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Abstract

Digital cameras have already entered our everyday life. Rap id technological ad-
vances have made it easier and cheaper to develop new cameraswith unconven-
tional structures. The plenoptic camera is one of the new dev ices which can capture
the light information which is then able to be processed for a pplications such as focus
adjustments. The high level camera properties, such as the spatial or angular resolu-
tion are required to evaluate and compare plenoptic cameras . With complex camera
structures that introduce trade-offs between various high level camera properties, it
is no longer straightforward to describe and extract these p roperties. Proper models,
methods and metrics with the desired level of details are ben e�cial to describe and
evaluate plenoptic camera properties.

This thesis attempts to describe and evaluate camera properties using a model
based representation of plenoptic capturing systems in fav our of a uni�ed language.
The SPC model is proposed and it describes which light sample s from the scene are
captured by the camera system. Light samples in the SPC model carry the ray and
focus information of the capturing setup. To demonstrate th e capabilities of the in-
troduced model, property extractors for lateral resolutio n are de�ned and evaluated.
The lateral resolution values obtained from the introduced model are compared with
the results from the ray-based model and the ground truth dat a. The knowledge
about how to generate and visualize the proposed model and ho w to extract the
camera properties from the model based representation of th e capturing system is
collated to form the SPC framework.

The main outcomes of the thesis can be summarized in the following points: A
model based representation of the light sampling behaviour of the plenoptic captur-
ing system is introduced, which incorporates the focus info rmation as well as the
ray information. A framework is developed to generate the SP C model and to ex-
tract high level properties of the plenoptic capturing syst em. Results con�rm that
the SPC model is capable of describing the light sampling behaviour of the captur-
ing system, and that the SPC framework is capable of extracting high level camera
properties with a higher descriptive level as compared to th e ray-based model. The
results from the proposed model compete with those from the m ore elaborate wave
optics model in the ranges that wave nature of the light is not dominant. The out-
come of the thesis can bene�t design, evaluation and compari son of the complex
capturing systems.

v



vi

Keywords: Camera modelling, plenoptic camera, lateral res olution.



Acknowledgements

Concluding the recent two years of my journey, I'm grateful tha t I had the chance to
explore a new area, which helped me to get a wider view both in s cience and life. It
has been a new experience, in a totally new place, full of challenges and spiced with
cultural contrasts, and I loved it because of all those.

My special thanks to my supervisors M 	arten Sjöström and Roger Olsson, whom
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Chapter 1

Introduction

Cameras have changed the way we live today. They are integrated into many devices
ranging from tablets and mobile phones to vehicles. Digital cameras have become a
part of our everyday life aided by the rapidly developing tec hnology; these handy
devices are becoming cheaper and are providing even more bui lt-in features. Digital
photography has made it easy in relation to capturing, sendi ng and storing high
quality images all at a reasonable price.

In addition to conventional cameras that have become very pop ular and for which
there are an enormous number, unconventional capturing sys tems are also being de-
veloped faster than ever based on the current technological advances. At the present
time, it is becoming economically more feasible to build cam era arrays because of
the lower costs for the cameras as well as the electronics required for storing and
processing the huge data sets as the output of those camera arrays. In addition to
the feasibility of multi-camera capture setups, the emerge nce of plenoptic cameras
(PCs) has been observed. Plenoptic cameras have been developed and have pro-
gressed into the product market during recent years [1, 2, 3] , as another example
of unconventional camera systems. Plenoptic cameras capture the light information
that can be processed at a later stage for applications such as focus adjustments,
depth of �eld extension and more. As the technology developm ents have provided
opportunities for various types of capturing systems for di fferent applications, the
expectation is that there will also be more innovative captu re designs in the future.

Cameras have a wide range of properties to suit diverse appli cations. This fact
can cause uncertainties in relation to making the correct choice for the desired cap-
turing system. Unconventional capturing setups do not assi st in making that deci-
sion easier as they add to the ambiguity in relation to the des cription of the camera
parameters, as well as introducing new trade-offs in the pro perties space. Camera
evaluation is naturally an application dependant question [4]. To convey this eval-
uation, one method used is to look at the multi-dimensional c amera property space
(see Figure 1.1). However, having knowledge of the desired camera properties re-
mains the key feature in designing or choosing the correct capturing solution. As a
capturing system designer, one would also like to have knowl edge of the effect of

1



2 Introduction

variations or design tolerances in the capturing system par ameters on the high level
properties of the camera system.

Computational photography is another interesting �eld rel ated to the imaging
technology and this is also developing at a rapid pace at the p resent time [5, 6, 7].
This �eld has enhanced the capabilities of the digital photo graphy by introduc-
ing and implementing image capturing, processing, and mani pulation techniques.
Computational photography provides the opportunity to cap ture an image now and
to modify the properties such as depth of �eld at a later stage . Unconventional cam-
eras do provide the required information for such adjustment s. Though computa-
tional photography is a powerful tool, it has introduced com plexities to the terms
which have been previously easy to de�ne and be derived from t he cameras.

With complex camera structures such as plenoptic cameras, in addition to the
popularity of the computational photography techniques, i t is no longer straight-
forward to describe and extract the high level properties of the capturing systems,
which are required to evaluate a capturing setup and to make m eaningful compar-
isons between different capturing setups [8, 9, 10].

In the context of the plenoptic capturing setups, one solutio n for extracting those
high level camera properties is basically by conducting pra ctical measurements, which,
naturally, is an elaborate though costly solution for many a pplications. Moreover,
the intended or unintended variations in the plenoptic capt uring setup will require
a new set of measurements to be conducted. To ease the process, models are utilized
which describe the system with the desired level of details.

The knowledge concerning how the light is captured (sampled ) by the image
capturing system is crucial for extracting the high level pr operties of the capturing
system. Thus proper models for light and the capturing syste m are essential to de-
scribe the light sampling behaviour of the system. Existing models are different in
their complexity as well as their descriptive level and thus each model becomes suit-
able for a range of applications.

1.1 Motivation

Established capturing properties such as image resolution are required to be de-
scribed thoroughly in complex multi-dimensional capturin g setups such as plenop-
tic cameras, as they introduce a trade-off between properti es [4] such as the resolu-
tion, depth of �eld and signal to noise ratio [8, 9, 10]. These high-level properties can
be inferred from in-depth knowledge regarding how the image capturing system
samples the radiance through points in three-dimensional s pace. This investigation
is required, not only to understand trade-offs among variou s capturing properties
between unconventional capturing systems, but also to expl ore each system's be-
haviour individually. Adjustments in the system or unintend ed variations in the
capturing system properties are other sources of variation in the sampling behaviour
and so in the high-level properties of the system.

Models are therefore a valuable means in order to understand the capturing sys-
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(a) Multi-dimensional camera properties
space

(b) Example

Figure 1.1: A graphical representation of the multi-dimensional space of the capturing system
properties (a) Illustrating the concept (b) An example for comparing two capturing systems in
the multi-dimensional properties space

tem regarding its potential and limitations, facilitating the development of more ef-
�cient post-processing algorithms and insightful system m anipulations in order to
obtain the desired system features. This knowledge can also be used for developing,
rendering and post processing approaches or adjusting prior computational meth-
ods for new device setups. In this context, models, methods and metrics that assist
exploring and formulating this trade-off are highly bene�c ial for study as well as in
relation to the design of plenoptic capturing systems.

Capturing systems sample the light �eld in various ways whic h result in differ-
ent capturing properties and trade-offs between those prop erties. Models have been
proposed that describe the light �eld and how it is sampled by different image cap-
turing systems [11, 12]. Previously proposed models range f rom simple ray-based
geometrical models to complete wave optics simulations, each with a different level
of complexity and varying explanatory levels in relation to the system's capturing
properties. The light �eld model, which is a simpli�ed repre sentation of the plenop-
tic function (with one less dimension), has proven useful fo r applications spanning
computer graphics, digital photography, and 3D reconstruc tion [13]. However, mod-
els applied to the plenoptic capturing systems are desired t o have low complexity as
well as a high descriptive level within their scope. It is bene �cial to have a model
that provides straightforward extraction of features with a desired level of details,
when analyzing, designing and using plenoptic capturing sy stems. At the moment,
not all of these demands have been ful�lled with the existing models and metrics
which provides room for novelties and improvements in the �e ld.

The desire for a uni�ed language in describing the camera pro perties and the
lack of such frameworks is another drive for developing new m odels [4]. Terms
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such as ”Mega-rays” to describe resolution in a plenoptic ca pturing system does not
provide a clear �gure of the spatial resolution of the captur ing system in the depth
plane of interest, which might �rst come to mind on hearing th e term ”resolution”.
It also does not provide a basis for a comparison of one capturi ng system with other
capturing systems. Although the technology has made it chea per and faster for un-
conventional cameras as well as multi-camera capture setups to emerge and to be
developed, it has not become easier to make decisions regarding a speci�c capturing
set-up. To do so, a user must have the means to compare properties and features pro-
vided by each capture setup. The technology developers will also bene�t from being
able to clearly express the properties of their offered solu tions. A uni�ed descrip-
tive language can assist in removing such ambiguity surroun ding different terms,
as these are describing the high level properties of the plenoptic camera setups, as
well as facilitating meaningful comparisons between diffe rent plenoptic capturing
systems.

1.2 Problem de�nition

The aim of this work is to introduce a framework for the repres entation and evalu-
ation of plenoptic capturing systems in favour of a uni�ed la nguage for extracting
and expressing camera trade-offs in a multi-dimensional ca mera properties space
(see Figure 1.1 ). The work presented in this thesis is based on the following veri�-
able goals:

1. To introduce a model:

� Representing the light sampling behaviour of plenoptic ima ge capturing
systems.

� Incorporating the ray information as well as the focus inform ation of the
plenoptic image capturing system.

2. To build a framework based on the introduced model which is capable of ex-
tracting the high level properties of plenoptic image captu ring systems.

In the presented work, complex capturing systems, namely ple noptic cameras
and their properties are being considered. The camera properties excluded from the
scope of this work are those caused by the wave nature of light such as diffraction
and polarization.

1.3 Approach

To full�l the aim of this thesis work, the sampling pattern cu be (SPC) framework
is introduced. The SPC framework is principally a system of r ules describing how
to relate the physical capturing system parameters to a new m odel representation



1.4 Thesis outline 5

Figure 1.2: A graphical illustration of the framework and model subject of this thesis work, for
representation and evaluation of plenoptic capturing systems

of the system, and, following this, how to extract the high le vel properties of the
capturing system from that model. The SPC model is the heart o f the introduced
framework for the representation and evaluation of plenopt ic capturing systems. In
a top down approach, the SPC framework is divided into smalle r modules. These
modules, including the model, the model generator, the visu alization and the eval-
uation module, all interact towards the aim of this thesis wo rk. Figure 1.2 gives a
graphical representation of the modules in the SPC framewor k and how they relate
to each other.

The SPC framework is also interacting with the outside world . It receives param-
eters related to the capturing setup (the camera structure) and provides outputs in
the form of visualization results and camera properties. Fi gure 1.3 illustrates the in-
teraction of the different modules in the SPC framework with the outside world. Fig-
ure 1.3 also provides additional information about differe nt modules in the frame-
work while a detailed description of each module and its comp onents is given in
Chapters 3, 4 and 5.

1.4 Thesis outline

Chapter 2 will brie�y provide the required background inform ation. It will cover the
basic knowledge about capturing systems, in particular the plenoptic setup which
is the focus of this work. Optical models including those uti lized in computational
photography are dealt with brie�y in Chapter 2 which will prov ide knowledge about
how to relate the current work with other available models. T he details concerning
the proposed SPC model are provided in Chapter 3 and a descrip tion regarding the
generation of the SPC model using the model generator module in the SPC frame-
work is presented. Chapter 4 provides an elaboration regard ing the visualization
module in the SPC framework. It illustrates how it is possible to visualize the SPC
model and how to bene�t from this visualization. Discussion concerning the pro-
posed framework will continue in Chapter 5 and it is at this po int that property ex-
tractors are introduced in order to empower the evaluation m odule. The SPC model
is evaluated in Chapter 6 by applying the introduced propert y extractors to plenop-
tic capturing setups and comparing the results with those fr om established models.
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Figure 1.3: A graphical illustration of the inputs and outputs of the framework subject of this
thesis work

Finally, in Chapter 7 the work is concluded and possible futu re developments are
discussed.

1.5 Contributions

The content of this thesis work is mainly based on the previou sly listed papers I to
III. The contributions can be divided into three main parts:

1. A model that describes the light sampling properties of a p lenoptic capturing
system and the instructions and rules for building that mode l.

2. A property extractor that is capable of extracting the lat eral resolution of a
plenoptic camera leveraging on the focal properties of the c apturing system
preserved in the provided model.

3. Introducing and developing a framework for modelling comp lex capturing
systems such as plenoptic cameras and extracting the high level properties of
the capturing system with the desired level of details.



Chapter 2

Light Models and Plenoptic
Capturing Systems

This chapter provides the required material and the backgro und information for the
remainder of this thesis work. The chapter is started by mean s of an introduction to
optical models with different complexity and descriptive l evels. The plenoptic func-
tion and its practical subsets are then provided, which then leads on to the topic of
the plenoptic cameras as the main focus. The plenoptic camera structure and intrin-
sic trade-offs in this capturing con�guration will be discu ssed, and a short summary
will conclude this chapter.

2.1 Optical models

Optics is the branch of physics which involves the behaviour and properties of light,
including its interactions with matter, and the constructi on of instruments that use
or detect it. Different optical models with various complex ity levels are exploited for
describing various light properties in different domains a nd applications. A correct
choice of optical model is necessary in order to achieve the desired level of explana-
tion from the model for a reasonable computational cost.

2.1.1 Geometrical optics

Geometrical optics, or ray optics, describes the propagation of light in terms of rays
which travel in straight lines, and whose paths are governed by the laws of re�ection
and refraction at the interfaces between different media [1 4].

Re�ection and refraction can be summarised as follows: When a r ay of light hits
the boundary between two transparent materials, it is divid ed into a re�ected and
a refracted ray. The law of re�ection states that the re�ected r ay lies in the plane

7
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of incidence, and the angle of re�ection equals the angle of in cidence. The law of
refraction states that the refracted ray lies in the plane of incidence, and that the sine
of the angle of refraction divided by the sine of the angle of i ncidence is a constant:

sin � 1

sin � 2
= n; (2.1)

where n is a constant for any two materials and a given colour (wavele ngth) of light.
This is known as the refractive index. The laws of re�ection an d refraction can be
derived from the principle which states that the path taken b etween two points by a
ray of light is the path that can be traversed in the least time [15].

Geometric optics is often simpli�ed by making a paraxial app roximation, or a
small angle approximation. Paraxial approximation is a met hod of determining the
�rst-order properties of an optical system that assumes all ray angles are small and
thus:

sin � � �;

tan � � �;

cos� � 1;

where � is the smallest angle between the ray and the optical axis. A paraxial ray-
trace is linear with respect to ray angles and heights [16]. Ho wever, careful consid-
eration should be given as to where this approximation is val id as this depends on
the optical system con�guration.

2.1.2 More elaborated optical models

Interference and diffraction are not explained by geometric al optics. More elaborated
optical models such as the wave optics (sometimes called thephysical optics model)
and the quantum optics model are those covering a wider range of the behaviour
and properties of light. The debate about the nature of light and the wave-particle
duality as the best explanation for a broad range of observed phenomena is still on-
going in modern physics. The complexity of the model can be es timated from the
level of complexity of the light elements in each model and th e methods used to
work with the light elements. Table 2.1 provides a brief comp arison between the ge-
ometrical model, the wave optics and the quantum optics mode l in order to offer an
idea regarding the different complexity levels. The point i s that in order to describe
a wider range of phenomena, a more extensive model of the phys ical concept (light
here) is necessary. But the desire is to add the minimum compl exity while providing
the maximum bene�t. Details about these elaborate optical m odels can be found in
standard optics books. However, a few points will now be menti oned in brief which
will be used at a later stage in this thesis work.

One clear distinction between the geometrical optics and th e wave optics model
is the concept of optical transfer function (OTF) in the latt er. The optical transfer
function is the frequency response of that optical system. C onsidering the imaging
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Table 2.1: Comparison of the optical models, higher descriptive level comes with the higher
complexity in the model

Optical
Model

Light Element Method Application

Geometrical
Optics

Light rays Paraxial approxima-
tion, disregarding
wavelength

Ray tracing, digital
photography

Wave Op-
tics

Electromagnetic
Wave �elds

Maxwell equations,
harmonic waves,
Fourier-theory

Interference, diffrac-
tion, polarization,
holography

Quantum
Optics

Particles (pho-
tons)

Planck's radiation
law, quantum me-
chanics

Photo-electric effect,
Kerr-effect, Faraday-
effect, laser

system as an optical system, the OTF is the amplitude and phase in the image rel-
ative to the amplitude and phase in the object as a function of f requency, when the
system is assumed to respond linearly and to be space invariant [17]. The magnitude
component (light intensity) of the OTF is known as the modula tion transfer function
(MTF), and the phase part is known as the phase transfer funct ion (PTF):

OT F(�; � ) = MT F (�; � ) exp(i � P T F(�; � )) ; (2.2)

where � and � are the spatial frequency in the x- and y-planes, respectively. The spa-
tial domain representation of the MTF (which is in the freque ncy domain) is called
the point spread function (PSF), see Equation 2.3. The point spread function de-
scribes the response of an imaging system to a point light source. In the language of
system analysis, the optical system is a two dimensional, space invariant, �xed pa-
rameter linear system and the PSF is its impulse response. The spatial domain and
the frequency domain are related using:

MT F = F̂ (P SF); (2.3)

where F̂ (:) is showing the Fourier transformation.

Ray-based models of light have been utilized for computer gr aphics and com-
puter vision. Some early excursions into the wave optics mod els by Gershon Elber
[18] proved computationally intense, and thus the pinhole- camera and ideal-thin-
lens models of optics have been considered adequate for computer graphics use [19].
However, the ray-based models were sometimes extended with special-case models
e.g. for diffraction [20], which cannot be properly handled using the ray-based mod-
els alone. Other examples are the surface scattering phenomena and developing
proper re�ection models, which demand more than a purely ray- based model.
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2.2 Plenoptic function

The concept of plenoptic function (PF) is restricted to geom etric optics and so the
fundamental light carriers are in the form of rays. Geometri c optics is applied to the
domain of incoherent light and to objects larger than the wave length of light, which
is well matched with the scope of this thesis work.

The plenoptic function is a ray-based model for light that in cludes the colour
spectrum as well as spatial, temporal, and directional vari ations [21]. The plenoptic
function of a 3D scene, introduced by Adelson and Bergen [22] , describes the inten-
sity of all irradiance observed at every point in the 3D scene , coming from every
direction. For an arbitrary dynamic scene, the plenoptic fu nction is of dimension
seven [23]:

P F (x; y; z; �; �; �; t ) = I; (2.4)

where I is the light intensity of the incoming light rays at any spati al 3D-point
(x; y; z) from any direction given by spherical coordinates (�; � ) for any wavelength
� at any time t. If the P F is known to its full extent, then it is possible to reproduce
the visual scene appearance precisely from any view point at any time. Unfortu-
nately, it is technically not feasible to record an arbitrar y P F of full dimensionality.
The problem is simpli�ed in relation to a static scene, which removes the time vari-
able t. Another simpli�cation is according to the � values, which are discredited
into the three primary colours red, green and blue. Based on t he human tristimulus
colour perception, the discritized � values can be interpolated to cover the range of
perceptible colours.

In conventional 2D imaging systems, all the visual informati on is integrated over
the dimensions of the P F with the exception of a two dimensional spatially varying
subset. The result of this integration is the conventional p hotograph. The integration
occurs due to the nature of the digital light sensors (either CCD or CMOS) and the
information loss is irreversible.

Based on the above de�nition of the plenoptic function, it is possible to relate
plenoptic imaging to all those imaging methods which preser ve the higher dimen-
sions of the plenoptic function compared to a conventional p hotograph. Since these
dimensions are the colour spectrum, spatial, temporal, and directional variations,
the plenoptic image acquisition approaches include the wid e range of methods pre-
serving either of those dimensions using a variety of captur ing setups such as single
shot, sequential and multi-device capturing setups. Howeve r, the plenoptic cameras
in the scope of this thesis work are those which prevent the av eraging of the radiance
of the incident light rays in a sensor pixel by introducing sp atio-angular selectivity.
The speci�c structure of a plenoptic camera will be describe d in more details in Sec-
tion 2.5.
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2.3 Light �eld

The plenoptic function of a given scene contains a large degree of redundancy. Sam-
pling and storing the full plenoptic dimensional function f or any useful region of
space is impractical. Since the radiance of a given ray does not change in free space,
the plenoptic function can be expressed with one less dimension as a light �eld in
a region free of occluders [12, 11]. The light �eld or the mode lled radiance can be
considered as a density function in the ray space. The light � eld representation has
been utilized to investigate camera trade-offs [9] and has p roven useful for applica-
tions spanning computer graphics, digital photography, an d 3D reconstruction. The
scope of the light �eld has also been broadened by employing w ave optics to model
diffraction and interference [24] where the resulting augm ented light �eld gains a
higher descriptive level at the expense of increased model complexity.

2.3.1 Two plane representation of the light �eld

The light �eld (LF) is a 4D representation of the plenoptic fu nction in the region free
of occluders. Hence the light �eld can be parameterized with t wo coplanar planes
(u; v) and (s; t). Each light ray passing through the volume between the plane s can
be described by its intersection points by (u; v) � (s; t) coordinates. Thus the light
�eld as the 4D representation of the plenoptic function can b e written as:

LF (u; v; s; t) = I: (2.5)

2.3.2 Ray space

Another 4D re-parameterization of the plenoptic function i s the ray space [23]. This
representation, �rst introduced in [25], uses a plane in spa ce to de�ne bundles of rays
passing through this plane. For the (x; y) plane at z = 0 each ray can be described
by its intersection with the plane at (x; y) and two angles (�; � ) giving the direction:

RS(x; y; �; � ) = I: (2.6)

2.4 Sampling the light �eld

The full set of light rays for all spatial (and angular) dimen sions form the full light
�eld (or the full ray space). However, the recording of a full l ight �eld is not practi-
cally feasible, which makes the sampling process inevitabl e. Sampling of Equation
2.5 with real sensors introduces discretization on two leve ls:

1. Angular sampling

2. Spatial sampling
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due to the �nite pixel resolution of the imaging sensor. It is t herefore necessary to
obey the sampling theorem to avoid aliasing.

Many researchers have analysed light �eld sampling [26, 27] . In previous works,
models have been proposed that describe the light �eld and ho w it is sampled by
different image capturing systems [28, 11, 12]. The number and arrangement of im-
ages and the resolution of each image are together called thesampling of the 4D light
�eld [13]. Thus different capturing setups result in differ ent samplings of the light
�eld. Since the knowledge regarding how the light �eld is sam pled is closely related
to the acquisition method, the light �eld sampling methods c an be classi�ed based
on the light �eld acquisition methods. Some of the light �eld sampling methods are
described here in brief.

2.4.1 Camera arrays (or multiple sensors)

One method for sampling the light �eld is utilizing an array o f conventional 2D
cameras distributed on a plane. This method is also referred to as the multi-view
technique. Creating the light �eld from a set of images corre sponds to inserting
each 2D slice into the 4D light �eld representation. Conside ring each image as a
two dimensional slice of the 4D light �eld, an estimate of the light �eld is obtained
from concatenating the captured images. Based on assistance from the two plane
notation for the representation of the light �eld, the camer a array capturing method
results in the low resolution samples on the (u; v) plane where the camera centres are
located, and high resolution samples on the (s; t) or the sensors' plane. The sampling
resolution property in this method is closely related to the fact that each camera has a
relatively high spatial resolution (high resolution in the (s; t) plane) but the number
of cameras is limited (low resolution in the (u; v) plane). A number of methods used
for capturing the light �eld using multi sensor setups are pr esented in [29, 30, 31].

2.4.2 Temporal multiplexing

Camera arrays cannot provide suf�cient light �eld resoluti on for certain applica-
tions. Sparse light �eld sampling is a natural result of the c amera size which phys-
ically limits the camera centres from being located close to each other. Moreover,
camera arrays are costly and have high maintenance and engineering complexities.
To overcome these limitations, an alternative method is usi ng a single camera cap-
turing multiple images from different view points. Tempora l multiplexing or dis-
tributing measurements over time are applicable to the stat ic scenes. Examples of
such implementations can be found in [12, 11, 32, 33]

2.4.3 Frequency multiplexing

Although temporal multiplexing reduces complexity and cos t of the camera array
systems, it can only be applied to the static scenes. Thus, other means of multiplex-
ing the 4D light �eld into a 2D image are required to overcome t his limitation. [34]



2.5 Plenoptic camera 13

introduces frequency multiplexing as an alternative metho d for achieving a single
sensor light �eld capture. Frequency multiplexing method ( also referred to as coded
aperture) is implemented by placing non-refractive light- attenuating masks slightly
in front of a conventional image sensor or outside the camera body near the objective
lens. These masks have a Fourier transform of an array of impulses which provide
frequency domain multiplexing of the 4D Fourier transform o f the light �eld into the
Fourier transform of the 2D sensor image. A number of light �e ld capturing imple-
mentations using prede�ned and adaptive mask patterns for f requency multiplexing
can be found in [34, 35, 36, 37].

2.4.4 Spatial multiplexing

Spatial multiplexing produces an interlaced array of eleme ntal images within the
image formed on a single image sensor. This method is mostly k nown as integral
imaging, which is a digital realization of the integral phot ography, introduced by
Lippmann [38] in 1908. Spatial multiplexing allows for the l ight �eld capture of
dynamic scenes but sacri�ces spatial sampling in favour of a ngular sampling as a
result of the �nite pixel size. One implementation of a spati al multiplexing system
to capture the light �eld, uses an array of microlenses place d near the image sensor.
This con�guration is called a plenoptic camera (PC) and is cl osely investigated in
Section 2.5. Spatial multiplexing using a single camera is applied when the range of
view points spans a short baseline (from inches to microns) [ 13]. Examples of such
implementations can be found in [39, 40].

The spatial multiplexing is not limited to the above mention ed implementations.
Adding an external lens attachment with an array of lenses an d prisms [41] and the
same approach, but with variable focus lenses [42, 43] are two of numerous other
schemes using a spatial multiplexing approach for sampling the light �eld.

2.4.5 Computer graphics method

Light �elds can also be created by rendering images from 3D mo dels. If the geom-
etry and the colour information of the scene is known, which i s usually the case in
computer generated graphics (CG), then standard ray tracin g can provide the light
�eld with the desired resolution [27]. However the focus in th is thesis work is on
light �eld from photography rather than CG.

2.5 Plenoptic camera

Conventional cameras average radiance of light rays over the incidence angle to a
sensor pixel, resulting in a 2D projection of the 4D light �eld , which is the traditional
image. A conventional camera setup is illustrated in Figure 2.1 in a very abstract
form. The object, main lens and the image sensor form a relay system:
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(a) Conventional camera, focused at optical in�nity

(b) Conventional camera, focused at distancea

Figure 2.1: The abstract representation of a conventional camera setup (a) Focused at optical
in�nity (b) Focused at distance a

1
a

+
1
b

=
1
F

; (2.7)

where a is the distance from the object to the main lens optical centre, b is the image
distance to the optical centre of the main lens and F is the focal length of the main
lens.

In contrast, plenoptic cameras prevent the averaging of the r adiance by introduc-
ing spatio-angular selectivity by using a lens array. This m ethod replaces camera
arrays with a single camera and an array of small lenses for small baselines. The
operating principle behind this light �eld acquisition met hod is simple. By placing
a sensor behind an array of small lenses or lenslets, each lenslet records a different
perspective of the scene, which can be observed from that speci�c view point on the
array. The acquisition method in plenoptic cameras will gen erate a light �eld with
a (u; v) resolution equal to the number of lenslets and an (s; t) resolution depend-
ing on the number of pixels behind each lenslet. Based on this operating principle,
different arrangements have been introduced for a plenopti c camera by varying the
distance between the lenslet array and the image sensor as well as by adding a main
lens to the object side of the lenslet array.
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(a) Conventional camera, main lens focused at the optical in�ni ty

(b) Basic plenoptic camera model, object placed at the optical in�nity

Figure 2.2: Basic plenoptic camera versus conventional camera setup (a) Conventional cam-
era, main lens focused at the optical in�nity (b) Basic plenoptic camera, main lens focused at
the optical in�nity

2.5.1 Basic plenoptic camera

The basic con�guration of the plenoptic camera (called PC-i hereafter), places the
lenslet array at the main lens's image plane [44, 45]. Figure 2.2 illustrates the PC-
i structure including the objective lens with focal length F , the lenslet array with
the focal length f positioned at the image plane of the main lens, and the image
sensor placed at distance f behind the lenslet array. For abetter comparison, the
structure of the conventional camera and the basic plenopti c camera are illustrated
respectively in Figures 2.2(a) and 2.2(b). The size of each lens in the lenslet array, in
some implementations, is of the order of a few tens to a few hun dred micro meters
and so the lenslet array is sometimes also called the micro lens array. The basic idea
behind the PC-i optical arrangement is that the rays that in t he conventional camera
setup come together in a single pixel, essentially pass through the lenslet array in the
PC-i setup, and are then recorded by different pixels (see Figure 2.2(b)). Using this
method, each microlens measures not just the total amount of l ight deposited at that
location, but how much light arrives along each ray.
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(a) Basic plenoptic camera, main lens focused at the optical in� nity

(b) focused plenoptic camera, main lens focused at the optical in�nity

Figure 2.3: Focused plenoptic camera versus basic plenoptic camera setup (a) Basic plenoptic
camera, main lens focused at the optical in�nity (b) focused ple noptic camera, main lens
focused at the optical in�nity

2.5.2 Focused plenoptic camera

In the second proposed con�guration for the plenoptic camera (called PC-f here-
after), the lenslet array is focused at the image plane of the main lens [46, 47]. This
con�guration is also known as the focused plenoptic camera. For easier comparison,
both PC-i and PC-f structures are illustrated in Figure 2.3( a) and 2.3(b) respectively.
Figure 2.3(b) provides the details about the PC-f con�gurat ion in relation to the fact
that the spacing between the main lens, the lenslet array and the image sensor are
different to that of the basic plenoptic camera model (Figur e 2.3(a)). These variations
also cause a different set of camera properties for the PC-f as compared to the PC-i.

In the PC-f con�guration, the image plane of the main lens, the lenslet array and
the image sensor form a relay system:

1
a

+
1
b

=
1
f

(2.8)

where a is the distance from the main lens image plane to the lenslet' s optical centre,
b is the image distance to the optical centre of the lenslet and f is the focal length of
the lenslet.
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As can be observed in Figures 2.1 through 2.3, the camera thickness is increasing,
from the conventional camera to the PC-i and eventually the P C-f con�gurations.
The increasing camera thickness has brought challenges in applications in which the
functionality of the plenoptic cameras are bene�cial but th eir physical size (mainly
the thickness) is a serious limitation.

2.6 Camera trade-offs

It was stated that the spatial multiplexing enables there to b e a light �eld capture of
dynamic scenes but it requires a trade-off between the spatial and angular sampling
rates [21]. Plenoptic cameras, as spatial multiplexing capturing systems, employ the
same spatio-angular trade-off. In general, there is a strong inter-relation between
the properties in a plenoptic capture such as the viewing ang le, different aspects
of image resolution and the depth range [48]. To assist in thi s trade-off process, a
characteristic equation has been proposed by Min et al. [49] as:

R2
s � z � tan(

�
2

) = R; (2.9)

where Rs is the spatial resolution at the image plane, � z is the depth range in which
objects are accurately reconstructed,� is the lenslet viewing angle and R is the reso-
lution of the image sensor. The point extracted from Equatio n 2.9 is that there is only
a single method by which all the properties can be improved wi thout sacri�cing any
other, namely, increasing the resolution of the image sensor. All other approaches
will merely emphasize one property at the expense of the othe rs [48].

The work of [9] is a good example that attempts to analyze the c amera trade-offs
in various computational imaging approaches. They show tha t all cameras can be
analytically modelled by a linear mapping of light rays to se nsor elements. Thus
they interpret the sensor measurements as a Bayesian inference problem of invert-
ing the ray mapping. The work in [9] is elaborating on the exis ting trade-offs and
emphasizes the necessity of a uni�ed means to analyze the trade-offs between the
unconventional camera designs used in computational imagi ng.

However, there are still three remaining major points to discu ss for a certain
plenoptic capturing system:

� If the image capturing system is making the most of its capabil ities for the
desired range of applications,

� If the properties of the existing plenoptic capturing system are extracted thor-
oughly, and

� If the image reconstruction algorithms are making the most of the captured
data.

The above discussion topics are basically related to the evaluation of the im-
age capturing system, which is a complex issue in the case of plenoptic cameras
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as strongly inter-related systems. A uni�ed framework, whi ch is the main concern
of this thesis work, allows us to better understand the light sampling properties for
each camera con�guration. This framework allows us to inves tigate the trade-offs
between different camera properties, and to analyze their p otentials and limitations.

2.7 Chapter summary

This chapter provided the material including the backgroun d and terminology to be
used in the remainder of this thesis work. Optical models wit h different complex-
ity levels were presented. There was a discussion regarding the suitability of each
optical model for a range of applications and provided diffe rent levels in explain-
ing the light behaviour interacting with an optical system. The plenoptic function
was then introduced, followed by the concept of the light �el d as the vocabulary
of computational imaging. Two con�gurations of the plenopt ic camera were brie�y
described and the inevitable trade-offs between camera parameters in various un-
conventional camera con�gurations were mentioned. The cam era trade-offs section
noted that there is a strong inter-relation between the prop erties of plenoptic captur-
ing systems. This chapter covered:

� The basic terminologies

� The plenoptic capture as a way of slicing (sampling) the 4D li ght �eld

� The lack of (or a desire for) a uni�ed system to describe camer a properties in
general and plenoptic camera properties in particular



Chapter 3

The SPC Model

The SPC framework was initially introduced in Chapter 1 as a f ramework for the
representation and evaluation of plenoptic capturing syst ems. Inside the SPC frame-
work, the SPC model exists as the main module or the heart of th e SPC framework
(illustrated in Figure 1.3). This chapter will investigate the SPC model, how it is
de�ned, how it is generated, and will discuss some propertie s of the SPC model.

3.1 Introduction

The SPC model is a geometrical optics based model that, contrary to the previously
proposed ray-based models, includes focus information and this is conducted in a
much simpler manner than is the case for the wave optics model . The SPC model car-
ries ray information as well as the focal properties of the ca pturing system it models.
Focus information is a vital feature for inferring high-lev el properties such as lateral
resolution in different depth planes. In relation to carryin g the focal properties of the
capturing system, the SPC model uses light samples in the form of a light cone (LC).

We consider the light intensity captured in each image senso r pixel in the form
of a light cone, the fundamental data form upon which our mode l is built. Then the
SPC model of the capturing system describes where within the scene this data set
originates from. This description is given in the form of lig ht cones' spatial position
and angular span. The set of spatial positions and the angular spans will form the
SPC model of the image capturing system. This knowledge reveals how the light
�eld is sampled by the capturing system. The explicit knowle dge concerning the
exact origin of each light �eld sample makes the model a tool c apable of observing
and investigating the light �eld sampling behaviour of a ple noptic camera system.

In the following representations, the work is within the ( x,y,z) space considering
z as the depth dimension. All the optical axes are supposed to b e in parallel with
the z axis. Projections of the LCs and apertures are supposed to have rectangular
shapes with their edges in parallel with x and y axes. In this case only the geometry
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is considered. No content or value is as yet assigned to the model elements.

3.2 Light cone

Previously proposed single light ray based models are param eterized using either a
position and direction in 3D space, or a two plane representa tion. In contrast, the
SPC model works with the light sample in the form of the light c one (LC) with an
in�nitesimal tip and �nite base. The LCs represent the form o f in-focus light.

A light cone is here de�ned as the bundle of light rays passing through the tip
of the cone represented by a 3D point (xc; yc; zc), within a certain span of angles
[� s; � f ] in the x direction and [� s; � f ] in the y direction. Angles are de�ned relative
to the normal of the plane zc in the positive direction, where zc = f (x; y; z) : z = zcg.
The angle pairs (� s; � f ) and (� s; � f ) are always in an ascending order which means
� s � � f and � s � � f . If an operation applied to an LC generates a new LC, then the
angle pairs for the resulting LC are also sorted to follow thi s order.

The following notation is utilized for a light cone, using th e notation of r (x; y; z; �; � )
as a single light ray passing through (x; y; z) with the angles of � and � relative to
the normal of plane z in the x and y directions:

C(xc; yc; zc; � s; � f ; � s; � f ) = f8 r (xc; yc; zc; �; � ) : � 2 [� s; � f ] ^ � 2 [� s; � f ])g : (3.1)

A light cone is hence uniquely de�ned by its tip location and t he angular span. The
radiance contained in a light cone is obtained by integratin g all light rays within that
light cone:

I (xc; yc; zc) =
R R

C(xc; yc; zc; � s; � f ; � s; � f )d�d�

=
R� f

� s

R� f

� s
r ((xc; yc; zc); �; � )d�d�:

(3.2)

Theoretically, the base of a light cone can have any polygon shape but, in this case,
only a rectangular base shape is used for simple analysis and illustration purposes.
This assumption will not affect the generality of the concep t and is compatible with
the majority of the existing plenoptic camera arrangements. The notation can be
adjusted to other base shapes if required.

3.3 The sampling pattern cube

The sampling pattern cube (SP C) is a set of light cones Ci :

SP C := f Ci g; i = 1 ; : : : ; k: (3.3)

The SPC is de�ned as a set and thus there can be a discussion in relation to su-
perimposing two (or more) SPCs, here shown by 0+ 0, as the union operation applied
to these two (or more) SPCs:

SP C1 + SP C2 := f Ci g [ f Cj g; (3.4)
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Figure 3.1: Illustration of a light cone in three dimensional space

where

SP C1 := f Ci g; i = 1 ; : : : ; k
SP C2 := f Cj g; j = 1 ; : : : ; r

The LCs in the SPC model carry the information about the posit ion within the
scene that the light �eld samples come from. The SPC thus give s a mapping be-
tween the pixel content captured by the image sensor and the 3D space outside the
image capturing system. To simplify further descriptions o f the model, as well as
illustrations of the same, we henceforth reduce the dimensi onality by ignoring the
parameters relating to the y-plane. Figure 3.2 illustrates a light cone in 2D space
which is parameterized as:

C(xc; zc; � s; � f ): (3.5)

Expanding the model to its full dimensionality is straightf orward. Ignoring the
parameters relating to the y-plane, the �rst dimension of the SPC is the location of
the light cone tip x, relative to the optical axis of the capturing system. The second
dimension is the light cone tip's depth z along the optical axis, relative to the refer-
ence planez0 and the third dimension is the angular span of the light cone � . The
reference planez0 can be arbitrarily chosen to be located at the image sensor plane,
the main lens plane, or any other parallel plane as long as it i s explicitly de�ned.
Although an axial symmetry of the optical system is assumed i n this description, the
approach can be easily extended to a non-symmetrical system.

The choice of using light cones renders a more straightforwa rd handling of in-
focus light ray information compared to previously propose d two-plane and point-
angle representations [11, 12, 28] and is unique for a determined optical system. Two
capturing systems will sample the light �eld stemming from t he scene in the same
way if their SPCs are the same.
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Figure 3.2: Illustration of a light cone in 2D space

3.4 Operators

At this point a number of operators applied to single light co nes as the fundamental
elements of the SPC model are de�ned. Operators are applied t o an LC and generate
parameters, a new LC, a set of LCs or an emptyset. Operations can also be applied to
a set of LCs. If an operator is used, which produces a new LC in it s output, then the
operation affects all the single LCs in the set and hence generates a new set of LCs.

3.4.1 Base operation

Base or boundary B [�] of the light cone C on the plane z = z0 (that is the intersection
area of that LC with the depth plane z = z0) is illustrated in Figure 3.3, and is de�ned
as:

B [C; z0] := ( x1; x2; z0; � 1; � 2) (3.6)

where

x1 = xC + ( zC � z0) tan � s;
x2 = xC + ( zC � z0) tan � f ;
� 1 = � s;
� 2 = � f :

The Base operator is a one to one mapping between the light cone and the pa-
rameters it generates as the output. So the reverse operation exists and is shown
as:

C = B � 1 [x1; x2; z0; � 1; � 2] ; (3.7)

where
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Figure 3.3: Base or boundary of a light cone on the plane z = z0

zc = x 2 � x 1
tan � 2 � tan � 1

+ z0;
xc = x 1 tan � 2 � x 2 tan � 1

tan � 2 � tan � 1
;

� s = � 1;
� f = � 2:

3.4.2 Translation operation

A Translation operation T[�] is applied to a given LC and translates the tip position
of the LC by the given amount (xT ; zT ), not affecting the angular span of the LC:

T [C; xT ; zT ] := C0(xc0; zc0; � 1; � 2) (3.8)

where

xc0 = xc + xT ;
zc0 = zc + zT ;
� 1 = � s;
� 2 = � f :

3.4.3 Aperture operation

An aperture operation A[�], where the aperture parameters such as aperture plane
z = zA , starting position x1A and the ending position x2A of the aperture are known,
is applied on the LC in the following manner:

A [C; x1A ; x2A ; zA ] :=

8
<

:

; if [x1A ; x2A ] \ [x1; x2] = ;
C0 if [x1A ; x2A ] \ [x1; x2] = [ x0

1; x0
2] ;

C if [x1A ; x2A ] \ [x1; x2] = [ x1; x2]
(3.9)
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(a) (b)

Figure 3.4: Aperture operation applied to a single light cone (a) Initial light cone (b) Resulted
light cone

where

C0 = B � 1
�
x0

1; x0
2; zA arctan

x0
1

zA � zC
; arctan

x0
2

zA � zC

�
;

and x1, x2 are derived from applying the B [�] operation to the light cone:

B [C; zA ] := ( x1; x2; zA ; � 1; � 2) :

Figure 3.4 represents how a light cone is affected by applyin g the aperture operator.

3.4.4 Lens operation

The lens operation imitates the geometrical optics propert ies of an ideal lens. A lens
operation L [�] is applied to a light cone and provides a new light cone. The le ns
parameters such as the lens planez = zL , position of the lens optical axis xL , the
focal length of the lens f and the hyperfocal distance dL for the lens are known in
this operation. In the case where the results of a lens operation are parallel light
rays, they are treated as a cone with their tip position at the plane of the hyperfocal
distance from the lens, which means if the resulting LC is con sidered as C0, then:
zC 0 := dL

The lens operation considers the lens to be in�nitely wide an d it affects an LC in
the following manner:

L [C; xL ; zL ; f ] :=

8
<

:

C0 if f > 0
C if f = �1
C00 if f < 0

(3.10)

and

C0 = B � 1

2

4x1; x2; zL ; � s � arctan

0

@ x1 � xL
f (zL � zC )

(zL � zC ) � f

1

A ; � f � arctan

0

@ x2 � xL
f (zL � zC )

(zL � zC ) � f

1

A

3

5 ;
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(a) (b)

Figure 3.5: Lens operation applied to a single light cone (a) The initial light cone (b) The initial
and the resulted light cone

C00= B � 1

2

4x1; x2; zL ; � s + arctan

0

@ x1 � xL
f (zL � zC )

(zL � zC ) � f

1

A ; � f + arctan

0

@ x2 � xL
f (zL � zC )

(zL � zC ) � f

1

A

3

5 ;

where x1 and x2 are obtained from the B [�] operation applied to the light cone:

B [C; zL ] := ( x1; x2; zL ; � 1; � 2)

Equation 3.10 uses the lens equation to �nd the new tip positi on and angular span of
the resulting light cone from the lens operation. Figure 3.5 represents how the lens
operation is applied to an exemplary light cone in the case of a lens with f > 0 and
zL > z C .

3.4.5 Split operation

The split operation S[�] takes an LC and a set of split parameters as the input and
generates a set of new LCs. Split parameters are the split plane z = zS , starting
positions xsk and the ending position x fk of the kth split sections. Here are the
constraints for the split sections:

� The split sections should not overlap

� The split sections should cover the whole range of [x1; x2] where x1 and x2 are
obtained from:

B [C; zS ] := ( x1; x2; zS ; � 1; � 2) (3.11)

The split operation S[�] works in the following manner:
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Figure 3.6: The SPC model generator module

S [C; xs1; : : : ; xsk ; x f 1; : : : ; x fk ; zS ] := f C0
1; : : : ; C0

k g; (3.12)

where

C0
i = A [C; xsi ; x f i ; zS ] ; i = 1 ; : : : ; k

3.5 The SPC model generator

In order for an SPC to carry the information about the light �el d sampling behaviour
of the optical system, it is required to be built in a particul ar way. The initial set of
the light cones must pass through the optical system in order to extract the sampling
properties of the optical system. At this point, a descripti on will be given regarding
how the SPC model is generated using the physical camera parameters fed to the
generator module, the initial conditions, the de�ned opera tors in Section 3.4 and the
rules which will be described in this section. Part of Figure 1.3, that illustrates the
SPC model generator module, is reprinted here in Figure 3.6 f or ease of access.

Building the SPC model is based on the following basic assump tions:

� The fundamental light samples captured by an image sensor is a set of light
cones

� This set of light cones are back-traceable into the physical 3D capturing space
in front of the camera



3.5 The SPC model generator 27

� The �nal result of this back-tracing process is a new set of li ght cones as the
SPC model of the capturing system

To generate the SPC model of a capturing system, we start from the initial set
of LCs with their tip position at the centre of each pixel on th e sensor plane and an
angular span equal to the light acceptance angle of each sensor pixel. Then we back-
track each LC through the optical system, passing elements such as apertures and
lenses, which will transform the initial set of LCs into new s ets using geometrical
optics. The transformations continue until we reach a �nal s et of LCs with new tip
positions and angular spans that carry the sampling propert ies of the capturing sys-
tem. This �nal set of LCs and their correspondence to the init ial sensor pixels, build
the SPC model of the system and preserve the focal information and the information
regarding where each recorded light sample on the sensor cell is originating from.

The current way of producing the initial set of LCs with one LC per pixel could
be extended to an arbitrary number of LCs per pixel without an y loss of generality.
Two types of extensions to the single LC per pixel scenario are presented in Section
4.2.3.

To expand the above description concerning the SPC model generating process,
two implementation approaches are considered. One starts f rom the initial set of
the light cones and back-traces all of them to the next stage by applying a suitable
operator (called, here, the operator-based approach). Thesecond implementation
takes only one light cone related to one pixel, and back-traces that single light cone
all the way into the captured scene in front of the camera syst em and then goes to
the next light cone related to the next pixel. This second app roach will be called the
pixel-based approach.

These two approaches are implementation-wise slightly dif ferent. However, if
the full SPC model of the camera system is desired, the two approaches provide the
same �nal results. If a partial SPC model of the camera system i s preferred, either
of the above implementation approaches can be computationally more ef�cient de-
pending on the optical structure of the camera. The partial S PC model is the SPC
model of not the whole capturing system, but only a part of it. In periodic structures
(such as a plenoptic capturing setup) it is computationally bene�cial to generate the
partial SPC model of the system, corresponding to the image sensor and one sin-
gle lenslet, and construct the full SPC model of the capturin g system by means of
a proper translation (see Section 3.4.2) and by superimposing (see Equation 3.4) the
partial SPC models.

3.5.1 Operator-based approach

Consider the �rst set of light cones having their tip locatio ns positioned at the image
sensor pixel locations, and their angular span de�ned by the light acceptance angle
of the sensor. Thus we have an initial set of light cones, named Si , for which the tip
position and angular span of the cones are derived from the ph ysical camera param-
eters, namely the image pixel pitch and the light acceptance angle of each pixel on
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the image sensor. The next step towards generating the SPC model of the capturing
system is to back-trace this initial set of light cones into t he scene. A combination of
optical transformations act on the light cones as a consequence of back-tracing the
set of light cones through the optical system. These transformations are applied to
all the LCs using the de�ned operators in Section 3.4.

In a plenoptic capturing setup (as described in Chapter 2 and F igure 2.3), the �rst
operation applied to this initial set of light cones is the ap erture operation, since,
starting from the image sensor side and following the optica l path towards the space
in front of the camera, the �rst optical element to reach to is the lenslet array. In order
to apply the aperture operator, A[�] , to the light cones, required parameters such as
the aperture plane, z = zA are derived from the physical camera parameters fed to
the model generator module. Other required information is t he starting position x1A

and the ending position x2A related to the geometry of the lenslet system. For each
lenslet in the lenslet array, the aperture operator is de�ne d and applied to Si . If the
pixels behind a lenslet are optically decoupled from those b ehind any neighbouring
lenslets, then the aperture operation related to a single lenslet is only applied to
those LCs which belong to the pixels behind that speci�c lens let. The resulting set of
light cones, after applying the lenslet's aperture, Sa will then be the input of the next
optical transformation.

Now that the initial set of light cones, Si , are trimed into the new set, Sa by using
the aperture operator, the next optical transformation is a pplied, which is the lens
effect regarding the lenslet array in the plenoptic camera s tructure. For each lenslet
in the lenslet array, the lens operator, L [�], is de�ned and applied to Sa . Parameters
required for de�ning the lens operator, which include the le ns plane z = zL , posi-
tion of the lens optical axis xL and the focal length of the lens f are again extracted
from the physical camera parameters fed to the model generator module. The out-
put of this stage is a set of light cones Sla which is the union set of all the outputs
from single lenslets. The light cones in Sla will then be the input of the next optical
transformation.

Following the optical path towards the space in front of the c amera, the next
optical element which will be met is the main lens (camera obje ctive), and so the
next operation applied to the current set of light cones, Sla is the aperture operator
associated with the main lens. Required parameters for this operator are the aperture
plane and the starting position and the ending position rela ted to the geometry of the
main lens. applying the aperture operator to Sla will provide us with the new set of
LCs, here called Sala . The �nal optical transformation is the lens effect associa ted
with the main lens where the main lens optical axis and the foc al length of the main
lens F are obtained from the list of physical camera parameters.

When no more optical transformations remain to be applied to t he LCs, the pro-
cess of generating the SPC model is over. The �nal set of light cones, located outside
the image capturing system but within the captured scene for ms the SPC model.
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Figure 3.7: Illustrating the process of backtracking an exemplary LC into the space in front of
a camera

3.5.2 Pixel-based approach

A general description is now provided regarding how the SPC m odel of the captur-
ing system is generated using the pixel-based approach. For each pixel in the image
sensor, repeat until no more optical elements are to be considered:

1. De�ne the initial light cone associated with that pixel ac cording to the pixel
position and the light acceptance angle of that pixel.

2. De�ne the operation that should be applied to that light co ne considering the
camera con�guration in the back-tracing process.

3. Apply the operation and generate the new LC.

The SPC model of the capturing system is then the union set including all the
processed LCs located outside the image capturing system but within the captured
scene.

Figure 3.7 shows the process of back-tracing an exemplary LC into the space
in front of an exemplary plenoptic camera (with PC-f con�gur ation). The �gure
demonstrates how the LCs are backtracked from the sensor plane, z = Z0, passing
the lenslet array at plane z = Z1 and the main lens at plane z = Z2 and reaching into
the space in front of the camera (back in-focus at plane z = Z3).

3.6 Chapter summary

The SPC model was introduced in this chapter together with th e SPC model genera-
tor module. It was stated that:
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� The SPC model is distinct from the previously proposed model s by using the
light samples in the form of the light cones (LCs).

� The SPC model includes focus information of the capturing sy stem carried by
the LCs.

� The focus information of the capturing system is vital for in ferring high-level
properties of the capturing system.

� Light �eld sampling properties of the capturing system are r e�ected in the SPC
model of the capturing system. The SPC model carries the information spec-
ifying angular and spatial positions from which the capture d information by
each pixel in the camera sensor originates. This knowledge is scene indepen-
dent and provides the necessary information about the sampl ing behaviour of
the image capturing system.

The contribution of the author to this chapter:

� Introducing the SPC model that describes the light sampling p roperties of a
plenoptic capturing system and the instructions and rules f or building the SPC
model.



Chapter 4

The SPC Model Visualization

The SPC model has been described in Chapter 3 as a model that re�ects the light �eld
sampling behaviour of the plenoptic capturing system. This chapter will investigate
how the SPC model is visualized and also how to bene�t from the visualization mod-
ule for a better understanding of the light �eld sampling beh aviour of the plenoptic
capturing systems. Figure 4.1 regenerates part of Figure 1.3 related to the visualiza-
tion module. The output of the the visualization module, gra phically represents the
LCs that build the SPC model of the camera.

4.1 Introduction

As described in Chapter 3, the SPC model uses light samples in the form of light
cones (LCs).

The explicit knowledge about the exact origin of each light � eld sample makes
the model a tool capable of observing and investigating the l ight �eld sampling be-
haviour of a plenoptic camera system. The light �eld sample c aptured by each image
sensor pixel is in the form of a light cone, the fundamental da ta form that our model
is built upon. In the SPC model of the capturing system, it is de �ned where within
the scene this data set originates from. This description is given in the form of light
cones' spatial position and angular span. The set of spatial positions and the angu-
lar spans will form the SPC model of the image capturing syste m. This knowledge
reveals how the light �eld is sampled by the capturing system .

In the following representations, the work is within the ( x,y,z) space considering
z as the depth dimension. All the optical axes are supposed to b e in parallel with
the z axis. The work only deals with the geometry and no content or v alue is yet
assigned to the model elements.

31
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Figure 4.1: The visualization module in the SPC framework

4.2 Visualizing the light samples in the SPC model

We use the data captured by the camera as an estimate of the original light �eld.
The sampling properties of the capturing device forms one so urce of the deviation
of the capatured data from the original light �eld. Noise, le ns chromatic aberrations,
imperfections and implementation tolerances are other con tributors which are not
discussed here. If we consider the image pixel size being the maximum precision
of a point, we arrive at a sampled space of the light �eld using the proposed SPC
model.

4.2.1 Representing the light cones in the 3D capturing space

The �rst approach visualizes each light cone by representin g a physically truncated
cone inside the physical capturing space in front of the came ra. The geometry of the
cone tip and its angular span is given by the corresponding li ght cone it represents.
Visualizing the SPC model, which is a set of light cones, will result in a set of phys-
ically truncated cones with their tips located inside the 3D capturing space in front
of the camera. If we consider the LCs in their full dimensional ity, this visualization
approach will result in a 3D space containing 3D light cones. The tip positions and
the span of the visualized light cones indicate how the camer a samples the light �eld
in the capturing space. The name ”sampling pattern cube” ori ginates from this ap-
proach for visualizing the light �eld samples in the 3D captu ring space in front of
the camera. An exemplary result for visualizing a number of l ight cones using this
approach is shown in Figure 4.2.
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Figure 4.2: Visualizing light cones in the capturing space

4.2.2 Representing the light cones in the q-p space

Before investigating the q-p space representation of the light samples in the SPC
model, there will be a brief discussion regarding the q-p space representation of the
ray optics which will be used later as a handy notation in the i nvestigation of the
SPC model light �eld sampling properties. More about the q-p space representation
and application of the ray-based optics can be found in [50, 5 1].

In the two dimensional notation, a single ray passing the poin t (x; z = 0 ) with
angle � relative to the optical axis z, can be represented by a point as(x; � ) on the
(q; p) plane, where q is the position axis and p is the angle axis (see Figure 4.3(a)). A
single light cone, which is recalled as a bundle of all rays pa ssing the tip position of
the cone with a particular angle spread, in the q-p notation is then represented as a
vertical line segment (see Figure 4.3(b)).

In a furtur extension, all the light cones with their tip posit ions between (x =
x1; z = 0) and (x = x2; z = 0) and sharing the same aperture on plane z = zA will
be represented in the q-p plane as a tetrahedral patch with two vertical edges (see
Figure 4.3(c)).

If the x values are not continuous but are limited to a set of discrete values (e.g.
due to the image sensor's �nite pixel size), then the q-p representation of a set of
distinct light cones with their tip position between (x = x1; z = 0) and (x = x2; z =
0), and sharing the same aperture on plane z = zA will be limited to a vertical grid
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(a)

(b)

(c)

Figure 4.3: x-z versus q-p representations for (a) A single ray (b) A single LC (c) A continiuous
range of light cones with their tip positions covering the range between (x = x1 ; z = 0) and
(x = x2 ; z = 0) and sharing the same aperture on plane z = zA
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Figure 4.4: x-z versus q-p representations with discrete x positions

in the (q; p) plane (see Figure 4.4).

Since there is a one to one mappings between all the rays crossing the x axis and
the points in the (q; p) plane, the transformations between the (x; z) and (q; p) planes
are all reversible. As a result, for example, a vertical line segment in the q-p space
is the representation of a light cone with the tip position lo cated on the x axis in the
(x; z) plane.

4.2.3 The SPC model in the q-p space

The q-p space representation of the SPC model of a plenoptic capturing system as-
sists to envision the light �eld sampling behaviour of the ca pturing system. The key
point in this step is how to relate the initial light cones to e ach pixel on the image
sensor plane, so that it is possible to later interpret the SPC model of the captur-
ing system in line with our initial assumption. Three scenar ios are considered here
which cause marginal differences in interpreting the light �eld sampling properties
of the SPC model. These three scenarios respectively assumethat:

I The initial LCs' peaks are located at the centre of each pixel (see Figure 4.5(a))

II The initial LCs' peaks are located behind each pixel with th e spread equal to the
pixel size (see Figure 4.5(b))

III The initial LCs' peaks are located at the start and end point of each pixel (see
Figure 4.5(c))

Assuming LCs' peaks to be located at the centre of each pixel (case I) is the sim-
plest (both in terms of implementation and model complexity ) and is the scenario
that has been utilized in the SPC model generator (Section 3.5). It assumes that all
the rays coming to each pixel are collected by the centre point of the pixel, which is
a fair approximation for certain applications.

The two other scenarios (cases II and III) offer a more accurate interpretation of
the light �eld sampling behaviour of the capturing system bu t at the same time add
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(a) (b) (c)

Figure 4.5: Three scenarios for assigning LC(s) to an image sensor pixel (a) Peak position of
the LC is located at the pixel's centre point (b) Peak position of the LC is located behind the
pixel with the spread equal to the pixel size (c) Peak position of the LCs are located at the start
and end point of the pixel

to the complexity of the SPC model. However, both cases II and III c an be reverted
to the �rst scenario (case I). In case II, a virtual shift back of th e image sensor plane
in the z direction with the amount equal to gc will bring the case II back to the case
I. It means that we can then use the same SPC model generator (previously de�ned
for the �rst scenario) but with the new geometry. To revert ca se III back to case I, a
virtual shift of the image sensor this time in the x direction by an amount equal to
half of the pixel pitch will cause this to occur.

From the modelling accuracy point of view, assuming LCs bein g located at the
start and end point of each pixel (case III) provides a more accur ate interpretation of
the light �eld sampling behaviour of the capturing system. A n even more accurate
assumption is to consider the whole range of the LCs with thei r tip positions located
on the span of a single image sensor pixel to contribute to the radiance captured by
that image sensor pixel. In this case, each pixel is sampling apatch in the (q; p) plane
(as previously shown in Figure 4.3(c)) rather than a single l ine segment (see Figure
4.3(b)).

As the accuracy of the model is increased, the complexity is also growing. It is
important to recall that there is only one value assigned to t he radiance captured by
each image sensor pixel and assigning more than one light cone to each pixel asks
for a valid approach to split this single value among several LCs. This might be
achievable to some extent, where prior knowledge about the g eometry of the scene,
the surface properties and the lighting conditions exist.
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Table 4.1: Utilized camera parameters in visualization of the SPC model

Parameter PC-i PC-f
Main lens focal length, F 80mm
The gap between main lens and lenslet array 80mm 97mm
Lenslet focal length, f 1:5mm
Lenslet pitch 0:5mm
Lenslet array size 100� 100
The gap between lenslet array and image sensor 1:5mm 1:7mm
Image sensor pixel size 6:8�m � 6:8�m

4.3 Visualising the SPC model in the q-p space for
plenoptic capturing systems

In this case, the SPC model visualization is investigated for an exemplary plenoptic
capturing system using the q-p representation. The dimensions of the SPC model
are continued to be reduced in the given example in order to si mplify the discussion
as well as the illustrations.

A few examples are provided in [52], showing how the SPC model is applied to
the optical capturing systems, and how the variations in the geometrical parameters
of the system are re�ected in the SPC model visualization of th e system. The utilized
notation in [52] switches the position, q and angle, p dimensions to retain the vertical
axis being reserved for the position of the LCs' tips, in both x-z and q-p representa-
tions. What is shown in this section is according to the q-p representation's notation
given in Section 4.2.2, and so the LCs are presented by vertical line segments.

From the two con�gurations of a plenoptic camera (discussed in Section 2.5), the
�rst con�guration or PC-i, places the lenslet array at the ma in lens image plane.
In the second con�guration or PC-f, the lenslet array is focus ed at the image plane
of the main lens (focused plenoptic camera)[46]. Different optical arrangements in
these two camera con�gurations cause signi�cant differenc es in their light �eld sam-
pling properties. The distinction between their light �eld sampling properties is also
re�ected in their respective SPC models and can be observed and investigated using
the visualization module in the SPC framework.

In either PC-i or PC-f con�gurations, by assuming the same foc al length for all
of the lenslets, the SPC model of the plenoptic capturing system will include a set of
LCs with their tip positions located in a single depth plane a nd thus this is suf�cient
to visualize the content of that single depth plane in order t o visualize the whole SPC
model of the capturing system.

As the �rst step, the SPC model is generated for the two PC-i an d PC-f con�gura-
tions using the parameters summarized in Table 4.1. For later comparison purposes,
parameters of the main lens and the lenslets array are considered to be the same in
both con�gurations and the main lens is focused at the optica l in�nity.

The SPC model of the exemplary PC-i and PC-f con�gurations ar e visualized in
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Figures 4.6 and 4.7 using the q-p space notation. For clarity, only a subset of the
full SPC is presented, corresponding to a single row of pixel s behind a single row
of the lenslets. It is still the case that the number of visuali zed LCs is large (about
73 � 100) and so they cannot all be seen individually. Thus an inset is magnifying
a small portion of the (q; p) plane to be investigated. The two insets in Figures 4.6
and 4.7 have the same scale for easier comparison and values are excluded in order
to maintain the generality of the cases.

The overall shape of the sampled area, in the SPC model of the PC-i and the PC-
f con�gurations, specify that the distributions of the ligh t samples (LCs) are quite
different in these two capturing arrangements.

In the SPC model of the PC-i con�guration, the depth plane wher e the �nal LCs'
tip positions are located is placed at distance F (focal length of the main lens) from
the main objective outside the camera. In this con�guration, t he main lens is focused
at the optical in�nity. Examining the SPC model of the PC-i co n�guration visualized
in Figure 4.6, light cones from the pixels behind a single len slet have an angular span
which smoothly shifts from one LC to the other (the highlight ed row in the inset) and
light cones from the pixels behind the adjacent lenslets share the tip position and add
to that angular span. This sampling behaviour provides mult iple angular samples
for one single spatial position in that speci�c depth plane. This behavior results in
a parallelogram shape as the sampled area in the SPC model of aPC-i con�guration
(see Figure 4.6).

In the PC-f con�guration, the plane containing the LCs' tip po sitions is located at
the hyper focal distance of the main lens. Examining the SPC model of the PC-f in
Figure 4.7, light cones from adjacent lenslets do not share their tip location. Instead,
the light samples from a single lenslet, compared to those fr om the adjacent lenslet,
are shifted in the positional as well as the angular dimensio ns. In this case, each
light cone adds to the number of individual light cone tip pos itions in the SPC model
which will thus provide a bigger number of resolvable positi onal data. Observing
the visualized SPC model associated with the PC-f con�gurat ion (Figure 4.7), the
number of the angular samples associated with one spatial po sition is limited due to
the constant shift of the light cones from the pixels behind o ne lenslet. This behavior
results in a shape similar to a thick line as the sampled area in the SPC model of a
PC-f structure (see Figure 4.7).

Variations in the capturing system are re�ected in the SPC mod el of the captur-
ing system. As an example, if we add to the number of lenslets i n the PC-i and
PC-f structures (and at the same time expanding the size of the image sensor with
the same pixel density to support the larger area covered by t he lenslet array), we
observe different outcomes in the corresponding SPC models. In the SPC model of
the PC-i structure, for each added lenslet, one row of LCs is added to the top (or
bottom) of the parallelogram (see Figure 4.6), thus making i t cover a bigger angular
range (a longer parallelogram) without a change in the numbe r of positional samples
(the parallelogram retains the same width). It means that add ing lenslets in the PC-i
structure increases the number of angular samples per positional values, but not the
number of the positional samples.
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Figure 4.6: The q-p space visualization of the SPC model of an exemplary plenoptic camera
with PC-i con�guration
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Figure 4.7: The q� p plane visualization of the SPC model of an exemplary plenoptic camera
with PC-f con�guration
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The case is different in the PC-f structure. Adding lenslets in the PC-f structure
increases the number of different positional samples in the SPC model of the camera
system, represented as a longer thick line in Figure 4.7. However, it does not affect
the angular range (or the thickness of the thick line marked a s the sampled area in
Figure 4.7).

4.4 Bene�ting from the SPC visualization

The SPC provides the information about where in the captured space, the light in-
formation recorded in each pixel is originating from. Based on this interpretation
of the SPC model, the LCs can be visualized in the captured space. Visualization
in the (x; z) coordinate as well as the (q; p) plane were previously discussed in Sec-
tion 4.2. Visualization can provide a better insight into th e light �eld sampling be-
haviour of the capturing system, and so assist us in differen t applications ranging
from the design of new capturing system arrangements to deve loping better image
reconstruction algorithms. Dynamic visualisation of the S PC variations in the case
of a plenoptic camera setup with varying parameters can also be enlightening for
educational purposes.

4.5 Chapter summary

Since the SPC model is incorporating the light samples in the LC form which is the in
focus light samples, the q-p representation of the SPC model includes only vertical
line segments for the plenoptic camera con�gurations. For t he PC-i and PC-f camera
con�gurations, the SPC model was visualized using a single (q; p) depth plane. The
SPC model visualization can include more than a single (q; p) plane in the plenoptic
camera con�gurations, which, for example, use multi focus l enslet systems.

As the SPC model represents the light �eld sampling properti es of the capturing
system, visualizing the SPC model assists in a better understanding of the sampling
properties. Using methods for visualizing the SPC model, we can explore how the
system variations are revealed in the SPC model based representation of the captur-
ing system.

The contribution of the author to this chapter:

� Introducing the visualization module in the SPC framework

� Describing the 3D capturing space representation of the LCs

� Describing the q-p space representation of the LCs

� Discussing how we can bene�t from visualization of the SPC mo del
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Chapter 5

The SPC Property Extractors

This chapter presents how the important high-level propert ies such as lateral resolu-
tion are extracted from the SPC model which was represented i n Chapter 3. Property
extractors are major components in the evaluation module (see Figure 5.1) inside the
SPC framework. In Figure 5.1, a set of property extractors has been described as in-
dependent parts of the evaluation module inside the SFC fram ework. Each property
extractor has access to the SPC model of the capturing systemas the input of the
evaluation module and will extract a high-level property of the capturing system.

Some of the high-level properties of the plenoptic capturin g systems and how
they are re�ected in the SPC model are qualitatively investig ated in [52] as a publi-
cation resulting from this thesis research work. However, th e concept of the feature
extractors in the SPC model, and more speci�cally, a propert y extractor to quan-
titatively extract the lateral resolution property in a ple noptic capturing system is
initially introduced in [53]. The main focus in this chapter is on the lateral resolution
as an interesting high level property in a plenoptic capturi ng system.

5.1 Lateral resolution property extractor

Resolution in plenoptic cameras is an example that demands more detailed investi-
gations, which gives consideration to the properties of the capturing system. Such
investigations of complex capturing system have been the subject of prior and recent
works [8, 10, 54]. In this chapter, there is a description regarding how to extract lat-
eral resolution from the SPC model and in Chapter 6, the later al resolution extractor
is validated with respect to results from wave optics based M onte Carlo simulations
and practical measurements.

Lateral resolution for a complex plenoptic capturing syste m is de�ned as the in-
verse of the minimum distance between two resolvable points located at a speci�c
depth plane within the system's common �eld of view (CFV). De pending on the
purpose of the lateral resolution analysis, the number and l ocations of depth planes
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Figure 5.1: The evaluation module inside the SPC framework

may be arbitrarily chosen. The captured resolution in a plen optic camera can vary
for different depth planes or different distances from the m ain optical axis.

The property extractors presented here are built based on the idea that the lateral
resolution in the SPC model can be de�ned as a function of the l ight cone distribution
and span in each depth plane. To extract lateral resolution u sing the SPC model
we need to apply proper adjustments to the general de�nition a nd incorporate the
speci�c features of the model.

Three approaches are implemented in this case, based on three different de�ni-
tions of the lateral resolution in a SPC model. All the propos ed property extractors
extract the lateral resolution from the SPC model throughou t an arbitrary number
of depth planes resulting in a depth-resolution pro�le. The se property extractors
utilize information embedded in the elements of the SPC mode l, including the fo-
cal properties of the capturing system and the geometrical d istribution of the light
cones.

5.1.1 First lateral resolution property extractor

The �rst property extractor de�nes the inverse of the latera l resolution value (the
lateral resolution limit, Res lim ) as the maximum Euclidean distance, de between
immediate neighbouring LCs' base centre points:

Res lim = Max(de): (5.1)

Figure 5.2 shows an example of neighbouring LCs and their respective base area
and centre point. Two LCs are immediate neighbours if no othe r LC's base centre
point is located between their base centre points. In this �rs t de�nition, no focal
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Figure 5.2: Illustration of the LC's base area and centre point

property is used, and the lateral resolution extractor redu ces the SPC model to a
ray model as only the principal rays passing through the LCs' centres are used to
investigate the capturing system properties.

5.1.2 Second lateral resolution property extractor

The second and more elaborate lateral resolution property extractor utilizes the SPC
model's focal information, which is preserved as the width, w of the LCs at each
depth plane:

w = x2 � x1; (5.2)

where x1 and x2 are obtained from Equation 3.6 as the boundaries of the light
cone's base area at the desired depth planez = z0. The second lateral resolution
property extractor considers the freedom of movement of a po int inside an LC's base
area. The inverse of the lateral resolution value at a certain depth plane is de�ned
as the largest of the following values: 1) maximum Euclidean distance, de between
centre points of two immediate neighbour LCs, or 2) half of th e maximum LC's base
width, w at that depth plane:

Res lim = Max(de;
w
2

); (5.3)

where Res lim is the inverse of the lateral resolution (the lateral resolu tion limit).

The following assumptions are made to cause the proposed measure re�ect the
actual resolution:
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� The resolution test points can only be located where the system is able to sam-
ple them, which means inside the LCs in the SPC model (a consequence of the
sparse sampling model).

� Two points are resolvable only if they are located within two different LCs.

� Two LCs are considered different if they do not include the ce ntre of each other

� The distance between two LCs is de�ned as the Euclidean dista nce between
their centre points, de.

To �nd de valid for the whole CFV, the worst case is sought, i.e. we consider
the two immediate neighbour LCs that have the maximum distan ce from each other.
Then either of the following cases holds:

Case 1 If these two immediate neighbour LCs are not overlappin g, then Res lim is
equal to de.

Case 2 If these two immediate neighbour LCs are overlapping bu t they are still differ-
ent LCs, then the Res lim is equal to the de.

Case 3 If these two immediate neighbour LCs are overlapping an d they include the
centres of the other, then all the LCs in the SPC are overlapping and the Res lim
is equal to the half of the LC's width.

The process to �nd Res lim value is presented in Figure 5.3 where the two illustrated
base areas belong to the two immediate neighbour LCs with the maximum distance
between their centre points.

5.1.3 Third lateral resolution property extractor

To investigate more thoroughly the characteristic of the SP C model in extracting the
lateral resolution, the previous lateral resolution extra ctor is modi�ed and a new ex-
tractor with improved functionality is buit. The pixel size projected in each depth
plane is an attribute, which is included in the third de�niti on for the lateral resolu-
tion feature extractor. How this modi�cation affects the acc uracy of the results will
be discussed in Chapter 6. It should be noted that the projected pixel size at a certain
depth plane is also a part of the system properties embedded i n the SPC model in
the form of the distance between two initially neighbouring LCs at the depth plane
of interest.

In this third lateral resolution extractor, the concept of re solvability is applied
where at least one LC (pixel) exists which contains one of the point light sources but
not the other. This means that there should be a light cone, wh ich is not contributing
to the content of the �rst pixel, but does to the second. Follo wing the above def-
inition, the lateral resolution extractor in the SPC model w hich extracts the lateral
resolution limit, Res lim in a certain depth plane is described as:

Res lim = pps+ min dist (5.4)
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Figure 5.3: Finding the resolution limit in the second lateral resolution property extractor

Figure 5.4: Illustrating the contributors in the lateral resolution limit on the depth plane of
interest (third de�nition)
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where ppsis the projected pixel size in the depth plane of interest and min dist is the
length of the maximum line piece created by the overlapping s pan of the LCs in that
depth plane (see a single lens example in Figure 5.4).

5.2 Chapter summary

Being able to readily quantify the high level properties of a capturing system is of
practical use for conventional image capturing systems in g eneral, but of speci�c
interest when working with more complex systems such as came ra arrays [55] and
light �eld or plenoptic cameras [56].

The contribution of the author to this chapter:

� Introducing the evaluation module in the SPC framework

� De�ning three lateral resolution property extractors

Three lateral resolution property extractors have been int roduced that incremen-
tally leverage on the SPC features: the centre of the bases ofthe LCs at each depth
plane, the width of bases of the LCs at each depth plane, the distribution of the LCs
at each depth plane and �nally the projected pixel size at each depth plane. All the
parameters used by these property extractors are provided b y the SPC model of the
capturing system.



Chapter 6

Evaluation of the SPC
Framework

In this chapter the descriptive level of the SPC model is evalu ated by investigating
the capability of the model in describing the high level prop erties of the capturing
system. The SPC framework including the model generator, th e SPC model and
the evaluation modules are implemented in Matlab for a set of exemplary plenoptic
capturing systems.

6.1 Methodology

To evaluate the SPC framework, the previously de�ned proper ty extractors are ap-
plied to a set of exemplary plenoptic capturing system setup s. The property extrac-
tors are evaluated by comparing the results to those from the ray based model and
the wave optics based Monte Carlo simulations for the same capturing systems. The
validity of the wave optics based Monte Carlo simulations re sults is con�rmed by
physical experiments [10, 54, 57] and so this data is considered as the ground-truth
of the evaluated system in terms of lateral resolution. In a fu rther step, how varia-
tions in the plenoptic capturing system (for example in the i mage sensor pixel size)
in�uences the �nal extracted property are investigated and w hether the results fall
in line with those from the more elaborated models.

6.2 Test setup

Two plenoptic capturing systems have been considered for th e evaluation of the pro-
posed lateral resolution extractors. The pixels behind each lenslet are assumed to be
optically decoupled from any neighbouring lenslets in all t he test setups. Figure 6.1
illustrates the considered setup for the evaluation of the p roposed lateral resolution
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Table 6.1: Test setup speci�cations

Parameter Setup 1 Setup 2
Lenslet array size 11� 11 11� 11
Lenslet focal length, f 12mm 12mm
Lenslet pitch 4:2mm 4:2mm
Lenslet f-number, f=D 22 22
Spacing between lenslet array and image sensor,g 12:507mm 12:507mm
Image sensor pixel number behind one lenslet 251� 251 301� 301

Figure 6.1: Illustration of the test setup utilized in the evaluation of the lateral resolution prop-
erty extractors

extractors and the speci�cations of the test setups are given in Table 6.1.

6.3 Results and discussion

In this part, the results from the three lateral resolution pr operty extractors are pro-
vided. The results are compared to those from the ray based model and the wave
optics based Monte Carlo simulations for the same capturing systems.

6.3.1 The �rst lateral resolution property extractor

The �rst lateral resolution extractor (as de�ned in Section 5.1) considers only the
distances between the centre of the LCs, which is equivalent to the position of the
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Figure 6.2: The minimum resolvable lateral distance at different depth planes achieved from
the �rst proposed lateral resolution extractor (equal to the results when using only the principal
rays), and the reference data from wave optics based Monte Carlo simulations

principal rays, in extracting the lateral resolution of the plenoptic system under in-
vestigation. This �rst extractor ignores the focal propert ies of the capturing system,
which are presented in the form of the LCs span in each depth pl ane. Thus, the
results from the �rst lateral resolution extractor are basi cally equal to what can be
expected from a ray tracing model based on the principal rays .

The �rst lateral resolution property extractor is applied t o the SPC model of the
plenoptic capturing system stated as Setup 1 in Table 6.1 andthe results for the lateral
resolution extracted using this �rst extractor are shown in Figure 6.2. The results are
shown together with those from the wave optics based Monte Ca rlo simulations as
reference data for comparison purposes. The focal plane of the system in Setup 1 is
about 300 mm and the data at depth planes further away than thi s are presented.
A correction factor of two is also applied to the result from t he SPC-based extractor
relative to the wave optics based data. This takes into consideration the difference
between the two methods, for which the former extracts resol vability using dark-
light points and the later dark-light-dark points.

A general trend is observed in both graphs shown in Figure 6.2 which indicates
that there are depth planes where the lateral resolution dro ps (location of peaks on
the minimum resolvable distance graphs) compared to depth p lanes slightly closer
or further away. This resolution drops can be explained usin g the distribution of
the LCs or, in this case, the distribution of the centre point s of the LCs' bases. In
the resolution dropping depth planes, LCs overlap and form c lusters and the lateral
resolution is decreased as a result of the poorer distributi on of the LCs.
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It is observed, that the results from the lateral resolution p roperty extractor equal
to the ray-based model, which is using only the distance of th e LCs' centres, can set
only an upper limit on the lateral resolution in different de pth planes. We can call
this value the upper limit of the resolution since it is assum ing the ideal case where
all the information is carried by the centre of the LC (or the s ingle ray).

Results from the �rst extractor are aligned with the wave opt ics based Monte
Carlo simulations results in terms of the location of the pea ks and periodicity of
the depth planes with low-resolution (the peaks in the graph s shown in Figure 6.2).
However, the general slant of the results from the �rst extrac tor and values at the
intermediate depth planes do not match with the results from the wave optics based
Monte Carlo simulations.

Noting that the SPC model allows for the production of result s equal to a ray-
based model, makes that ray based model a subset of the SPC model. In another
words, if the lenslet array is reduced to a pinhole array, the SPC model is reduced
to the ray-based model where the rays are actually the LCs wit h an in�nitely small
span of the cone.

6.3.2 The second lateral resolution property extractor

The second lateral resolution extractor (as de�ned in Secti on 5.1) incorporates the
focal properties of the plenoptic capturing system in the fo rm of the span or width
of the LCs in the process of extracting the lateral resolutio n property of the plenoptic
capturing system. This second extractor is applied to the same plenoptic capturing
setup (Setup 1 in Table 6.1) and the results are shown in Figure 6.3 together with the
reference results from the wave optics based Monte Carlo simulations.

We can see in Figure 6.3 that, by using the second lateral resolution extractor,
the gap between the upper limit of the resolution (from the �r st lateral resolution
extractor) and its amount from the wave optics based Monte Ca rlo simulations is
considerably reduced. The second lateral resolution extractor is using the distribu-
tion of the centre point of the LCs bases (as the principal ray information stored in
the SPC model) and the width of the LCs (as the focal property o f the capturing sys-
tem). The resolution values from the second lateral resolut ion extractor prove to fall
better in line with the Monte Carlo simulations data. Graphs agree in location of
peaks, maximum amplitudes as well as the general slant at the intermediate depth
planes. A gap still exists between the results from the second lateral resolution ex-
tractor, which considers more of the SPC properties and the ground-truth reference
data.

6.3.3 The third lateral resolution property extractor

The third proposed feature extractor (as de�ned in Section 5 .1) provides the lateral
resolution as a function of the projected pixel size, the span of the LCs and their
distribution at each depth plane. All contributors to the pr oposed lateral resolution
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Figure 6.3: The minimum resolvable lateral distance at different depth planes achieved from
the second proposed lateral resolution extractor and the reference data from wave optics
based Monte Carlo simulations

property extractor are obtained from the geometry and focal properties of the cap-
turing system which are embedded in the SPC model of the syste m.

Figure 6.4 shows the minimum resolvable distances, or the in verse of the lateral
resolution using the third extractor for a range of depth pla nes, for Setup 1. The
data from the ray-based model as well as the wave optics based Monte Carlo simu-
lation results are also provided as reference data for comparison purposes. The focal
plane of the system, which is used as te test setup is about 300mm and the data at
depth planes around and further away than this are also prese nted. Results from the
third proposed lateral resolution extractor prove to fall i n line with the Monte Carlo
simulation results for the examined range of the system para meters.

6.3.4 Comparison of the results from the three extractors

The �rst property extractor for lateral resolution is very s imple and faster to compute
compared to the second and third extractors, although the re sults from this �rst ex-
tractor only show where the planes of the resolution drop are located and the value
of the lateral resolution only at those depth planes fall in l ine with the reference data.
The �rst lateral resolution extractor has the simplest stru cture of the three and also
the lowest descriptive level.

The second lateral resolution extractor starts to incorpor ate the LCs width and
offers results which agree with the reference data in terms o f the position and values
of the resolution drop planes and the general slant of the lat eral resolution graph.



54 Evaluation of the SPC Framework

Figure 6.4: The minimum resolvable lateral distance at different depth planes achieved from
the ray-based model, the third proposed lateral resolution extractor, and the reference data
from wave optics based Monte Carlo simulations

The second lateral resolution extractor adds to the computi ng work load but does
provide results which offer a better agreement.

The third extractor, which includes the projected pixel size , is much more in line
with the reference data. This third extractor has the highes t computing work load of
the three extractors but offers an improved functionality b y including the projected
pixel size as an in�uencing factor in the computed lateral res olution value.

6.3.5 Comparison of the results from Setup 1 and 2

Figure 6.5 gives the lateral resolution limit results using the third extractor in the
SPC model for both Setups 1 and 2. The graph showing the third l ateral resolution
extractor results for Setup 2 is also closely in line with the Monte Carlo simulation
results (not shown in Figure 6.5) for the respective capturi ng setup.

The effect of the varying pixel number per lenslet on the late ral resolution limit of
the system can be observed in Figure 6.5 mainly as a stretching effect in the z direc-
tion. This effect is qualitatively explained by recalling t he projected pixel size, pps,
and the maximum line piece, min dist (see Figure 5.4) as the two parameters directly
contributing to the lateral resolution limit at the depth pl ane of interest (for the third
SPC-based lateral resolution extractor) and investigating their contributions. The in-
creased pixel number per lenslet results in a smaller pixel s ize and so a smaller pps
for Setup 2 as compared to Setup 1 at the same depth plane is expected. Since the
pps is the major contributor to the slant of the minimum resolvabl e distance graph,
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Figure 6.5: The effect of varying pixel density (varying the pixel number over a �xed area)
behind each lenslet on the lateral resolution limit using the third lateral resolution extractor

the results corresponding to Setup 2 then have a smaller general slant compared to
the results corresponding to Setup 1. Additionally, the wid th and the distribution
of the LCs in the depth plane of interest, illustrated in the p arameter min dist , are
major contributors to the location and amplitude of the peaks in the results obtained
from the third lateral resolution extractor. The poor distr ibution of the LCs, which
has been called the clustering effect, and which is causing large values for min dist ,
generates the peaks in the minimum resolvable distance graphs. Increasing the pixel
number per lenslet while maintaining the other parameters c onstant will cause the
clustering of the LCs to occur in proportionally further dep th distances and so re-
sulting in a proportional shift in the position of the peaks i n the z direction. Results
from the third lateral resolution extractor for Setups 1 and 2 demonstrate the SPC
lateral resolution extractor as a straightforward predict ing tool for investigating the
effect of system variations on the lateral resolution limit of the system.

6.4 Model validity

Given in this chapter, the three lateral resolution extract ors have been validated by
comparing the obtained lateral resolution results with tho se from the Monte Carlo
numerical simulation based on the more elaborate wave optic s model. Following
this, an investigation has been conducted into how the later al resolution pro�le in
depth varies with variations in the density of pixels behind each lenslet as an exam-
ple of the capturing system parameters.
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The lateral resolution predicted by the SPC model agrees wit h the results from
wave optics based numerical simulations. Concerning the mo del's validation method,
the comparison to simulated data is considered to be suf�cie nt since the validity of
the wave optics based Monte Carlo numerical simulations has been con�rmed in
[54] and [57] for the same plenoptic capturing system setups .

The lateral resolution extractors in the SPC framework are v alidated for the case
of plenoptic capturing systems. A geometrical feature of th ese image capturing sys-
tems is that they have a periodic structure and hence sample the light �eld in a pe-
riodic pattern. This fact has also been of assistance in relation to the de�nition of
the lateral resolution extractors, which means that a generalization of the property
extractors to other capturing systems is applicable only af ter proper adjustments.

The SPC model can be used for extracting the high level properties of the plenop-
tic capturing system such as the lateral resolution. The results are valid for the range
for which the dominant features are the methods of the geomet rical optics. The SPC
model fails for those ranges where, for example, the wave nat ure of light is govern-
ing. For example if the SPC model is employed in the design pro cess of a capturing
system, the predictions of the model are valid for the range i n which the geometrical
optics are suf�ciently accurate. Other models must be emplo yed to re�ne predictions
of the high level properties of the capturing system from the SPC model at different
stages of a design process.

The SPC model fails, for example, to explain or include the ab errations of the
main objective lens and the diffraction caused by the f-numbe r of the lens. Higher
f-numbers intensify the diffraction effect, at the same tim e low f-numbers increase
the undesirable effect of the lens aberrations. None of these effects are handled by
the SPC model and so there is only a middle range of f-numbers f or which the SPC
model can actually make suf�ciently detailed predictions a bout the plenoptic captur-
ing system using that f-number. De�ning the exact limitatio ns and validity ranges
of the SPC model requires more future investigations.

6.5 Relating the SPC model to other models

Models previously proposed to describe how the light �eld is sampled by differ-
ent image capturing systems range from, simple ray-based geometrical models to
complete wave optics simulations, each with a different lev el of complexity and a
varying level of explaining the system's capturing propert ies. Provided models are
easy to work with and accurate in scope, although they hardly provide a unique
representation of the sampling behaviour of a capturing sys tem.

Both the ray-based model and the SPC model are de�ned in the scope of the
geometrical optics models, and so the governing method is th e same for both of
these models (returning to Table 2.1 in Chapter 2). The number of the light elements
in the model then becomes a handy �gure in order to discuss the computational
complexity of the two models. The SPC model assigns a single light cone to each
pixel on the image sensor. In the case for which the ray-based model assigns a single
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Figure 6.6: A graphical illustration of the complexity and descriptive level of the SPC model
compared to other optical models

ray (for example the principal ray) to each image sensor's pi xel, the computational
complexity of these two models can be considered to be in the same range.

Since the ray-based model is located at the low complexity si de of the model com-
plexity spectrum, and the complexity of the SPC model is also in the same range, the
SPC model is also placed within the low complexity part of the spectrum. The wave
optics and the quantum optics models are placed within the hi gh complexity part of
the computational complexity spectrum based on their signi �cantly more elaborate
light elements and governing methods. Figure 6.6 places the above description of
the model complexity in a graphical representation.

One clear distinction between the SPC model and the ray-based model is the
capability of the SPC model in carrying the focal properties of the image capturing
system. The information regarding the focal properties of t he capturing system is
embeded in the angular span of the light cones (or the width of the light cones'
base area on arbitrary depth planes). This information is th e key in extracting the
high level properties of the capturing system (such as later al resolution) with an
acceptable level of details. Considering the capability of the SPC model in carrying
the focal properties, provides a higher descriptive level o f the system properties to
the SPC model as compared to the ray-based model. The descriptive level of the
models is graphically represented as the third spectrum in F igure 6.6. Since the SPC
model works only within the scope of the geometrical optics, it cannot extract the
high level property of the capturing system when the wave opt ics properties of light
are the dominant feature. A good example of such a case is in relation to the effect of
lens aberrations and diffraction limitations on the latera l resolution of the capturing
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system.

Another distinction between the SPC model and the ray-based model is based on
the nature of the light elements in these two models. Light co nes as the light samples
in the SPC model employ a continuous angular range but discre te positional values.
This sampling property is closer to the real physical proces s that occurs in an image
sensor compared to the discrete angular and positional samples being considered
in the ray-based model. The continuous range of the angular v alues in a light cone
allows for the spread of radiance information over the base a rea of the light cone
when required. This property might prove to be useful in expa nding the model by
assigning the radiance values to each light cone (or each image sensor pixel) in the
future.

6.6 Chapter summary

In this chapter, an in-depth investigation of the lateral res olution as a high level prop-
erty of a plenoptic capturing system using the SPC model has b een conducted.

It was stated that: The SPC model �lls the gap between ray-based models and
wave optics based models (or the real system performance), by including the focal
information of the system as a model parameter. The SPC is proven to be a simple
yet ef�cient model for extracting the depth-based lateral r esolution as a high-level
property of complex plenoptic capturing system.

The contribution of the author to this chapter:

� Evaluating the SPC framework for modelling complex capturi ng systems such
as plenoptic cameras and extracting the high level properti es of the capturing
system with the desired level of details.



Chapter 7

Conclusions

This chapter provides an overview of the content presented i n this thesis work, dis-
cusses the outcome of the presented research and offers suggestions for future work.

7.1 Overview

The aim of this thesis work as stated in Chapter 1 is to introdu ce a framework for the
representation and evaluation of plenoptic capturing syst ems in favour of a uni�ed
language for extracting and expressing camera trade-offs in multi-dimensional cam-
era properties space. The motivation for the work in Chapter 1 was highlighted by
the developments in the unconventional camera structures i ncluding the plenoptic
cameras, complexity in de�nition and extraction of camera p roperties and existing
trade-offs for plenoptic camera properties, the necessity to extract camera properties
for design, investigation or evaluation purposes, and lack of the models with the
desired descriptive level to extract high level camera prop erties.

To attain the aim of this thesis work, the SPC framework inclu ding a number
of constructing modules was initially introduced in Chapte r 1. Chapter 2 brie�y
provided the required background information covering the basic knowledge about
capturing systems and, in particular, the plenoptic setup a s the focus of this thesis
work. The introduction concerning the optical models in Cha pter 2 was of assistance
in relating the current work at a later stage with other avail able models.

The details concerning the proposed SPC model were provided in Chapter 3 to-
gether with the information regarding how the SPC model is ge nerated through the
SPC model generator module in the SPC framework. In Chapter 3, there was a de-
scription with regards to how the capturing system is repres ented in the SPC model
and how the focal information, as well as the light �eld sampl ing information of the
capturing system, is preserved in its SPC model representing.

Chapter 4 illustrated how it was possible to visualize the SP C model and how to
bene�t from this visualization. Visualizing the SPC model a s a set of light cones in
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the 3D capturing space in front of the camera and visualizing the q� p space repre-
sentation of the SPC model were discussed as a means to investigating the light �eld
sampling properties of the capturing system.

Discussion in relation to the SPC framework was continued in Chapter 5 where
the property extractors to empower the evaluation module in the SPC framework
were introduced. The lateral resolution, as a high level cam era property was selected
to be investigated and three lateral resolution property ex tractors were introduced
that incrementally leveraged on various SPC features.

The SPC model was evaluated in Chapter 6, by applying the intr oduced prop-
erty extractors to plenoptic capturing setups and comparin g the results with those
from established models. Results con�rmed the SPC model as an ef�cient model for
extracting high-level properties of the plenoptic capturi ng system. Through a com-
parison of the results, the SPC model was also related to the ray-based and wave
optics models.

7.2 Outcome

The concept of the light cone as the form of the in-focus light is shown to be useful
in modelling the light �eld sampling behaviour of the captur ing system in this the-
sis work. The fact that the optical transformations in the ge ometrical optics retain
the consistency of the LC as the form of in-focus light elemen t, was of assistance in
modelling the light �eld sampling behaviour of the capturin g system using the SPC
model. Other modules in the SPC framework, such as the SPC model generator, the
visualization module as well as the evaluation module are fo rmed around the SPC
model to facilitate the process of actually generating the m odel as well as showing
how it is possible to bene�t from this representation.

The �rst goal of this thesis work, which was to introduce a mod el to represent
the light �eld sampling behaviour of plenoptic image captur ing systems has been
completely ful�lled. The introduced SPC model incorporate s the ray information as
well as the focus information of the plenoptic image capturi ng system, fully satisfy-
ing the second goal of the work. Based on the proposed model, t he SPC framework
was developed and evaluated and it was capable of extracting the high level prop-
erties of plenoptic image capturing systems, ful�lling the third veri�able goal. The
outcome of the thesis can bene�t design, evaluation and comp arison of the complex
capturing systems.

”Richer and more realistic assumptions do not suf�ce to make a theory success-
ful. Scientists use theories as a bag of working tools and they will not take on the
burden of a heavier bag unless the new tools are very useful” [ 58]. If the above quote
is applied to the concept of this current work, then it is poss ible to state that the SPC
model and framework can contribute not because it is true, bu t, because the concept
adds to the ray model, notably the focal properties of the opt ical capturing system,
which is thus worth pursuing. The SPC framework is proven to b e a simple yet ef-
�cient framework for extracting the lateral resolution pro �le in plenoptic capturing
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systems. It is possible to conclude that the SPC framework yields predictions that are
straightforward to obtain and are suf�ciently detailed for a range of applications.

7.3 Future works

The following is a list of possible tracks for the future work :

� Investigating the validity range of the model is an essential step to take. De�n-
ing the exact limitations of the model and the practical para meter ranges in
which the SPC framework can provide results with suf�cient a ccuracy requires
more in depth assessments.

� The next track to follow is developing other property extrac tors in the SPC
framework. Angular resolution could be a good candidate as a key property
in the plenoptic capturing system. To validate such an angul ar resolution ex-
tractor, it might be necessary to have access or the possibility to measure the
ground truth data as a reference for comparison. More proper ty extractors will
also be of assistance in clarifying the range and scope of thecapabilities of the
SPC model and framework.

� Another possible track to work on is bene�ting from the LCs in formation such
as the base area or the spread of the LCs (on different depth planes) in the im-
age reconstruction algorithms. The knowledge concerning t he physical origin
of the light samples in the scene could prove to be of assistance in developing
better image reconstruction algorithms. A further step in t his path could be
assigning a content value to each LC and a distribution showi ng how this con-
tent is distributed in the angular span of that LC. If we consid er the uniform
distribution in the content of each LC, then using LCs to reco nstruct the image
in a certain depth plain might be comparable to applying a lin ear interpolation
to the images obtained from the ray-tracing algorithms. Oth er distributions in
the LCs might result in other interpolation methods. It is pos sible to develop a
concept of LC-tracing similar to ray-tracing. Images can be r econstructed using
LC-tracing and compared with the results from the ray-traci ng methods.

� Based on a higher abstraction level (a more abstract level in the system mod-
elling hierarchy), the SPC framework has the potential to be extended to other
complex capturing systems. The way that the SPC models the light �eld sam-
pling behaviour of the capturing system could also be bene�c ial in other com-
plex capturing systems. The system evaluation capabilitie s that the SPC frame-
work provides could also be very valuable in complex capturi ng systems. Cam-
era arrays could be a good candidate for this track. However, t he SPC frame-
work might require adjustments for any new capturing system i ntroduced to
it. For example, the model generator might require to be revi sed and the va-
lidity of the property extractors for any new capturing syst em introduced to
the SPC framework should be carefully investigated and prop er adjustments
should be applied.
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� Camera evaluation tools, in general, and the SPC framework, in particular,
may also permit the study of unexplored camera designs. The SPC framework
could facilitate the system evaluation step using, for exam ple, the property ex-
tractors that are suitable for interesting high level camer a parameters. The SPC
framework could be useful in the qualitative and quantitati ve investigation of
the effect of the intentional and unintentional variations of the geometry of the
camera system (or fabrication tolerances) on the sampling behaviour and the
high level properties of the camera system. The SPC framework could quali-
tatively show how these variations affect the SPC model (and so the sampling
behaviour) of the capturing system, using the visualizatio n module. It could
quantitatively re�ect the effect of variations in the camera 's geometrical pa-
rameters on the high level camera parameters of interest using the evaluation
module, including the property extractors. The SPC framewo rk could also as-
sist in any insight with regards to how the variations in the c amera parameters
are re�ected in light �eld sampling behaviour and thus the hig h level proper-
ties of the camera system.
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