the 5 mmol NaClO SP-MFC, the crill value was 108 units at 0 min and 355 units after 90 min of treatment, a 228 % improvement. The CTMP and TMP fibres and the MFC were freeze dried and fibrillar structure of the fibres and microfibrils was visualised using scanning electron and transmission electron microscopy.

National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-28779 (URN)10.1007/s10570-016-1068-x (DOI)000388961200019 ()2-s2.0-84986325572 (Scopus ID)
Available from: 2016-09-14 Created: 2016-09-14 Last updated: 2017-08-09Bibliographically approved
Pettersson, G., Norgren, S. & Höglund, H. (2016). Strong paper from spruce CTMP. In: International Mechanical Pulping Conference 2016, IMPC 2016: . Paper presented at International Mechanical Pulping Conference 2016, IMPC 2016; Jacksonville; United States; 26 September 2016 through 28 September 2016 (pp. 229-233). TAPPI Press
Open this publication in new window or tab >>Strong paper from spruce CTMP
2016 (English)In: International Mechanical Pulping Conference 2016, IMPC 2016, TAPPI Press, 2016, p. 229-233Conference paper, Published paper (Refereed)
Abstract [en]

This study was carried out on sheets from spruce CTMP fibers, which are surface treated with a mix of cationic starch and CMC and blended with 20% bleach softwood chemical pulp fibers before handsheets were prepared in a Rapid Kothen sheet former, where the sheets were dried to 40-55% d.c. The sheets were pressed in a hot press nip in a pilot machine with adjustable pressure and heat. Both low and high nip pressure were used in combination with two different nip temperatures, 80 °C and 100 °C, to achieve sheets in a broad range of densities. The results show that remarkable improvements are possible, both in terms of tensile index (up to 85 kNm/kg) and compression strength, SCT, (up to 38kNm/kg) on the CTMP-based sheets under optimal conditions at papermaking, i.e. consolidate the sheet structure in a press nip at evaluated temperatures. It is evident from the current study that there is an as of yet unexploited potential in modifying the conditions of papermaking from spruce CTMP furnishes, which can be utilized for the manufacturing of papers with high requirements on strength and stiffness, e.g. packaging papers.

Place, publisher, year, edition, pages
TAPPI Press, 2016
Keywords
CMC, CTMP, Heat, Polyelectrolytes, Pressure, Starch, Tensile index Adsorption
National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-29836 (URN)2-s2.0-85006415447 (Scopus ID)9781510830738 (ISBN)
Conference
International Mechanical Pulping Conference 2016, IMPC 2016; Jacksonville; United States; 26 September 2016 through 28 September 2016
Available from: 2017-01-09 Created: 2017-01-09 Last updated: 2017-04-26Bibliographically approved
Henshaw Osong, S., Dahlström, C., Forsberg, S., Andres, B., Engstrand, P., Norgren, S., . . . Engström, A.-C. (2015). Development of CTMP-based nanofibrillated Cellulose /nanographite composites for paper applications. In: : . Paper presented at 9th International Fundamental Mechanical Pulp Research Seminar, 19-20May, Trondheim, Norway.
Open this publication in new window or tab >>Development of CTMP-based nanofibrillated Cellulose /nanographite composites for paper applications
Show others...
2015 (English)Conference paper, Oral presentation only (Other academic)
National Category
Other Chemical Engineering Composite Science and Engineering
Identifiers
urn:nbn:se:miun:diva-26561 (URN)
Conference
9th International Fundamental Mechanical Pulp Research Seminar, 19-20May, Trondheim, Norway
Available from: 2015-12-16 Created: 2015-12-16 Last updated: 2017-07-03Bibliographically approved
Pettersson, G., Höglund, H., Norgren, S., Sjöberg, J., Peng, F., Hallgren, H., . . . Solberg, D. (2015). Strong and bulky paperboard sheets from surface modified CTMP, manufactured at low energy. Nordic Pulp & Paper Research Journal, 30(2), 318-324
Open this publication in new window or tab >>Strong and bulky paperboard sheets from surface modified CTMP, manufactured at low energy
Show others...
2015 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 30, no 2, p. 318-324Article in journal (Refereed) Published
Abstract [en]

A description is given regarding methods used to manufacture strong and bulky sheets from furnishes based on a broad range of surface modified CTMP qualities. Starch and CMC are adsorbed on the fibre surfaces using a multilayer or a MIX concept. It is shown that both the in-plane and out-of-plane strength for the CTMP based sheets after such surface treatment can be more than doubled at a maintained density. This can be utilized to improve bending stiffness or to reduce the basis weight in multi-ply paperboards.

Keywords
CTMP, Starch, CMC, Multilayer, Paperboard, Strength properties
National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-25692 (URN)000354806700018 ()2-s2.0-84945899503 (Scopus ID)
Available from: 2015-08-21 Created: 2015-08-18 Last updated: 2017-08-10Bibliographically approved
Organisations

Search in DiVA

Show all publications