Godsplacering för minskad körsträcka i en intermodal terminal

En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

Nyckelord: Intermodal terminal, linjärprogrammering, lagerhantering, godsplacering, transportproblem, optimering.
Abstract

The placement of goods is considered an important aspect to minimize mileage, which reduces costs and the amount of environmentally hazardous emissions. In this case study with a quantitative approach, the aim was to optimize the placement of goods in an intermodal terminal to minimize the distances between its warehouses and the different delivery approaches for current and future operations. For the purpose to be fulfilled and an optimization model to be created, the flow of goods through the terminal needed to be identified and quantified. With the help of the data that emerged via the quantification, calculations of the capacities of the storage spaces could be carried out. The mileage was then calculated by using the business’s current goods location to be able to compare with the results of the optimization model. The optimization was done in LINGO where an optimization model was created using linear programming with the assignment to minimize the mileage of the business. The theoretical result showed that using an optimal goods placement for the current situation reduced the mileage by approximately 21% for the goods that was in the storage areas at the time of the data collection. For the future situation with an expanded terminal, cargo placement and priority orders could be demonstrated using planned volumes for the year 2025. The study states that by using a simple linear programming model, optimal goods placement can be determined in an intermodal terminal to minimize its mileage.

Keywords: Intermodal terminal, linear programming, inventory management, goods placement, transportation problem, optimization.
Förord

Innehållsförteckning

Sammanfattning .. ii
Abstract .. iii
Förord .. iv
Innehållsförteckning .. v

1. Inledning .. 1
 1.1 Bakgrund och problembeskrivning .. 1
 1.2 Företagsinformation ... 2
 1.3 Syfte ... 3
 1.4 Mål och problemformulering .. 3
 1.5 Avgränsningar ... 3
 1.6 Disposition .. 4

2. Teori ... 5
 2.1 Logistik ... 5
 2.1.1 Logistikens huvudmål .. 5
 2.1.2 Supply chain management ... 5
 2.1.3 Transport ... 5
 2.1.4 Terminal ... 6
 2.1.5 Färdigvarulager ... 6
 2.2 Optimering .. 6
 2.2.1 Strukturering av optimeringsmodellen .. 6
 2.2.2 Linjärprogrammering .. 8
 2.2.3 Heltalsprogrammering ... 9
 2.2.4 Nätverksproblem ... 10
 2.2.5 Känslighetsanalys ... 11

3. Metod .. 12
 3.1 Metodval .. 12
 3.2 Problemdentifiering ... 12
 3.3 Förenklingar ... 15
 3.4 Datansamling .. 16
 3.4.1 Statistik ... 16
 3.4.2 Mätningar .. 16
 3.5 Beräkningar ... 18
 3.6 Modell ... 19
3.6.1 Matematisk definition ... 19
3.6.2 Matematisk formulering ... 21
3.7 Modelleringsverktyget LINGO ... 22
3.8 Godsplacering .. 22
3.9 Reliabilitet och validitet ... 23
3.10 Etiska överväganden ... 23

4. Resultat ... 24
4.1 Distanser och prioriteringsordningar ... 24
4.2 Kapacitet i magasinens gångar ... 25
 4.2.1 Areor och volymer ... 25
 4.2.2 Antalet enheter och kilogram per gods i respektive gång 25
 4.2.3 Fylldningsgrad .. 26
 4.2.4 Medelkapacitet ... 27
4.3 Godsplacering .. 27
 4.3.1 Nuläget ... 27
 4.3.2 Framtiden .. 32
 4.3.3 Känslighetsanalys .. 34

5. Analys och diskussion ... 36
5.1 Distanser och prioriteringsordningar ... 36
5.2 Kapaciteter ... 36
5.3 Optimering ... 37
 5.3.1 Godsplacering för nuläget .. 37
 5.3.2 Godsplacering för framtiden ... 38
 5.3.3 Känslighetsanalys .. 39
5.4 Studiens trovärdighet .. 40

6. Slutsats ... 42
6.1 Rekommendationer till företaget som studien behandlat 43
6.2 Förslag till fortsatt forskning .. 44
6.3 Etiska och samhälleliga aspekter ... 44

Källförteckning ... 45

Bilagor ... 47
Bilaga A: Fallstudie hos SCA Logistics .. 47
 Kassett .. 47
 Material ... 48
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung

Innehållsförteckning

Bilaga B: Dimensioner på godsen ... 52
 SCA Pure .. 52
 SCA Star ... 53
 Färdigvara Renewcell .. 53
 Råvara Renewcell ... 54
Bilaga C: Kod i LINGO för nuläget ... 55
Bilaga D: Kod i LINGO för framtiden .. 56
Bilaga E: Beräkningar och mått för magasinens gångar 57
 Gång 1 & 2 i Magasin 1 .. 57
 Gång 3 i Magasin 2 .. 57
 Gång 4 i Magasin 2 .. 58
 Gång 5 i Magasin 3 .. 58
 Gång 6 i Magasin 3 .. 58
 Gång 8 i Magasin 5 .. 59
 Gång 9 i Magasin 5 .. 59
 Gång 10 i Magasin 6 .. 60
 Gång 11 i Magasin 9 .. 60
Bilaga F: Antal enheter och massa som får plats i gångarna av varje gods 62
 SCA Pure .. 62
 SCA Star .. 62
 Färdigvara Renewcell .. 62
 Råvara Renewcell .. 63
Bilaga G: Fyllnadsgraden ... 64
 Fyllnadsgrad gång 8 och gång 9 ... 64
 Fyllnadsgrad gång 11 .. 64
 Fyllnadsgradens medelvärde ... 65
Bilaga H: Beräkning av medelkapacitet .. 66
Bilaga I: Beräkning av planerad mängd uteleverans 68
Bilaga J: Beräkning av minskad körsträcka för år 2023 69
Bilaga K: Känslighetsanalys för ett ton av SCA Pure 70
1. Inledning

I kapitel 1.1–1.6 redovisas arbetsbakgrund och problembeskrivning, syftet och målet för arbetet samt de avgränsningar som har bestämts. Till sist beskrivs arbetets disposition.

1.1 Bakgrund och problembeskrivning

Att bestämma korrekt godsplacering för möjligtvis tusentals produkter är en svår uppgift som lagerhanterings verksamheter ställs inför. Det är många faktorer som påverkar detta, några exempel är storleken och utseendet av lagersystemet. För att bestämma godsplaceringen kan man utgå från de körräckor som finns i systemet och minimera dessa (Chan & Chan, 2011).

Guerriero, Musamanno, Piscane, & Rende (2013) har analyserat allokeringen av produkter på ett flerskiktat varuhus där deras syfte var att reducera leveranstiden, lagret samt den totala kostnaden, med hjälp av att använda sig av bestämda lagringsplatser för olika produktklasser. Det gjordes som igenom tidigare fall att en optimeringsmodell ställdes upp med en matematisk formulering i form av linjär programmering. Modellen testades sedan genom stora mängder av instanser som var slumpmässigt genererade och jämfördes sedan emot en heuristikmodell som visades vara ett bättre val kostnadsmässigt.

Forskningsbidraget för denna studie är att påvisa att en simpel linjärprogrammeringsmodell kan användas för att ge praktiska och tillämpbara resultat som påvisar den möjliga minskningen av körsträckan i en intermodal terminal. Detta som ett komplement till blandade linjära heltalsproblemtäfel.

Intermodala terminaler hanterar flera transportslag där gods överförs från ett transportslag till ett annat (Storhagen, 2018). SCA Logistics är en intermodal terminal med långa körsträckor, begränsande lagringskapaciteter och som är i en förändringsprocess, de är därmed i behov av flödesoptimeringar för att beräkna och analysera de möjligheter som skapas. SCA Logistics har ett stort volymflöde av gods så som pappersmassa, virke samt textilbalar till Renewcell som de hanterar på ett begränsat område är det viktigt att godspacering och tillhörande flöden fungerar optimalt.

1.2 Företagsinformation
SCA Logistics tillhör koncernen SCA (Svenska Cellulosa Aktiebolaget) som grundades år 1929 genom en sammanslagning av ett tiotal svenska skogsbolag. Det är
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

numera ett av de största skogsbolagen i Sverige med ca 3300 anställda och en omsättning på 21,8 miljarder SEK år 2022.

1.3 Syfte
Studiens syfte är att optimera godsplaceringen hos SCA Logistics terminal i Sundsvall för att minimera körsträckor mellan lagringsområden och utgående transportsätt, samt genomföra en utredning över godsplaceringens påverkan för den nuvarande och framtida verksamheten.

1.4 Mål och problemformulering
Målet med arbetet är att skapa en optimeringsmodell för att bestämma var gods ska placeras vid ankomst hos SCA Logistics i Sundsvall, detta för att minimera körsträckan mellan lager och planerat utgående transportsätt idag samt i framtiden. Det transportproblem som existerar av leveranser och de begränsade lagringsutrymmena i gångarna ska därmed analyseras och godsplaceringen optimeras. Godsets placering i nuläget kommer sedan jämföras med optimeringens resultat för nuläget för att påvisa skillnaden och lägga grund för ett beslutsunderlag. Därefter kommer modellen att utvidgas för att ge förslag på hur framtidens gods ska placeras. För att uppnå målet måste följande frågor besvaras:

- Vilken effekt kan uppnås genom en optimerad godsplacering på körsträckan mellan lagringsområdena och de utgående transportsätten för SCA Logistics nuvarande verksamhet?
- Hur ska gods placeras för att minimera körsträckan i en utbyggd intermodal terminal?

1.5 Avgränsningar
1.6 Disposition
2. Teori

2.1 Logistik

I detta kapitel redovisas grundläggande begrepp inom logistik som behövs för att ge läsaren en förståelse över innehållet i arbetet. De begrepp som beskrivs har alla en del i distributionen av produkter från säljare till kund.

2.1.1 Logistikens huvudmål

Logistik är ett område under ständig utveckling och förändring där huvudmålet kommer kvarstå trots att nya metoder och teknik kommer att framträda. De medlen som kommer användas i framtiden kommer att vara en blandning av det gamla och det nya (Storhagen, 2018).

2.1.2 Supply chain management

Definitionen av Supply Chain Management (försörjningskedjan) är planeringen och hanteringen av alla aktiviteter som sker i ett flöde. Det som är viktigt är att det även inkluderar samarbetet mellan till exempel leverantörer, tredjepartslogistik och kund (Storhagen, 2018).

Den viktigaste drivkraften för Supply Chain Management är att det har under en lång tid varit optimeringar på specifika uppgifter men där det som egentligen ska eftersträvas är total effektivitet. Total effektivitet uppnås när alla led i ett flöde samarbetar och är i sig själv effektiva, både internt och externt (Storhagen, 2018).

2.1.3 Transport

De olika transportmedlen har utvecklats i form av sina egna förutsättningar, så som kapacitet, resursförbrukning och användningsområden. I takt med tankesättet kring logistik sprider sig och tankesättet att värna om miljön ökar blir det uppenbart att utveckla transportmedlen utifrån ett helhetsperspektiv. Om ett flöde från råvara till
2.1.4 Terminal
En terminal är en geografisk utgångspunkt för lagring och omlastning av gods. Dess syfte är att liga nära marknaden lokalt och därmed agera som en buffert för förändringar i produktion, distribution och efterfrågan. Ännu ett syfte är att minska de totala kostnaderna med hjälp av olika kombinationer av transportmedel och flöden samlade på en gemensam plats (Storhagen, 2018).

2.1.5 Färdigvarulager
Färdigvarulager är ett lager som består av färdiga produkter och vars uppgift är att fånga upp förändringar i tillgång och efterfrågan. Färdigvarulager kan både finnas i direktanslutning till produktionsenhet eller ett fristående lager som till exempel en terminal (Storhagen, 2018).

2.2 Optimering
Optimering eller begränsad optimering är en matematisk procedur för att bestämma den optimala fördelningen av begränsade resurser. För de flesta optimeringsproblem kan man tänka att det finns två viktiga faktorer, den första är begränsandet av resurser, som till exempel mark, platsutrymme och försäljning. Det andra är vilka aktiviteter som styr, till exempel vilken nivå av produktion varav varje enskild aktivitet bidrar med att öka eller att minska resurserna. Problemen som ska lösas är vilka kombinationer av aktiviteter som är optimal utan att överskrida de begränsade resurserna (Schrage, 1999).

2.2.1 Strukturering av optimeringsmodellen
Att optimera betyder att vilket problem eller vad än som behandlas dras mot dess ultimata tillstånd. För att bygga upp en optimeringsmodell är det möjligt att utgå ifrån vad optimerar är. Därmed beskrivs tillvägagångssättet för att strukturera en optimeringsmodell i punkterna nedan:

- **Gör något**
 Vad kan identifieras i ett beslutsproblem och vilka aktiviteter kan förändras samt influeras. Dessa aktiviteter sätts till variabler och aktiviteter som inte kan förändras sätts till konstanter.

- **Så väl**
 Hur bra en vektor av aktiviteter är utifrån dess bestämda variabler, detta ska sedan maximeras eller minimeras beroende på vad målet för optimeringen är. Detta blir målfunktionen.
Som möjligt

När dessa faktorer är uppställda kan en matematisk optimeringsmodell skapas (Andréasson, Evgrafov & Patriksson, 2005).

2.2.2 Linjärprogrammering

Den allmänna matematiska formuleringen av ett optimeringsproblem är enligt Lundgren et al. (2008) följande:

\[
\begin{align*}
\text{min } & \quad f(x) \\
\text{då } & \quad g_i(x) \leq b_i, \ i = 1, \ldots, m
\end{align*}
\]

\(f(x)\) är målfunktionen och \(g_i(x)\) är bivillkor. Där \(x = (x_1 \ldots x_n)^T\). Förutsättningarna för att ovanstående ekvationer är ett LP-problem är att:

- Alla funktioner \(f\) och \(g_i\) är linjära funktioner
- Alla variabler är kontinuerliga, \(x \in R^n\)

Om ovanstående krav är uppfyllda, kan ett LP-problem skrivas på följande form:

\[
\begin{align*}
\text{min } & \quad z = \sum_{j=1}^{n} c_j x_j \quad \text{(Målfunktion)} \\
\text{då } & \quad \sum_{j=1}^{n} a_{ij} x_j \leq b_i, \ i = 1, \ldots, m \quad \text{(Bivillkor)} \\
& \quad x_j \geq 0, \quad j = 1, \ldots, n \quad \text{(Icke - negativitet)}
\end{align*}
\]
Godsplacering för minskad körsträcka i en intermodal terminal

2. Teori

En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

\[c_i \] är målfunktionskoefficienten för variabeln \(x_i \).
\[a_{ij} \] är bivillkorskoefficienten för variabeln \(x_i \) i bivillkor \(i \).
\[b_i \] är högerledskoefficienten för bivillkor \(i \).
\(x_i \) får inte vara negativt.

För att förtydliga vad linjärprogrammering är redovisas ett exempel:
En producent producerar stolar och bord, varav en stol tillverkas med en stor del och två små, medan ett bord tillverkas med två stora samt två små bitar. Men det finns endast sex stora bitar samt åtta små. Ett bord säljs för 1600 SEK medan stolen säljs för 1000 SEK. För att skapa en linjärprogrammeringsmodell, behövs några variabler introduceras:

\[
x_1 = \text{Antal bord som produceras och säljs}
\]
\[
x_2 = \text{Antal stolar som produceras och säljs}
\]
\[
z = \text{Total inkomst}
\]

Begränsningen för stora delar är:

\[
2x_1 + x_2 \leq 6
\]

Och begränsningen för små delar är:

\[
2x_1 + 2x_2 \leq 8
\]

En begränsning på att antalet stolar och bord inte kan vara negativt:

\[
x_1, x_2 \geq 0
\]

Den totala inkomsten blir:

\[
z = 1600x_1 + 1000x_2
\]

Nu är målet att maximera den totala inkomsten, de tidigare begränsningarna appliceras:

\[
\text{Maximera } z = 1600x_1 + 1000x_2
\]

\[
2x_1 + x_2 \leq 6
\]
\[
2x_1 + 2x_2 \leq 8
\]
\[
x_1, x_2 \geq 0
\]

Därmed är modellen för linjärprogrammeringen skapad (Andréasson, Evgrafov & Patriksson, 2005).

2.2.3 Heltalsprogrammering

variabler är heltalsvariabler kallas det för ett blandat heltalsproblem (Lundgren et al., 2008).

Vissa heltalsproblem kan lösas genom att först lösa LP-problemet och sedan avrunda de fraktionella värdena på något sätt för att resultera i en heltalslösning. Om variablernas värden är tillräckligt stora kan en avrundning vara rimlig att göra, det beror självklart på vad problemställningen är och vilken nivå som är lämplig att avrunda. Men som en enkel tumregel kan siffran 10 användas som minsta storleken på en variabels värde då avrundning för LP-lösningen kan vara rimlig (Lundgren et al., 2008).

Heltalsproblem är ofta mycket svårare att lösa än ett vanligt LP-problem, fast än i teorin skulle det vara möjligt att räkna ut all heltalkombinationer och jämföra vilken kombination som ger bäst målfunktionsvärde. Detta kan tänka sig vara möjligt för små problem, men när antalet heltalsvariabler ökar, ökar också löstidnivån exponentiellt för problemet. Detta leder till en längre löstid för speciellt stora modeller med många variabler (Lundgren et al., 2008).

2.2.4 Nätverksswarm

Många optimeringsproblem kan beskrivas som ett nätverk uppfylt av noder och bågar. Där noder kan beskriva till exempel lager, depåer, knutpunkter och produktionsanläggningar medan bågar beskriver möjliga transportvägar eller distribution. I många av nätverksmodellerna kan det finnas underliggande problem, nätverksproblem eller flödesproblem. Nätverksproblem är då det finns problem i den underliggande nätverksstrukturen medan flödesproblem är att nätverket har krav på att ett visst flöde ska skickas mellan noder, det vill säga tillgång och behov. Bågarna, som är transporten emellan noder kan i sin tur ha begränsningar så som kapacitet eller kostnad (Lundgren et al., 2008).

Ett klassiska optimeringsproblem är transportproblemet, det kan beskrivas med ett enkelt nätverk av noder som representerar tillgång och noder som representerar efterfrågan. Där noderas tillgång eller efterfrågan är kända och där målet med optimeringen är att hitta flödet mellan noder som minimerar den totala kostnaden (Lundgren et al., 2008).
2.2.5 Känslighetsanalys

3. Metod

I kapitel 3.1-3.10 redovisas tillvägagångssättet från val av metod, genomförd metod, strukturering av optimeringsmodellen till att kontrollera det framtagna resultatets reliabilitet och validitet, samt de etiska överväganden som har gjorts.

3.1 Metodval

En fallstudie är en detaljerad undersökning av ett särskilt fenomen och används för att skapa en förbättring och nyansera en studie på till exempel en organisation eller samhälle (Nationalencyklopedin, u.ä.).

Då frågorna som ska besvaras i arbetet grundar sig i att körräckan ska minimeras lämpar sig en fallstudie med kvantitativ ansats där ett klassiskt transportproblem ska lösas med hjälp av linjärprogrammering enligt författarens åsikt. En överskådning gjordes att använda sig av blandade heltalsprogrammering i stället, men detta ansågs inte vara nödvändigt för att ge verksamheten en överskådlig syn över var gods ska placeras. Löningstiden och komplexiteten i modellen hade även förhöjt om blandad heltalsprogrammering hade använts. Dessa metoder är välanvända och har använts i tidigare forskning. De nackdelar som linjärprogrammering har är att det kan vara svårt att applicera i verkligheten då modellen bygger på antaganden. Fördelarna är att i det ideala fallet kunna bestämma ett optimum samt att utvidgningar av optimeringsmodellen är oomplicerad. Fördelarna var därmed övervägande i detta arbete eftersom optimeringsmodellen behövde utvidgas från nutida godspackering till framtida godspackering. Fallet som ska analyseras är SCA Logistics godspackering i nuläget och framtiden, där två likartade optimeringsmodeller skapades med hjälp av empiri som insamlades i form av kvantitativa data. Det som står till grund för arbetssättet är det som beskrivs av Lundgren et al. (2008) och illustreras i figur 2.2.

3.2 Problemidentifiering

Ett verkligt problem har ofta faktorer som av olika skäl inte kan eller bör inkluderas i en optimeringsmodell, där det gäller att identifiera det som anses vara väsentligt, irrelevant eller försumbart i problemställningen. En förutsättning för att kunna använda sig av en optimeringsmodell är att aspekterna som ska användas kan kvantifieras. Där resultatet av identifieringen ska beskrivas och formuleras matematiskt för att strukturera optimeringsmodellen (Lundgren et al., 2008).

![Internal Supply Chain](image)

Figur 3.1: Försörjningskedjan för SCA Logistics in- och utleveranser.

Efter att en överblick över processerna har skapats i figur 3.1 analyserades var dessa aktiviteter sker och hur. Med hjälp av en karta över området kunde aktiviteter lokaliseras, se figur 3.2. Där den röda noden visar var inleveranser kommer in, de vita numrerade noderna illustrerar gångarnas lagringsutrymmen och de gröna noderna visar de olika utleveranssätten. De noderna med röd understruken text är tillgängliga för den framtida modellen. Allt gods som ska levereras ut på container stuffas på platsen där Cont (Container) är placerad. Men den planerade volymen som ska levereras ut på container för 2023 är 0 och därmed kommer inte containerhanteringen tas i hänsyn i nulägesanalysen. De gods som ska levereras ut på SCAs egna roro-fartyg lastsäkras på angiven plats på kartan. Till sist, det gods som ska ut på breakbulk-fartyg levereras via den gröna noden som är döpt till Bulk.
3. Metod

En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

Figur 3.2: Karta över området för att illustrera var aktiviteter sker.

För att illustrera de flöden som sker mellan aktiviteterna skapades en nätverksmodell med hjälp av aktiviteternas lokaliserings från figur 3.2. Nätverksmodellen beskriver teoretiskt godsen flöde från inleverans till utleverans. Se figur 3.3.

Figur 3.3: Nätverksmodell för transportproblemet av in- och utleveranser hos SCA Logistics.
Godsplacering för minskad körsträcka i en intermodal terminal

En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

Produkterna flödar genom nätverksmodellen i figur 3.3, där produkterna ankommer till terminalen, lagras i en gång, för att sedan levereras ut. Men det är inte alltid SCA Logistics vet vilket utleveranssätt som kommer att användas och därmed skapas det en risk för att gods placeras väldigt långt bort ifrån det utleveranssättet godset kommer att levereras ut på. Gods kan dock inte placeras var som helst, då gångarna har kapaciteter på hur mycket gods av en viss typ som får plats i en viss gång.

3.3 Förenklingar

När en modell ska formuleras gäller det att göra förenklingar av verkligheten för att komplexiteten och detaljnivån i modellen ska bli rimlig. Det finns olika aspekter för hur stor förenkling som ska utföras. Där en större detaljnivå leder till en mer realistisk modell men som medför mer variabler samt bivillkor vilket försämrar lösbarnheten eller onödiggör en lösning till problemet. Tvärtom kan en allt för simpel modell vara lätt att lösa men med dålig realism vilket gör att resultatet kan förbli oanvändbart (Lundgren et al., 2008).

I verklheten kan därmed komplexiteten av ett problem bli väldigt stor, därmed behövdes en del förenklingar genomföras för att skapa en rimlig och löslig modell. De förenklingar som har gjorts är följande:

- **Beräkning av teoretiska areor, volymer och kilogram för respektive gångslagringutrymme.** Då det var väldigt stora ytor som skulle mätas med hjälp av ett måthjul gjordes en del förenklingar. Det finns många fark i respektive gång där gods kan lagras men dessa fark antogs i vissa fall vara ett stort fark då fackens storlek i gångarna kunde variera, detta för att undlätta beräkningarna. Små fark i höjden av gångarna ignorerades då mätningar av dessa skulle vara väldigt svåra och storleken på dem skulle inte bidra till drastiska förändringar i resultatet. Volymerna som får plats av varje produkt skiljer sig och även produktionens staplingsförmåga. För att underlätta beräkningarna av volymer för varje produkt estimerades det därmed hur många produkter som får plats på höjden med hjälp av extern handledare och egna iakttagelser. De teoretiska kilogrammen som får plats i varje gång är därmed inte helt exakta eftersom estimeringen av volymer var tvungen att göras.

- **Avstånden från lagringsplats till planerat utlämningsställe.** Avståndet från en gång till det tänkta utleveranssättet bedömdes utifrån mitten av varje gång, detta för att ge ett estimerat värde på sträckan då det kan stå produkter närmare men även längre bort. Dessa avstånd mättes med hjälp av Google Maps egna avståndsmätare då det gav den mest överskådliga bilden över var mitten på en gång var.

- **Antalet godstyper.** Produkterna som används i denna studie har inom den specifika produkten olika klasser beroende på produktens kvalité. Då det finns en stor mängd av olika kvalitéer med olika dimensioner per enhet har en
förenkling gjorts och de dimensioner som är bestämda per produkt har utgått från den vanligaste förekommande kvalitén per produkt. För de olika godsens dimensioner se bilaga B.

Förenklingarna ovan är gjorda eftersom det är den överskådliga synen över var gods ska placeras som ska analyseras och att därmed gå in på för detaljerade områden skulle eventuellt göra modellen för komplex.

3.4 Datainsamling

Storleken och strukturen på modellen påverkar dess lösbart och därmed måste hänsyn i datainsamlingen tas, till exempel vilken data som finns tillgänglig eller som är möjlig att samla in. Tillförlitligheten på det data som samlats in måste även tas i beaktning (Lundgren et al., 2008).

För att kunna skapa optimeringsmodellen behövdes därmed kvantitativt data som kunde användas och appliceras i modellen för att lösa optimeringsproblemet. Det kvantitativa data som har samlats in har kommit från både statistik från SCA Logistics och från egna mätningar.

3.4.1 Statistik

Den statistik som har samlats in var data som visar hur många kilogram av en viss produkt som står i respektive gång. Den mängden gods ska sedan användas i optimeringsmodellen för att påvisa skillnaden i körsträcka för optimal godsplacering samt för att kunna beräkna gångarnas fyllnadsgrad. Fyllnadsgraden kunde inte bestämmas utan att först beräkna de teoretiska kilogram som får plats i varje gång av varje produkt.

För att kunna optimera godsplaceringen på framtida volymer behövdes det planerade antalet ton som är tänkt att gå ut för ett visst år, i detta fall användes de värden för år 2025 som är givet av extern handledare. Dessa värden var för hela året och allt gods är inte tillgängligt och får dessutom inte plats för lagring samtidigt. Därmed gjordes ett realismt antagande där de planerade tonen av gods dividerades med 12 för att visa hur lagret för en månad kan se ut eftersom allt gods får plats i gångarna under den tiden.

3.4.2 Mätningar

De mätningar som har genomförts beskrivs i 3.4.2.1 och 3.4.2.2. De har varit nödvändiga för att kvantifiera verkligheten som är en del av optimeringsmodellen.

3.4.2.1 Distanser i flödet

Nätverksmodellen som visas i figur 3.3 har fysiska distanser som godset måste färdas från en nod till en annan. Då inleveranserna sker primärt via lastbilar eller containrar kommer godset att lossas på platsen lastbilen eller containern placeras. Dessa sträckor är inget som ska analyseras, sträckorna ifrån noden för inleverans till noden för gångarna är därmed irrelevant. Det är de köra sträckorna mellan gångarna och de

![Figur 3.4: Illustration hur distanser mellan gångarna och utleveranssätt har mätts.](image)

3.4.2.2 Gångarnas lagringsutrymmen

För att beräkna de teoretiska tonen som får plats i varje gång av varje produkt behövdes först arean på lagringsplatserna i respektive gång. Mätningar av gångarnas bredd och längd genomfördes därmed med hjälp av ett mäthjul, se figur 3.5. Vissa ställen var svåråtkomliga då det var gods placerat där mätningen skulle utföras, på dessa ställen gjordes en estimering med hjälp av extern handledare.
När mätning av bredden och längden av varje gångs lagringsutrymman var genomförd kunde beräkningar av dess area, volymer, ton och fyllnadssgrad genomföras, se rubrik 3.5 för hur beräkningarna har genomförts. Därefter beräknades en medelkapacitet av varje produkt i varje gång för att produkter ska kunna lagras i samma utrymme fast än de har olika dimensioner. Med hjälp av externhandledare bestämdes att hela gång 3 och halva gång 4 ska reserveras för Renewcells råvara. Därmed togs kapaciteten för Renewcells råvara inte med i beräkningarna för medelkapaciteten i gångarna. Renewcells råvara ankommer i container och ska lossas i samma utrymme som stuffningsstationen ligger, därmed denna begränsning.

3.5 Beräkningar

För att framställa konstanterna som optimeringsmodellen är i behov av behövdes beräkningar görs. Först behövdes areaen för gångarna beräknas, detta gjordes med hjälp av ekvation (3.1) vars parametrar beskrivs i tabell 3.1.

Tabell 3.1: Parametrar för beräkning av area

<table>
<thead>
<tr>
<th>A</th>
<th>Arean på alla fack i magasinet</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Längden på fack</td>
</tr>
<tr>
<td>B</td>
<td>Bredden på fack</td>
</tr>
<tr>
<td>M</td>
<td>Antalet fack med samma dimension</td>
</tr>
<tr>
<td>O</td>
<td>Antalet olika fack i magasinet</td>
</tr>
<tr>
<td>n</td>
<td>Antalet Fack med olika dimension</td>
</tr>
</tbody>
</table>

\[
A = \sum_{n=1}^{O} B_n \times L_n \times M_n , \quad n = 1, 2, \ldots, O
\]
(3.1)
Därefter beräknades volymen för varje gång med hjälp av ekvation (3.2) vars parametrar beskrivs i tabell 3.2. Den högsta tillåtna höjden skiljer sig emellan produktarna, därmed angavs en specifik höjd för varje produkt.

| Tabell 3.2: Parametrar för beräkning av volym |
|------------------|------------------|
| Vₚ | Total volym för en gång av SCA Pure. |
| Vₛ | Total volym för en gång av SCA Star. |
| Vᵣ | Total volym för en gång av Renewcells färdigvara. |
| Hₚ | Högsta höjden som är möjligt att stapla SCA Pure i ett fack. (6,7125 meter) |
| Hₛ | Högsta höjden som är möjligt att stapla SCA Star i ett fack. (5,5 meter) |
| Hᵣ | Högsta höjden som är möjligt att stapla Renewcells färdigvara i ett fack. (6,75 meter) |

\[V = A \times H \]
(3.2)

För att beräkna ut hur många enheter som får plats i en gång användes ekvation (3.3) vars parameter beskrivs i tabell 3.3

| Tabell 3.3: Parameter för beräkning av antalet enheter |
|------------------|------------------|
| V | Total volym för en produkt |
| Vₐ | Volym för en enhet. |

\[Antal enheter = \frac{V}{Vₐ} \]
(3.3)

När antalet enheter har beräknats för varje produkt i varje gång beräknades antalet kilogram som får plats av varje produkt i varje gång. Detta genom ekvation (3.4).

\[Teoretisk massa = Antal enheter \times Massa för en enhet \]
(3.4)

För att beräkna fyllnadsgraden i gångarna användes ekvation (3.5).

\[Fyllnadsgrad = \frac{Aktuell massa}{Teoretisk massa} \]
(3.5)

3.6 Modell
I kapitlen 3.6.1 och 3.6.2 beskrivs modellens struktur och dess matematiska grund med förklaringar till varför vissa matematiska begränsningar har antagits.

3.6.1 Matematisk definition

3.6.1.1 Mängder
I tabell 3.4 visas de mängder som har använts för att strukturera upp optimeringsmodellen, där de rödmarkerade och understrukna siffrorna används i modellen för framtiden, det vill säga 12 för index \(l \) och 1 för index \(j \).
Tabell 3.4: Mängder för optimeringsmodellen

<table>
<thead>
<tr>
<th>Förkortningar</th>
<th>Beskrivning</th>
<th>Mängd</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Antal inleveranssätt</td>
<td>{1}</td>
<td>i</td>
</tr>
<tr>
<td>D</td>
<td>Antal utleveranssätt</td>
<td>{12,13,14}</td>
<td>l</td>
</tr>
<tr>
<td>Q</td>
<td>Antal produkter</td>
<td>{1,2,3}</td>
<td>p</td>
</tr>
<tr>
<td>G</td>
<td>Gångar för lagring</td>
<td>{1,2,3,4,5,6,8,9,10,11}</td>
<td>j</td>
</tr>
<tr>
<td>SQ</td>
<td>Inleverans för produkt</td>
<td>{(1,1), (1,2), (1,3)}</td>
<td>i,p</td>
</tr>
<tr>
<td>DQ</td>
<td>Utleverans för produkt</td>
<td>{(12,1), (12,2),…, (14,3)}</td>
<td>l,p</td>
</tr>
<tr>
<td>GQ</td>
<td>Gångar och produkter</td>
<td>{(1,1),…,(11,3)}</td>
<td>j,p</td>
</tr>
<tr>
<td>SGQ</td>
<td>Inleverans till gång av produkt</td>
<td>{(1,1),1,11,3}</td>
<td>i,j,p</td>
</tr>
<tr>
<td>GD</td>
<td>Distanser för transporter mellan gång och utleveranssätt</td>
<td>{(1,12),…,(11,14)}</td>
<td>j,l</td>
</tr>
<tr>
<td>GDQ</td>
<td>Utleverans från gångarna till utleveranssätt av produkter</td>
<td>{(1,12,1),…,(11,14,3)}</td>
<td>j,l,p</td>
</tr>
</tbody>
</table>

3.6.1.2 Parametrar

I tabell 3.5 redovisas de parametrar som är konstanter i optimeringsmodellen.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Beskrivning</th>
<th>Enhet</th>
<th>Datatyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>lp</sub></td>
<td>Lastningskapacitet för produkter p för sträckan till utleveranssätt l</td>
<td>Stycken</td>
<td>Heltal</td>
</tr>
<tr>
<td>k<sub>j</sub></td>
<td>Kapacitet för lagring i gång j</td>
<td>Ton</td>
<td>Flyttal</td>
</tr>
<tr>
<td>s<sub>ip</sub></td>
<td>Hur mycket tillförsel i av gods p</td>
<td>Ton</td>
<td>Flyttal</td>
</tr>
<tr>
<td>d<sub>lp</sub></td>
<td>Hur mycket som ska levereras l av gods p</td>
<td>Ton</td>
<td>Flyttal</td>
</tr>
<tr>
<td>c<sub>jl</sub></td>
<td>Distans mellan gång j och utleveranssätt l</td>
<td>Meter</td>
<td>Heltal</td>
</tr>
</tbody>
</table>

3.6.1.3 Variabler

I tabell 3.6 redovisas de variabler som används för att bestämma var gods ska placeras för att minimera körsträcka.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Beskrivning</th>
<th>Enhet</th>
<th>Datatyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>x<sub>ip</sub></td>
<td>Hur mycket tillförsel i till gång j av gods p</td>
<td>Ton</td>
<td>Flyttal</td>
</tr>
<tr>
<td>y<sub>jp</sub></td>
<td>Hur mycket gång j levererar till utleveranssätt l av gods p</td>
<td>Ton</td>
<td>Flyttal</td>
</tr>
<tr>
<td>z<sub>lp</sub></td>
<td>Hur många gånger sträckan (j,l) framförs av gods p.</td>
<td>Stycken</td>
<td>Flyttal</td>
</tr>
</tbody>
</table>

3.6.2 Matematisk formulering

3.6.2.1 Målfunktion

\[
\min W = \sum_{j,l,p \in GDQ} c_{jl} \cdot z_{jlp}
\]

(4.1)

3.6.2.2 Bivillkor

\[
\sum_{l,p \in SQ} s_{lp} = \sum_{l,p \in EQ} d_{lp}, \text{För alla } p \in Q
\]

(4.2)

\[
\sum_{i,j,p \in SGQ} x_{ijp} = \sum_{j,l,p \in GDQ} y_{jlp}, \text{För alla } j, p \in GQ
\]

(4.3)

\[
\sum_{j,l,p \in GDQ} y_{jlp} = \sum_{l,p \in DQ} d_{lp}, \text{För alla } l, p \in DQ
\]

(4.4)

\[
\sum_{i,j,p \in SGQ} x_{ijp} \leq \sum_{j \in G} k_{j}, \text{För alla } j \in G
\]

(4.5)

\[
y_{jlp} \leq f_{lp} \cdot z_{jlp}, \text{För alla } j, l, p \in GDQ
\]

(4.6)

3.6.2.3 Förklaring till matematisk formulering

3.6.2.3.1 Målfunktion

Målfunktionen (4.1) minimerar de totala körsträckorna genom att optimera godsplaceringen direkt när godset ankommit. Körsträckorna multipliceras med hur många gånger en sträcka behöver köras för att allt gods ska levereras ut.

3.6.2.3.2 Bivillkor

Det första bivillkoret (4.2) bestämmer att den totala mängden av en produkt \(p \) som ska levereras ut på ett bestämt utleveranssätt är lika mycket som den mängd av en produkt \(p \) som ankommer till terminalen, därmed är tillförsel och behovet lika stort.

Bivillkoret (4.3) bestämmer att den totala mängden av gods \(p \) som levereras in till gång \(j \) måste vara lika mycket som den mängd av gods \(p \) som ska levereras ut till utleveranssätt \(l \) från gång \(j \). Detta är ett krav för att modellen ska kunna bestämma var godset \(p \) ska placeras för kortast totala körsträcka.

Bivillkoret (4.4) kräver att mängden av gods \(p \) som ska levereras ut på utleveranssätt \(l \) är lika stor som den mängd av gods \(p \) som planeras att levereras ut på \(l \). Utan att bestämma detta krav kan det vara möjligt att leverera ut mer mängd gods än tillåtet eller en för liten mängd gods så behovet inte uppfylls.
Bivillkor (4.5) bestämmer att kapaciteten som gång \(j \) kan lagra inte får överskridas av mängden gods \(p \) som ska levereras in i gång \(j \). Detta krav gör det omöjligt för modellen att fylla upp gång \(j \) med mer gods än vad som i verkligheten får plats.

Bivillkor (4.6) bestämmer antalet gånger som sträckan \(c \) måste köras mellan gång \(j \) och utleveranssätt \(l \). Variabeln \(z \) antar antalet gånger som sträckan måste köras för att allt gods \(p \) ska levereras ut.

3.7 Modelleringsverktyget LINGO

Processen i att lösa stora matematiska problem kan behöva ett stort antal av beräkningar och därmed är det lämpligast att använda sig av en programvara. LINGO är en programvara som används för att modellera och lösa matematiska problem av många olika typer. Där huvudsyftet är att låta användaren göra en inmatning av en modell för att sedan lösa den och tillåta snabba modifieringar för att till sist upprepa processen (Schrage, 1999).

I denna studie användes LINGO till att skapa och utvidga optimeringsmodellen för att framställa en lösning för att minimera de kördna sträckorna hos SCA Logistics in nutiden och framtid. Eftersom optimeringsmodellerna är i form av ett LP-problem kunde den på ett okomplicerat sätt utvidgas till att anpassa sig för framtidens förhållanden. Den körröken som ska minskas med hjälp av optimeringsmodellen är utifrån att allt gods som finns i lager ska levereras ut till planerat utgående transportsätt. LINGO koden för nuläget visas i bilaga C och den utvidrade koden för framtid visas i bilaga D.

3.8 Godsplacering

För att kunna påvisa skillnaden optimeringsmodellen bidrar med i körröken beräknade den körröken som teoretisk skulle köras för en given mängd gods som var placerat i SCA Logistics gångar för ett givet tillfälle. Detta gjordes genom att anta att det gods som var närmast ett av utleveranssätten skulle också levereras på det. Med hjälp av mängden gods som var planerat att levereras för år 2023 beräknades sannolikheten för hur mycket av varje gods som ska levereras i genomsnitt på varje utleveranssätt. Detta var nödvändigt då godset som ankommer till terminalen inte har ett adresserat utleveranssätt. Samma mängd gods användes sedan i optimeringsmodellen för att påvisa körröken om godsplacering hade varit optimal i terminalen. Sedan jämfördes de båda resultateten för att påvisa den potentiella minskningen av körröken om optimal godsplacering hade varit tillämpad.

Optimeringsmodellen utvidgades sedan för att beräkna och analysera var gods ska placeras år 2025. Genom beräkningar och data för mängden gods som är planerade för år 2025 kunde ett resultat tas fram över var gods ska placeras och hur stor mängd av varje gods som ska placeras var.
För att kontrollera optimeringsmodellens robusthet gjordes en känslighetsanalys med hjälp av utdata från LINGO koden samt att indata för optimeringsmodellen justerades på några faktorer som ansågs vara av vikt för SCA Logistics. Dessa var följande:

- Hur påverkas körsträckan om behovet av varje produkt ökar med 20%?
- Hur påverkas körsträckan om gång 4 inte skulle vara tillgänglig för lagring?
-Hur mycket påverkar ett ton av SCA Pure den totala körsträckan?

3.9 Reliabilitet och validitet

Reliabiliteten och validiteten av resultatet analyserades och diskuterades för att visa på studiens trovärdighet. Reliabiliteten i denna fallstudie är stärkt då metodvalet som använts är metoder som är dokumenterade och har använts i tidigare forskning. För att förstärka validiteten användes flera källor vid datainsamlingen, dessa kommer ifrån litteratur, tidigare forskning inom området, statistik från SCA Logistics och egna observationer.

3.10 Etiska överväganden

Under arbetets gång har etiska överväganden kontinuerligt tagits i beaktning varav de viktigaste redovisas nedan:

- **Respekt för företagets integritet.** Innan arbetet påbörjades hölls en diskussion med SCA Logistics om arbetets fokus där medgivande gavs över att få ta del av dess verksamhet och empiri varav dem senare skulle få ta del av arbetets resultat som förhoppningsvis skulle gagna dem.

- **Frågeställningarnas etiska aspekt.** Frågeställningarna bestämdes utifrån att de skulle främja verksamhetens miljöetik och hållbarhet. Detta genom att minska körsträckor för verksamheten, därmed minska även utsläpp av farliga ämnen och även slitaget på dess maskiner.

- **Resultat och analys.** Då resultatet av arbetet är menat att gynna verksamheten var det av vikt att det resultat som framkommer inte manipuleras eller felaktigt analyseras.

23
4. Resultat

I kapitel 4.1–4.3 redovisar det framtagna resultatet från mätningar, beräkningar och optimeringens resultat, detta med en viss noggrannhet för att kunna utföra vidare beräkningar.

4.1 Distanser och prioriteringsordningar

Distanserna mellan lagringsytorna i gångarna och de fyra olika utleveranssättet mättes upp med hjälp av Google Maps avståndsmätare. De avstånd som framkom visas i tabell 4.1.

Tabell 4.1: Distanser mellan gångarna och planerat utleveranssätt.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Container (m)</th>
<th>Roro (m)</th>
<th>Bulk (m)</th>
<th>Ny Container (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350</td>
<td>235</td>
<td>515</td>
<td>530</td>
</tr>
<tr>
<td>2</td>
<td>285</td>
<td>160</td>
<td>450</td>
<td>470</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>174</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>230</td>
<td>350</td>
<td>360</td>
</tr>
<tr>
<td>5</td>
<td>380</td>
<td>325</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>6</td>
<td>435</td>
<td>375</td>
<td>235</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>390</td>
<td>80</td>
<td>235</td>
</tr>
<tr>
<td>9</td>
<td>490</td>
<td>435</td>
<td>70</td>
<td>280</td>
</tr>
<tr>
<td>10</td>
<td>530</td>
<td>455</td>
<td>100</td>
<td>320</td>
</tr>
<tr>
<td>11</td>
<td>575</td>
<td>520</td>
<td>155</td>
<td>365</td>
</tr>
</tbody>
</table>

Utifrån de distanser som visas i tabell 4.1 väljer modellen gångarna med kortast distans till planerat utleveranssätt. De gångar som fylls först för varje utleveranssätt visas i tabell 4.2.

Tabell 4.2: Prioriteringsordning för fyllnad av gångar.

<table>
<thead>
<tr>
<th>Fyllnadsordning</th>
<th>Gångar för Container</th>
<th>Gångar för Roro</th>
<th>Gångar för Bulk</th>
<th>Gångar för nya Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2 Kapacitet i magasinens gångar

4.2.1 Areor och volymer

Med ekvation (3.1) beräknades gångarnas areor och genom ekvation (3.2) beräknades dess volymer. Dessa beräkningar visas i bilaga E. Tabell 4.3 sammanställer de teoretiska värdena på gångarnas areor och volymer.

Tabell 4.3: Teoretiska Areor och volymer för gångarna i magasinen.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Area (m²)</th>
<th>Volym För SCA Pure (m³)</th>
<th>Volym För SCA Star (m³)</th>
<th>Volym För Färdigvara Renewcell (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 700</td>
<td>24 836</td>
<td>20 350</td>
<td>24 975</td>
</tr>
<tr>
<td>2</td>
<td>3 700</td>
<td>24 836</td>
<td>20 350</td>
<td>24 975</td>
</tr>
<tr>
<td>3</td>
<td>5 614</td>
<td>40 198</td>
<td>33 686</td>
<td>40 423</td>
</tr>
<tr>
<td>4</td>
<td>6 660</td>
<td>47 686</td>
<td>39 960</td>
<td>47 952</td>
</tr>
<tr>
<td>5</td>
<td>6 327</td>
<td>45 301</td>
<td>37 962</td>
<td>45 554</td>
</tr>
<tr>
<td>6</td>
<td>6 420</td>
<td>45 964</td>
<td>38 517</td>
<td>46 220</td>
</tr>
<tr>
<td>8</td>
<td>1 287</td>
<td>9 215</td>
<td>7 722</td>
<td>9 266</td>
</tr>
<tr>
<td>9</td>
<td>1 185</td>
<td>8 488</td>
<td>7 113</td>
<td>8 535</td>
</tr>
<tr>
<td>10</td>
<td>1 056</td>
<td>7 564</td>
<td>6 338</td>
<td>7 606</td>
</tr>
<tr>
<td>11</td>
<td>768</td>
<td>5 155</td>
<td>4 224</td>
<td>5 184</td>
</tr>
</tbody>
</table>

4.2.2 Antalet enheter och kilogram per gods i respektive gång

Med fyra olika gods och med varierande dimensioner får det plats olika stor mängd beroende på vilket gods som ska lagras. Ekvation (3.3) användes för att beräkna ut antalet enheter av en viss typ som får plats i en viss gång. Sedan för att beräkna hur många kilogram som får plats multiplicerades antalet enheter med Vikten per enhet. Se bilaga F där beräkningar för enskilt gods har utförts. Tabell 4.4 visar antalet enheter per gods som får plats i en viss gång.

Tabell 4.4: Teoretiskt antal enheter som får plats i en gång.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Antal enheter SCA Pure</th>
<th>Antal enheter SCA Star</th>
<th>Antal enheter Färdigvara Renewcell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9 606</td>
<td>8 282</td>
<td>13 646</td>
</tr>
<tr>
<td>2</td>
<td>9 606</td>
<td>8 282</td>
<td>13 646</td>
</tr>
<tr>
<td>3</td>
<td>14 576</td>
<td>12 568</td>
<td>20 706</td>
</tr>
<tr>
<td>4</td>
<td>17 291</td>
<td>14 908</td>
<td>24 562</td>
</tr>
<tr>
<td>5</td>
<td>16 426</td>
<td>14 163</td>
<td>23 334</td>
</tr>
<tr>
<td>6</td>
<td>16 667</td>
<td>14 370</td>
<td>23 675</td>
</tr>
<tr>
<td>8</td>
<td>3 341</td>
<td>2 881</td>
<td>4 747</td>
</tr>
<tr>
<td>9</td>
<td>3 078</td>
<td>2 654</td>
<td>4 372</td>
</tr>
<tr>
<td>10</td>
<td>2 743</td>
<td>2 365</td>
<td>3 896</td>
</tr>
<tr>
<td>11</td>
<td>1 994</td>
<td>1 719</td>
<td>2 832</td>
</tr>
</tbody>
</table>
4. Resultat

Tabell 4.5 redovisar de kapaciteter som existerar i form av hur många kilogram som får plats av en viss produkt i en viss gång.

Tabell 4.5: Antalet kilogram som får plats av en viss produkt i en viss gång

<table>
<thead>
<tr>
<th>Gång</th>
<th>Total massa SCA Pure (kg)</th>
<th>Total massa SCA Star (kg)</th>
<th>Total massa Färdigvara Renewcell (kg)</th>
<th>Total massa Råvara Renewcell (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19 212 130</td>
<td>13 251 933</td>
<td>21 833 202</td>
<td>4 995 000</td>
</tr>
<tr>
<td>2</td>
<td>19 212 130</td>
<td>13 251 933</td>
<td>21 833 202</td>
<td>4 995 000</td>
</tr>
<tr>
<td>3</td>
<td>29 151 810</td>
<td>20 108 018</td>
<td>33 128 934</td>
<td>7 579 238</td>
</tr>
<tr>
<td>4</td>
<td>34 581 833</td>
<td>23 853 480</td>
<td>39 299 764</td>
<td>8 991 000</td>
</tr>
<tr>
<td>5</td>
<td>32 852 742</td>
<td>22 660 806</td>
<td>37 334 776</td>
<td>8 541 450</td>
</tr>
<tr>
<td>6</td>
<td>33 333 045</td>
<td>22 992 104</td>
<td>37 880 606</td>
<td>8 666 325</td>
</tr>
<tr>
<td>8</td>
<td>6 682 706</td>
<td>4 609 524</td>
<td>7 594 414</td>
<td>1 737 450</td>
</tr>
<tr>
<td>9</td>
<td>6 155 514</td>
<td>4 245 884</td>
<td>6 995 299</td>
<td>1 600 385</td>
</tr>
<tr>
<td>10</td>
<td>5 485 323</td>
<td>3 783 606</td>
<td>6 233 674</td>
<td>1 426 140</td>
</tr>
<tr>
<td>11</td>
<td>3 987 815</td>
<td>2 750 672</td>
<td>4 531 865</td>
<td>1 036 800</td>
</tr>
</tbody>
</table>

4.2.3 Fyllnadsgrad

Den hypotetiska fyllnadsgraden som antogs var 68,4 % i alla gångar, detta bekräftades av extern handledare som ansåg att det var ett rimligt antagande. Därmed justerades maxkapaciteten i kilogram som får plats i varje gång av varje produkt. Den nya maxvikten presenteras i tabell 4.6.

Tabell 4.6: Justerade maxvikter för fyllnadsgrad av respektive produkt i varje gång

<table>
<thead>
<tr>
<th>Gång</th>
<th>Total massa SCA Pure (kg)</th>
<th>Total massa SCA Star (kg)</th>
<th>Total massa Färdigvara Renewcell (kg)</th>
<th>Total massa Råvara Renewcell (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 141 727</td>
<td>9 064 757</td>
<td>14 934 626</td>
<td>3 416 744</td>
</tr>
<tr>
<td>2</td>
<td>13 141 727</td>
<td>9 064 757</td>
<td>14 934 626</td>
<td>3 416 744</td>
</tr>
<tr>
<td>3</td>
<td>19 940 794</td>
<td>13 754 543</td>
<td>22 661 277</td>
<td>5 184 447</td>
</tr>
<tr>
<td>4</td>
<td>23 655 108</td>
<td>16 316 562</td>
<td>26 882 327</td>
<td>6 150 139</td>
</tr>
<tr>
<td>5</td>
<td>22 472 352</td>
<td>15 500 734</td>
<td>25 538 211</td>
<td>5 842 632</td>
</tr>
<tr>
<td>6</td>
<td>22 800 896</td>
<td>15 727 353</td>
<td>25 911 576</td>
<td>5 928 050</td>
</tr>
<tr>
<td>8</td>
<td>4 571 190</td>
<td>3 153 065</td>
<td>5 194 828</td>
<td>1 188 473</td>
</tr>
<tr>
<td>9</td>
<td>4 210 574</td>
<td>2 904 324</td>
<td>4 785 014</td>
<td>1 094 715</td>
</tr>
<tr>
<td>10</td>
<td>3 752 141</td>
<td>2 588 111</td>
<td>4 264 038</td>
<td>9 755 27</td>
</tr>
<tr>
<td>11</td>
<td>2 727 796</td>
<td>1 881 550</td>
<td>3 099 944</td>
<td>709 205</td>
</tr>
</tbody>
</table>
4.2.4 Medelkapacitet
Medelkapaciteten för nuläget och framtiden med hänsyn till Renewcells reservation av råvara i hela gång 3 och halva gång 4 visas i tabell 4.7 och tabell 4.8. Se bilaga H för beräkningar.

Tabell 4.7: Medelkapaciteten för gångarna i nuläget.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Medelkapacitet (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12 380</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11 142,5</td>
</tr>
<tr>
<td>5</td>
<td>21 170</td>
</tr>
<tr>
<td>6</td>
<td>21 480</td>
</tr>
<tr>
<td>8</td>
<td>4 306</td>
</tr>
<tr>
<td>9</td>
<td>3 967</td>
</tr>
<tr>
<td>10</td>
<td>3 535</td>
</tr>
<tr>
<td>11</td>
<td>2 570</td>
</tr>
</tbody>
</table>

Tabell 4.8: Medelkapaciteten för gångarna i framtiden med en ny stuffningsstation.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Medelkapacitet (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 380</td>
</tr>
<tr>
<td>2</td>
<td>12 380</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11 142,5</td>
</tr>
<tr>
<td>5</td>
<td>21 170</td>
</tr>
<tr>
<td>6</td>
<td>18 107</td>
</tr>
<tr>
<td>8</td>
<td>4 306</td>
</tr>
<tr>
<td>9</td>
<td>3 967</td>
</tr>
<tr>
<td>10</td>
<td>3 535</td>
</tr>
<tr>
<td>11</td>
<td>2 570</td>
</tr>
</tbody>
</table>

4.3 Godsplacering
I kapitel 4.3.1 redovisas hur gods är placerade för en viss tidpunkt hos SCA Logistics samt hur gods skulle vara placerade enligt optimeringsmodellen. I kapitel 4.3.2 redovisas var gods ska placeras med hänsyn till planerade volymer år 2025. Kapitel 4.3.3 redovisar resultatet som framkom vid genomförandet av känslighetsanalysen.

4.3.1 Nuläget
Godsplacering för en viss tidpunkt i SCA Logistics terminal visas i tabell 4.9
4. Resultat

En studie om att optimera placering av gods hos SCA Logistics

2023-06-05

Erik Edvall Ung

Tabell 4.9: Var produkter lagras vid en viss tidpunkt

<table>
<thead>
<tr>
<th>Gång</th>
<th>Total massa SCA Pure (ton)</th>
<th>Total massa SCA Star (ton)</th>
<th>Total massa Färdigvara (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4 878</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2 413</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3 865</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7 671</td>
<td>6 265</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11 086</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4 326</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4 088</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1 786</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2 842</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>36 678</td>
<td>12 863</td>
<td>0</td>
</tr>
</tbody>
</table>

Enligt planerade utleveranser för 2023 bör det levereras ut en viss mängd av varje produkt på utleveranssätten, dessa mängder visas i tabell 4.10. Se bilaga I för beräkning av värdena.

Tabell 4.10: Planerad utleverans av varje produkt.

<table>
<thead>
<tr>
<th>Planerad utleverans</th>
<th>SCA Pure (ton)</th>
<th>SCA Pure (%)</th>
<th>SCA Star (ton)</th>
<th>SCA Star (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roro</td>
<td>2 814</td>
<td>7,7 %</td>
<td>2 513</td>
<td>19,5 %</td>
</tr>
<tr>
<td>Bulk</td>
<td>33 864</td>
<td>92,3 %</td>
<td>10 350</td>
<td>80,5 %</td>
</tr>
<tr>
<td>Total</td>
<td>36 678</td>
<td>100 %</td>
<td>12 863</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Med hjälp av tabell 4.2, 4.9 och 4.10 strukturerades tabell 4.11 upp som illustrerar hur stor mängd gods av en viss sort som ska levereras ut på antingen roro eller breakbulk-fartyg.

Tabell 4.11: Tonen av gods som ska levereras ut på planerat utleveranssätt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 814</td>
<td>0</td>
<td>2 064</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2 413</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>3 765</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7 671</td>
<td>6 265</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>11 086</td>
<td>320</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4 326</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4 088</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1 786</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>2 842</td>
<td>0</td>
</tr>
</tbody>
</table>
Antalet gånger sträckan används i nuläget visas i tabell 4.12.

Tabell 4.12: Antalet gånger som sträckan mellan gångarna och planerat utleveranssätt måste användas.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Roro SCA Pure (st)</th>
<th>Roro SCA Star (st)</th>
<th>Bulk Pure (st)</th>
<th>Bulk Star (st)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44</td>
<td>0</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>174</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 4.13: Den totala körsträckan för den nuvarande godsplaceringen.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Roro SCA Pure (m)</th>
<th>Roro SCA Star (m)</th>
<th>Bulk SCA Pure (m)</th>
<th>Bulk SCA Star (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7 040</td>
<td>0</td>
<td>14 850</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10 614</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>690</td>
<td>0</td>
<td>33 250</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>33 000</td>
<td>43 175</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>40 890</td>
<td>1 880</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>5 440</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4 480</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2 800</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>6 975</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7 040</td>
<td>11 304</td>
<td>108 435</td>
<td>78 305</td>
</tr>
</tbody>
</table>

Optimerat resultat för samma totalvikt som i tabell 4.9, med beräkningar på vilket utleveranssätt de tonen av gods sannolikt ska levereras på, redovisas i tabell 4.14.

Tabell 4.14: Optimerad godsplacering för nuläget med procentuell representation.

<table>
<thead>
<tr>
<th>Gång</th>
<th>SCA Pure (ton)</th>
<th>SCA Pure (%)</th>
<th>SCA Star (ton)</th>
<th>SCA Star (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 814</td>
<td>7,7 %</td>
<td>2 513</td>
<td>19,5 %</td>
</tr>
</tbody>
</table>
De ton av gods som ska levereras ut på planerat utleveranssätt enligt optimeringsmodellen visas i tabell 4.15.

Tabell 4.15: Ton som ska levereras enligt optimeringsmodellen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 814</td>
<td>2 513</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>8 356</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>21 480</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 306</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 967</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1 458</td>
<td>2 077</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>2 570</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>36 678</td>
<td>100 %</td>
<td>12 863</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Antalet gånger som sträckan måste köras enligt optimeringsmodellen visas i tabell 4.16.

Tabell 4.16: Antalet gånger sträckan behövs köras avrundat uppåt för optimeringsmodellen.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Roro SCA Pure (st)</th>
<th>Roro SCA Star (st)</th>
<th>Bulk SCA Pure (st)</th>
<th>Bulk SCA Star (st)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44</td>
<td>63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>336</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabell 4.17: Körsträckan för optimeringsmodellen

<table>
<thead>
<tr>
<th>Gång</th>
<th>Roro SCA Pure (m)</th>
<th>Roro SCA Star (m)</th>
<th>Bulk SCA Pure (m)</th>
<th>Bulk SCA Star (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7 040</td>
<td>10 080</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>36 025</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>78 960</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 640</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7 000</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2 300</td>
<td>5 200</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>6 355</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>7 040</td>
<td>10 080</td>
<td>123 640</td>
<td>20 840</td>
</tr>
</tbody>
</table>

Minskningen av körsträckan som resultatet från optimeringsmodellen resulterade i var 21,2 % som visas i tabell 4.18.

Tabell 4.18: Jämförelse av körsträckan i nuläget med och utan optimering

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuläge</td>
<td>205 084 m</td>
</tr>
<tr>
<td>Nuläge med optimering</td>
<td>161 600 m</td>
</tr>
<tr>
<td>Minskning i sträcka</td>
<td>43 484 m</td>
</tr>
<tr>
<td>Procentuell minskning</td>
<td>21,2 %</td>
</tr>
</tbody>
</table>

Om hänsyn skulle tas för mängden gods för hela år 2023 med den minskning av körsträcka som visas i tabell 4.18 hade den totala minskade sträckan för året 2023 blivit 644 873 meter som visas i tabell 4.19. För beräkningar se bilaga J.

Tabell 4.19: Minskad körsträcka för år 2023

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Procent av gods för nuläget</td>
<td>6,7 %</td>
</tr>
<tr>
<td>Minskad körsträcka för nuläget</td>
<td>43 484 m</td>
</tr>
<tr>
<td>Minskning i sträcka för år 2023</td>
<td>644 873 m</td>
</tr>
</tbody>
</table>
4.3.2 Framtiden
I tabell 4.20 visas antalet ton som är planerade att levereras ut för år 2025 för varje produkt och varje utleveranssätt.

Tabell 4.20: Planerade utleveranser i ton för varje produkt och varje utleveranssätt år 2025

<table>
<thead>
<tr>
<th>Utleveranssätt</th>
<th>SCA Pure(ton)</th>
<th>SCA Star(ton)</th>
<th>Färdigvara (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>3 095</td>
<td>51 497</td>
<td>60 000</td>
</tr>
<tr>
<td>Roro</td>
<td>137 060</td>
<td>31 558</td>
<td>0</td>
</tr>
<tr>
<td>Bulk</td>
<td>500 615</td>
<td>51 950</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 4.21 illustrerar hur mycket ton av varje produkt som ska levereras ut på en månad enligt de planerade utleveranserna för år 2025.

Tabell 4.21: Planerade utleverans i ton för varje produkt och varje utleveranssätt per månad år 2025

<table>
<thead>
<tr>
<th>Utleveranssätt</th>
<th>SCA Pure(ton)</th>
<th>SCA Star(ton)</th>
<th>Färdigvara (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>258</td>
<td>4 291</td>
<td>5 000</td>
</tr>
<tr>
<td>Roro</td>
<td>11 422</td>
<td>2 630</td>
<td>0</td>
</tr>
<tr>
<td>Bulk</td>
<td>41 718</td>
<td>4 329</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabell 4.22 redovisar optimeringens godsplacering samt mängden av varje gods som ska placeras vart för den framtida verksamheten.

Tabell 4.22: Var produkter ska lagras för kortast körsträcka i framtiden enligt optimeringsmodellen

<table>
<thead>
<tr>
<th>Gång</th>
<th>SCA Pure (ton)</th>
<th>SCA Pure (%)</th>
<th>SCA Star (ton)</th>
<th>SCA Star (%)</th>
<th>Färdigvara Renewcell (ton)</th>
<th>Färdigvara Renewcell (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>2</td>
<td>9 750</td>
<td>18,3 %</td>
<td>2 630</td>
<td>23,4 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>4</td>
<td>3 613</td>
<td>6,8 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>5</td>
<td>21 170</td>
<td>39,6 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>6</td>
<td>8 816</td>
<td>16,5 %</td>
<td>4 291</td>
<td>38,1 %</td>
<td>5 000</td>
<td>100,0 %</td>
</tr>
<tr>
<td>8</td>
<td>3 944</td>
<td>7,4 %</td>
<td>362</td>
<td>3,2 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0,0 %</td>
<td>3 967</td>
<td>35,3 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>10</td>
<td>3 535</td>
<td>6,6 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>11</td>
<td>2 570</td>
<td>4,8 %</td>
<td>0</td>
<td>0,0 %</td>
<td>0</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Total</td>
<td>53 398</td>
<td>100 %</td>
<td>11 250</td>
<td>100 %</td>
<td>5 000</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Tabell 4.23 visar antalet ton som ska levereras ut av varje produkt till varje utleveranssätt.

Tabell 4.23: Ton som ska levereras enligt optimeringsmodellen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9 750 2 630 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 672 0 1 941 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 0 21 170 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 0 8 558 0 258 4 291 5 000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0 0 3 944 362 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 3 967 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 0 3 535 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0 0 2 570 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antalet gånger som sträckan behövs köras från varje gång av varje produkt till varje utleveranssätt visas i tabell 4.24.

Tabell 4.24: Antalet gånger sträckan behövs köras avrundat uppåt för den framtida optimeringsmodellen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>153 66 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27 0 31 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0 0 331 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 0 134 0 65 1 341 1 563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0 0 62 10 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 100 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0 0 56 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0 0 41 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Den körda sträckan blir enligt optimeringen 287 289,4 meter, men med sträckan från tabell 4.1 och antalet gånger en sträcka används från tabell 4.24 kan den totala körsträckan beräknas, se tabell 4.25.

Tabell 4.25: Körsträcka för varje utleveranssätt från varje gång

<table>
<thead>
<tr>
<th>Gång</th>
<th>Roro SCA Pure (m)</th>
<th>Roro SCA Star (m)</th>
<th>Bulk SCA Pure (m)</th>
<th>Bulk SCA Star (m)</th>
<th>Container SCA Pure (m)</th>
<th>Container SCA Star (m)</th>
<th>Container Färdigvara Renewcell (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>24 480</td>
<td>10 560</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6 210</td>
<td>0</td>
<td>10 850</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>91 025</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>31 490</td>
<td>0</td>
<td>1 950</td>
<td>40 230</td>
<td>46 890</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>4 960</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>7 000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>5 600</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>6 355</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30 690</td>
<td>10 560</td>
<td>150 280</td>
<td>7 800</td>
<td>1 950</td>
<td>40 230</td>
<td>46 890</td>
</tr>
</tbody>
</table>

Den totala sträckan blir när alla sträckor summeras 288 400 meter för den optimala godspliceringen i framtiden.

4.3.3 Känslighetsanalys

De tre scenarion som har analyserats beskrivs i punkterna nedan med resultatet av analysen.

- Hur påverkas körsträckan om behovet av varje produkt ökar med 20 %.

Då varje produkts behov ökades med 20 % blev de nya totala tonen enligt tabell 4.26.

Tabell 4.26: Behovet för varje utleveranssätt i ton.

<table>
<thead>
<tr>
<th>Utleveranssätt</th>
<th>SCA Pure(ton)</th>
<th>SCA Star(ton)</th>
<th>Färdigvara Renewcell (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>335</td>
<td>5 578</td>
<td>6 500</td>
</tr>
<tr>
<td>Roro</td>
<td>14 849</td>
<td>3 419</td>
<td>0</td>
</tr>
<tr>
<td>Bulk</td>
<td>54 233</td>
<td>5 628</td>
<td>0</td>
</tr>
</tbody>
</table>

När ökningen av ton applicerades i optimeringsmodellen resulterade det att den totala körsträckan blev 375 730,6 meter.
För att påvisa skillnaden beräknades den procentuella ökningen av körsträckan, detta visas i tabell 4.27.

Tabell 4.27: Skillnad i körsträcka med 20 % ökning av ton

<table>
<thead>
<tr>
<th>Körsträcka</th>
<th>287 289,4 meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körsträcka vid ökning</td>
<td>375 730,6 meter</td>
</tr>
<tr>
<td>Ökning i meter</td>
<td>88 441,2 meter</td>
</tr>
<tr>
<td>Ökning i procent</td>
<td>30,8 %</td>
</tr>
</tbody>
</table>

- Hur påverkas körsträckan om gång 4 inte skulle vara tillgänglig för lagring
 När kapaciteten för gång 4 ändrades i optimeringsmodellen till att vara 0 för att illustrera ett fullt lager blev den nya körsträckan 292 424,1 meter. I tabell 4.28 visas skillnaden av körsträcka om gång 4 skulle vara fylld.

Tabell 4.28: Skillnad i körsträcka då gång 4 var fylld.

<table>
<thead>
<tr>
<th>Körsträcka</th>
<th>287 289,4 meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körsträcka då gång 4 är fylld</td>
<td>292 424,1 meter</td>
</tr>
<tr>
<td>Ökning i meter</td>
<td>5 134,7 meter</td>
</tr>
<tr>
<td>Ökning i procent</td>
<td>1,8 %</td>
</tr>
</tbody>
</table>

Tabell 4.29: Påverkan av den totala körsträckan med förändring av ett ton SCA Pure

<table>
<thead>
<tr>
<th>Utleveranssätt</th>
<th>Skillnad i körsträcka för en ökning/minskning av ett ton SCA Pure</th>
<th>Tillåten minskning av totala ton för samma skillnad</th>
<th>Tillåten ökning av totala ton för samma skillnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>±9,3</td>
<td>258</td>
<td>7529,5</td>
</tr>
<tr>
<td>Roro</td>
<td>±3,6</td>
<td>1672</td>
<td>7529,5</td>
</tr>
<tr>
<td>Bulk</td>
<td>±5,5</td>
<td>1941</td>
<td>7529,5</td>
</tr>
</tbody>
</table>
5. Analys och diskussion

I kapitel 5.1–5.3 analyseras och diskuteras resultatet i samma ordning som det framkommer i kapitel 4. Kapitel 5.4 diskuterar arbetets trovärdighet med dess reliabilitet och validitet.

5.1 Distanser och prioriteringsordningar
Distanserna mellan lagringsplatserna i gångarna och de fyra utleveranssätten är uppmätta med ett antagande att godset är placerat i mitten av en gång. Där resultatet påvisar de distanser som finns mellan gångarna och utleveranssätten. Om mätningen hade utgått från ett annat ställe än från mitten på gångarna hade troligen resultatet förändrats. Genom att använda Google Maps avståndsmätare försvann en del mätsäkerheter som hade framkommit om mätningen i stället hade utförts av ett mäthjul. Detta är eftersom det är lättare att återupprepa mätningen på samma sätt som illustreras i figur 3.4 än att gå med ett mäthjul utan bra riktlinjer från mitten på en gång samt utan att veta hur mätningen uppstegades i denna studie.

De prioriteringsordningar som har skapats för godspackeringen beroende på vilket utleveranssätt som nyttjas är utifrån det tidigare antagandet om att avståndet från gångarna är från mitten av en gång. För att denna prioriteringsordning ska vara korrekt är förutsättningarna att medelvärdet över var gods placeras i en gång är riktigt. Då gångarna är mellan 50 och 200 meter långa har det stor betydelse över var i en gång gods placeras. Därmed om ett gods som ska levereras ut på breakbulk-fartyg placeras nära portöppningen i till exempel gång 5 så är godset närmare breakbulk-fartyget än om godset placeras längst in i gång 6.

Prioriteringsordningarna är bestämda utifrån varje utleveranssääts optimala godspackering. Därmed kan konflikter mellan utleveranssätt skapas då den optimala godspackering för båda kan vara i samma gång, då måste kompromisser genomföras för att bestämma vilket som ska prioriteras först.

5.2 Kapaciteter
Fyllnadsgraden som beräknats är cirka 68 % vilket ansågs vara ett rimligt värde enligt externhandledare. Dock användes endast två gänge för beräkningen, för en mer korrekt fyllnadsgrad hade fler gängar behövts analyseras. Det var inte möjligt vid datainsamlings tillfället då det var endast de två gängarna som var fyllt med en produkttyp. Kravet för beräkningen av fyllnadsgraden var att det endast skulle lagras en produkt i den gängen, annars hade viktningar av de olika produkttyperna behövts genomföras. Ett till argument för att fyllnadsgraden är rimlig att det är praktiskt omöjligt att nå en fyllnadsgrad på närmare 100 %. Detta är till stor del tack vare den mängd produkttyper som hanteras, då dessa inte kan blandas i samma fack och därmed försvinner en betydlig del av lagringsutrymmet.

Medelkapaciteten framställdes för att gods skulle få en gemensam nämnare så att gods skulle kunna placeras i samma gångar utan att överstiga den verkliga kapaciteten i gångarna.

För att få en mer exakt maxkapacitet i gångarna hade mätningar utav areorna kunnat göras mer utförligt men det ansågs inte vara nödvändigt att gå in på för små detaljer eftersom det inte skulle bidra med drastiska förändringar i slutresultatet. Likaså med volymerna, då varje produkt fär plats med olika mängd volym och dess staplingsförmåga skiljer sig åt var vissa antaganden nödvändiga för att en överskådlig bild skulle kunna skapas. Varav produktarnas enskilda dimensioner är bestämda utifrån dess standardprodukt, varje produkt har även olika klasser av kvaliteter och dimensioner. Om beaktning hade tagits för varje kvalité hade arbetet med att framställa gångarnas kapaciteter blivit mer omfattande. Varje produktclass hade då haft olika stor kapacitet i varje gång men det ansågs inte bidra med drastiska förändringar i resultatet. Noggrannare beräkningar av fyllnadsgraden hade kunnat genomföras med hjälp av att vikta produktarna för att sedan beräkna fyllnadsgraden i de gångar som hade blandade produktfloror. Om viktningar hade applicerats på produktarnas olika maxkapaciteter i gångarna hade inte medelkapaciteten behövts beräknats, då hade i stället viktningarna kunnat användas i optimeringsmodellen. Men att vikta produktarna ansågs inte vara nödvändigt för att ge SCA Logistics en överskådlig bild över var t ex att gods ska placeras för att minimerar dess körsträcka.

5.3 Optimering
I kapitel 5.3.1–5.3.3 analyseras och diskuteras optimeringsmodellens resultat för nuläget och framtiden, samt hur vissa potentiella förändringar av verkligheten påverkar modellens resultat.

5.3.1 Godsplacering för nuläget
Med hjälp av den planerade mängden utleveranser för år 2023 och godsens placering i terminalen beräknades sannolikheten för att en viss mängd av goden ska levereras ut på ett visst utleveranssätt. Till exempel av den totala mängden SCA Pure ska cirka 8 % levereras ut på roro-fartyg och cirka 92 % levereras ut på breakbulk-fartyg.
Vid tillfället då statistik inhämtades över var godsen var placerad i terminalen var inte godsen optimalt placerad. Om godsen hade varit placerad korrekt visar optimeringen att den totala körrutten för utleveranserna hade minskat med ungefär 43 kilometer vilket är en minskning på cirka 21%. Detta är för mängden gods som fanns tillgängligt vid datainsamlingen, det vill säga ungefär 7% av den totala mängden gods som är planerad för år 2023. Om data hade inhämtats någon annan dag skulle resultatet troligtvis inte bli samma, det hade i stället kunnat bli en större respektive mindre minskning av körrutten. Det är även inte säkert att just cirka 8% av produkten SCA Pure som fanns tillgängligt skulle levereras ut på roro-fartyg då de procenten var för ett helt års planerade utleveranser. Om minskningen skulle vara kontinuerlig för hela året 2023:s mängder av gods hade körrutten minskat med 645 kilometer vilket kan anses vara av stor betydelse.

I beräkningen av sträcka för verksamhetens nuvarande godspackning antogs det att de gods som är placerat närmast ett utleveranssätt är det gods som också ska levereras ut på det utleveranssättet. Om inte det skulle vara utfallet hade den totala körrutten för verksamhetens nuläge ökat betydligt.

Placeringen som optimeringsmodellen har resulterat i visas i figur 5.1 där det påvisas att det är av vikt att prioritera att SCA Star placeras närmare det planerade utleveranssättet. Detta är för att det går enbart köra 40 ton av SCA Star på en kassett jämfört med 64 ton som det går att köra av SCA Pure. Det går däremot att lasta mer per gång av SCA Pure och därmed är dess placering inte lika prioriterad.

![Figur 5.1: Påvisar var och hur stor mängd av gods som ska placeras i gångarna i dagsläget.](image)

5.3.2 Godspackning för framtiden

Placering av gods för framtiden har utgått från budgeterade volymer för en månad år 2025 och med hjälp av en utvidgning på optimeringsmodellen blir den totala sträckan 288 kilometer. För det gods som ska levereras ut på container är det väldigt viktigt enligt optimeringsmodellen att godset står nära stuffningsstationen. Detta är eftersom
modellen bygger på att godset som ska stuffas finns intill stuffningsstationen för att undvika långa transportsträckor av gods på kassett. Därav det höga antalet gånger som sträckan ska köras för gods som ska levereras ut på container.

5.3.3 Känslighetsanalyse
För att kontrollera optimeringsmodellens resultat analyserades några utvalda tänkbara scenarion som kan vara av intresse för SCA Logistics verksamhet, dessa var:

- Hur påverkas körsträckan om behovet av varje produkt ökar med 20 %?
 Då mängden gods ökade med 20 % ökade den totala körsträckan med cirka 88 440 meter och den procentuella ökningen var då cirka 31 %. Detta är en rimlig ökning då om mängden gods ökar kommer godset i vissa fall behöva placeras längre bort från ett utleveranssätt. Vilket leder till en större ökning utav körsträckan.

- Hur påverkas körsträckan om gång 4 inte skulle vara tillgänglig för lagring?
 Den totala körsträckan påverkas minimalt, med cirka 2 %. Detta beror på att det gods som skulle ha placerats i gång 4 i stället väljer gång 2 alternativt gång 5 beroende på vilket utleveranssätt det ska levereras på. Skillnaden i körsträcka
mellan gång 4 och gång 2 samt gång 4 och gång 5 är inte avsevärda, särskilt inte på de 11 142,5 tonen som nu måste placeras på ett annat ställe än i gång 4.

- Hur mycket påverkar ett ton av SCA Pure den totala körsträckan?

5.4 Studiens trovärdighet

Staplingsmöjligheterna för produkter var en estimering som behövde göras för att kunna beräkna volymen, om samma antagande för varje produkt hade gjorts skulle upprepan av arbetet påvisa liknande maxkapaciteter.

Metoden som har använts i detta arbete är av välkänd typ och bör därmed klassas som reliabel. Statistiken över godspalaceringen hos SCA Logistics för en dag skiljer sig, det är därmed inte säkert att resultatet utav den minskade körsträckan skulle vara densamma om det data hade inhämtats någon annan dag. För att öka arbetets reliabilitet hade statistik för fler dagar kunnat jämförts och då kunna påvisa en mer exakt minskning av körsträckan.

De antaganden och mätningar som har genomförts under arbetets gång har varit behövliga för att framställa ett resultat. De har även kontrollerats och validerats kontinuerligt under arbetets gång med berörda personer på SCA Logistics.

Då arbetet är utfört på SCA Logistics terminal i Sundsvall har fallspecifika egenskaper tagits i beaktning för att konstruera optimeringsmodellen. Därmed skulle det vara svårt att applicera modellen på andra terminaler. Men om en liknande metod för strukturering av optimeringsmodellen hade gjorts skulle den kunna anpassas till andra terminaler för att minimera dess körsträckor.
Om verksamhetens framtidsplaner skulle förändras kommer troligen resultatet för godspaceringen i framtiden att förändras. Där ombyggnationer eller förändringar i mängd gods skulle kunna förekomma. Optimal placering kan därmed inte garanteras för framtiden.
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics

6. Slutsats

Studiens syfte var att optimera godsplaceringen hos SCA Logistics terminal i Sundsvall för att minimera deras körsträckor mellan lagringsområden och utgående transportsätten. Där även en utredning över godsplaceringens påverkan för den nuvarande och framtida verksamheten skulle genomföras genom att besvara på följande frågor:

- Vilken effekt kan uppnås genom en optimerad godsplacering på körsträckan mellan lagringsområdena och de utgående transportsätten för SCA Logistics nuvarande verksamhet?
- Hur ska gods placeras för att minimera körsträckan i en utbyggd intermodal terminal?

Minskningen av körsträckorna är förstås beroende av att de beräkningar på vilket utleveranssätt gods ska levereras på appliceras i verkligheten. Om så inte skulle vara fallet hade körsträckorna ökat ännu mer och optimeringsmodellen hade påvisat en ännu större minskning av körsträckan.

Hur gods ska placeras för att minimera körsträckan i en utbyggd intermodal terminal kan ofta anses vara väldigt logiskt, där godset ska placeras så nära det planerade uttransportssättet som möjligt. Detta är inte möjligt i alla fall, särskilt om informationen över vilket utleveranssätt gods ska levereras på inte är tillgänglig vid ankomst till terminalen. Då måste andra åtgärder göras, varav en åtgärd var i detta arbete att estimeras vilket uttransportssätt som kommer att användas. Detta har genomförts i denna rapport för att ge SCA Logistics en överblick över var gods ska placeras i framtiden då en utbyggnation av verksamheten är genomförd.
Bidraget till forskningen i detta arbete är därmed att genom användningen av en simpel linjärprogrammeringsmodell kunna påvisa var gods ska placeras optimalt och hur stor påverkan godspelseringen kan ha på köresträckorna hos en intermodal terminal. Arbetet påvisar också att veteskap om vilket utleveranssätt ankommande gods ska levereras ut på är viktigt. Utan det går det inte att optimera godspelseringen fullständigt. Det går att göra estimationer på var gods ska placeras och det kommer sannolikt att minska köresträckan, men hur mycket är svårt att säga.

Förbättringar som hade kunnat genomförts i arbetet är bland annat den data om mängden gods som fanns tillgängligt vid en viss tidpunkt. Den hade i stället kunnat inhämtats över ett tidsintervall för att skapa en mer pålitlig bild över köresträckan för verksamheten i nuläget. Därmed hade även arbetets reliability förstärkts då det är mer sannolikt att liknande data hade samlats in. Fler produkttyper hade även kunnat tagits i beaktning för att skapa en mer exakt bild över företagets produktflora. Mer exakta mätningar av till exempel varje fack i gångarnas lagringsutrymmen hade kunnat genomförts, samt mätningar av distanser mellan gångarna och uttransportsätten för att påvisa en mer exakt godspelsering.

6.1 Rekommendationer till företaget som studien behandlat.

För att arbetet ska kunna bidra till SCA Logistics godspelsering och minska av köresträckor anses följande punkter vara av vikt att genomföra:

- **Utvärdera köresträckans kostnadspåverkan.**
 Det resultat som framkommer visar att korrekt godspelsering minskar köresträckan med cirka 21 %. Det kan därmed anses vara av vikt att göra beräkningar på hur stor kostnadspåverkan blir för att transportera godsen en kortare köresträcka. Detta kan användas som ett argument för att bli kompenserad för de extra köresträckorna som uppstår då godspelsering inte kan optimeras.

- **Skapa förutsättningar för var produkter ska lagras.**

- **Analysera möjligheten att leverantörer meddelar hur gods ska levereras ut.**
 Då den optimala godspelseringen utgår från att SCA Logistics vet vilket utleveranssätt som ska användas är den inte applicerbar för nuläget. Det bör därmed undersökas om leverantörer har större möjlighet att informera om vilket uttransportsätt som ska användas för varje produkt.
6.2 Förslag till fortsatt forskning

6.3 Etiska och samhälleliga aspekter

De etiska aspekterna som nämns i 3.10 har tagits i beaktning under hela arbetets gång och anses vara uppfyllda. Det leder vidare till de samhälleliga aspekterna som har ett nära samarbete med de etiska antagandena. Ur ett samhällsperspektiv kan detta arbete bidra med att ge insyn i att planering och optimering kan leda till mindre körsträckor och därmed mindre utsläpp i en verksamhet. Om detta tankesätt appliceras på flera olika verksamheter kommer en betydande mängd av utsläpp kunna minska och ett hållbarare samhälle med mindre utsläpp skapas.
Källförteckning

Nationalencyklopedin. (u.å). *fallstudie*. Hämtad 25 April, 2023, från: https://www-ne-se.proxybib.miun.se/uppslagsverk/encyklopedi/l%C3%A5ng/fallstudie

Bilagor

Bilaga A: Fallstudie hos SCA Logistics
Denna bilaga ger insikt i delar av SCA Logistics verksamhet som är nödvändig för att arbetets mål skulle kunna uppnås.

Kassett

![Kassett som används för transport av gods](image)

Material
Det material som används i denna analys är av fyra olika typer och tar därmed upp olika stor mängd yta per ton i gångarna. De fyra godsen förklaras nedan.

SCA Pure
När godset ska stuffas i container är det möjligt att ta två enheter samtidigt, därmed går det att flytta 4 ton (2*2) per körning. Det är möjligt att stapla fyra enheter i höjd men på det övre lagret staplas en enhet mellan två för att förhindra ras, se figur A2 för staplingen av SCA Pure. Därmed anpassas den totala höjden till att vara 3,75 gånger större än en enhet som har höjden 1,79 meter. I detta fall blir totala höjden:
$$H_T = 3,75 \times 1,79 = 6,7125 \text{ meter}$$

Figur A2: Lagring och stapling av SCA Pure.
SCA Star

När godset ska stuffas i container är det möjligt att ta två enheter samtidigt, därmed går det att flytta 3,2 ton (1,6*2) per körning. Det är möjligt att stapla tre enheter i höjd men på det övre lagret staplas en enhet mellan två för att förhindra ras, se figur A3. Därmed anpassas den totala höjden till att vara 2,75 gånger större än höjden på en enhet vilket är 2 meter. Detta genom att en av fyra enheter på topplagret försvinner. I detta fall blir totala höjden:

\[H_s = 2,75 \times 2 = 5,5 \text{ meter} \]
Färdigvara Renewcell
Färdigvaran från Renewcell kallas för Circulose och är 100 % återvunnet textilavfall med högt cellulosainnehåll från till exempel slitna bomullsjeans eller bomullsrester. Med dessa konstgjorda cellulosafibrer skapas sedan högkvalitativa textilprodukter (Renewcell, u.å).

När godset ska stuffas i container är det möjligt att ta två enheter samtidigt, därmed går det att flytta 3,2 ton (1,6*2) per körning. Det är möjligt att stapla fyra i höjd men på det övre lagret staplas en enhet mellan två för att förhindra ras, se figur A4. Därmed anpassas den totala höjden till att vara 3,75 meter multiplicerat med höjden på en enhet vilket är 1,8 meter. Detta genom att en av fyra enheter på topplagret försvinner. Det leder till att höjden blir: $H_r = 3,75 \times 1,8 = 6,75$ meter

Figur A4: Lagring och stapling av Renewcells färdigvara
Råvara Renewcell

Renewcells råvara är av olika textilavfall som ankommer i olika dimensioner och vikter, därmed kan det vara svårt att stapla enheterna på varandra. Måtten på råvaran har bestämts till att vara 1350 kilogram per kvadratmeter. Se figur A5 för lagring och stapling av Renewcells råvara.

Figur A5: Lagring och stapling av Renewcells råvara.
Bilaga B: Dimensioner på godsen

Nedan visas de olika produktarna som har använts i arbetet. Bredden på godsen ökades med 0,02 meter då det illustrerar mellanrummet mellan facken i gångarna. Volymen av gods beräknades med hjälp av formeln för volym:

\[V = B \times L \times H \]

Massan för en enhet bestämdes med hjälp av extern handledare.

SCA Pure

Dimensionerna för produkten SCA Pure visas i tabell B1 och illustreras i figur B1.

Tabell B1: Dimensionerna av SCA Pure

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Beskrivning</th>
<th>Värde (enhet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bredd på gods + 0,02 m</td>
<td>0,92 (m)</td>
</tr>
<tr>
<td>L</td>
<td>Längd</td>
<td>1,57 (m)</td>
</tr>
<tr>
<td>H</td>
<td>Höjd</td>
<td>1,79 (m)</td>
</tr>
<tr>
<td>V₄</td>
<td>Volym</td>
<td>2,585476 (m³)</td>
</tr>
<tr>
<td>M</td>
<td>Massa</td>
<td>2000 (kg)</td>
</tr>
</tbody>
</table>

Figur B1: Dimensionerna på SCA Pure med två enheter i bredd.
SCA Star

Tabell B2: Dimensionerna av SCA Star

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Beskrivning</th>
<th>Värde (enhet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bredd på gods + 0,02m</td>
<td>0,945 (m)</td>
</tr>
<tr>
<td>L</td>
<td>Längd</td>
<td>1,30 (m)</td>
</tr>
<tr>
<td>H</td>
<td>Höjd</td>
<td>2,00 (m)</td>
</tr>
<tr>
<td>V₄</td>
<td>Volym</td>
<td>2,457 (m³)</td>
</tr>
<tr>
<td>M</td>
<td>Massa</td>
<td>1600 (kg)</td>
</tr>
</tbody>
</table>

![Figur B2: Dimensionerna på SCA Star med två enheter i bredd](image)

Färdigvara Renewcell
Dimensionerna för Renewcells färdigvara visas i tabell B3 och illustreras i figur B3. Höjden för en enhet bestämdes till 1,8 meter med hjälp av extern handledare.

Tabell B3: Dimensionerna av Renewcells färdigvara

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Beskrivning</th>
<th>Värde (enhet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bredd på gods + 0,02 m</td>
<td>0,82 (m)</td>
</tr>
<tr>
<td>L</td>
<td>Längd</td>
<td>1,24 (m)</td>
</tr>
<tr>
<td>H</td>
<td>Höjd</td>
<td>1,8 (m)</td>
</tr>
<tr>
<td>V₄</td>
<td>Volym</td>
<td>1,83024 (m³)</td>
</tr>
</tbody>
</table>
En studie om att optimera placering av gods hos SCA Logistics

Erik Edvall Ung

| M | Massa | 1600 (kg) |

Figur B3: Dimensionerna på Renewcells färdigvara

Råvara Renewcell
Det finns inga standarddimensioner på Renewcells råvara, måttet som används är i stället 1350kg/m² som är bestämt med hjälp av extern handledare.
Bilaga C: Kod i LINGO för nuläget

1 redel:
2 mtt:
3 supply[i,j] : 1 inleveranssätt (1);
4 demand[i,j] : 1 utleveranssätt (1);
5 proddel[1,2,3]: 13 detaljprodukter som har begränsning hur många som kan levereras samtidigt (p);
6 gang[2,3,4,5,6,8,9,10,11,12]: 12 gångar att förvara i l];
7 supply[produktsupply,produkt][i]: Hur mycket supply per produkt (i,p) ;
8 demand[produktdemand,produkt][i,j]: Hur mycket demand per produkt (i,p);
9 transport[gang,produkt]: f[i,p];
10 supplytransport[transport,bag,produkt][i,j]; Hur många ton som skickas till respektive magasin per produkt (i,j,p);
11 transportgiltig,demand: transportsträcka mellan magasin och tänkt utleveranssätt (j,i);
12 utgagnedel[transportgiltig,produkt][i,j,z]: Hur många ton som går ut på respektive utleveranssätt per produkt (i,j,p);
20 enddata
21
22 obj:
23 att minimera antalet gångar mellan gångarnas och utleveranssätt
24 Kapacitet i gångarna, kolumnerna är för de tre produkterna
25 Kapacitet: Pure, Star, NK
26 Målen: Gång: 2,4,5,6,8,9,10,11;
27 kapacitet = 12000;
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung

Bilaga D: Kod i LINGO för framtiden

```lingo
endfunctions
enddata
end
```

Bilagor

En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung
Bilaga E: Beräkningar och mått för magasinens gångar.

Tabell E1-E8 visar de uppmätta mätten i respektive gång. Ekvation (3.1) användes för beräkningen av areor i respektive gång och ekvation (3.2) användes för beräkningen av volymer.

Gång 1 & 2 i Magasin 1

Beräkning av arean för gång 1 och 2 är estimerad, detta då gångarna var fylld med gods eller andra objekt och därmed var det ej möjligt att göra en fysisk mätning av arean. Därmed antogs värden på bredden och längden med hjälp av extern handledare. Mätten antogs vara:
Bredd = 50 m
Längd = 100 m

Men körgångs arean i magasinet är 13*100 som är givet av extern handledare. Det går därmed att subtrahera bort då gods ej kan förvaras i körgången.

Area blir därmed följande för gång 1 och 2:
A_{12} = 50*100-13*100 = 3700 m²

Volymen för varje produkt i gång 1 och 2 blir:
V_{P12}= A_{12}*H_P = 3700 * 6,7125= 24836,25 m³
V_{S12}= A_{12}*H_S = 3700 * 5,5 = 20350 m³
V_{R12}= A_{12}*H_R = 3700 * 6,75 = 24975 m³

Gång 3 i Magasin 2

Tabell E1: Antal och mått på facken i gång 3.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Enhet (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>4,25</td>
</tr>
<tr>
<td>B₂</td>
<td>4,25</td>
</tr>
<tr>
<td>L₁</td>
<td>17</td>
</tr>
<tr>
<td>L₂</td>
<td>18,5</td>
</tr>
<tr>
<td>M₁</td>
<td>32</td>
</tr>
<tr>
<td>M₂</td>
<td>42</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
</tr>
</tbody>
</table>

Area blir därmed följande för gång 3:
A₃ = 5614,25 m²

Volymen för varje produkt i gång 3 blir:
V_{P3}= A₃*H_P =5614,25 * 6,7125= 37685,65313 m³
V_{S3}= A₃*H_S =5614,25 *5,5 = 30878,375 m³
V_{R3}= A₃*H_R =5614,25 * 6,75 = 37896,1875 m³
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung

Gång 4 i Magasin 2
Tabell E2: Antal och mått på facken i gång 4.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>180</td>
</tr>
<tr>
<td>L₁</td>
<td>18,5</td>
</tr>
<tr>
<td>M₁</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
</tr>
</tbody>
</table>

Areaen blir därmed följande för gång 4:
\[A₄ = B₄L = 180 \times 18,5 \times 2 = 6660 \, \text{m}² \]

Volymen för varje produkt i gång 4 blir:
\[V_{P₄} = A₄Hₚ = 6660 \times 6,7125 = 44705,25 \, \text{m}³ \]
\[V_{Sp₄} = A₄H_{Sp} = 6660 \times 5,5 = 36630 \, \text{m}³ \]
\[V_{R₄} = A₄H_{R₄} = 6660 \times 6,75 = 44955 \, \text{m}³ \]

Gång 5 i Magasin 3
Tabell E3: Antal och mått på facken i gång 5.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>175</td>
</tr>
<tr>
<td>B₂</td>
<td>167</td>
</tr>
<tr>
<td>L₁</td>
<td>18,5</td>
</tr>
<tr>
<td>L₂</td>
<td>18,5</td>
</tr>
<tr>
<td>M₁</td>
<td>1</td>
</tr>
<tr>
<td>M₂</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
</tr>
</tbody>
</table>

Areaen blir därmed följande för gång 5:
\[A₅ = B₅L = 175 \times 18,5 \times 167 \times 18,5 = 6327 \, \text{m}² \]

Volymen för varje produkt i gång 5 blir:
\[V_{P₅} = A₅Hₚ = 6327 \times 6,7125 = 42469,9875 \, \text{m}³ \]
\[V_{Sp₅} = A₅H_{Sp} = 6327 \times 5,5 = 34798,5 \, \text{m}³ \]
\[V_{R₅} = A₅H_{R₅} = 6327 \times 6,75 = 42707,25 \, \text{m}³ \]

Gång 6 i Magasin 3
Tabell E4: Antal och mått på facken i gång 6.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁</td>
<td>180</td>
</tr>
<tr>
<td>B₂</td>
<td>167</td>
</tr>
</tbody>
</table>
Area blir därmed följande för gång 6:
\[A_6 = B*L = 180*18,5+167*18,5 = 6419,5 \text{ m}^2 \]

Volymen för varje produkt i gång 6 blir:
\[V_{P6} = A_6*H_P = 6419,5 * 6,7125 = 43090,89375 \text{ m}^3 \]
\[V_{S6} = A_6*H_S = 6419,5 * 5,5 = 35307,25 \text{ m}^3 \]
\[V_{R6} = A_6*H_R = 6419,5 * 6,75 = 43331,625 \text{ m}^3 \]

Gång 8 i Magasin 5

Tabell E5: Antal och mått på facken i gång 8.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>7,5</td>
</tr>
<tr>
<td>L1</td>
<td>14,3</td>
</tr>
<tr>
<td>M1</td>
<td>12</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
</tr>
</tbody>
</table>

Area blir därmed följande för gång 8:
\[A_8 = B*L = 7,5*12*14,3 = 1287 \text{ m}^2 \]

Volymen för varje produkt i gång 8 blir:
\[V_{P8} = A_8*H_P = 1287 * 6,7125 = 8638,9875 \text{ m}^3 \]
\[V_{S8} = A_8*H_S = 1287 * 5,5 = 7078,5 \text{ m}^3 \]
\[V_{R8} = A_8*H_R = 1287 * 6,75 = 8687,25 \text{ m}^3 \]

Gång 9 i Magasin 5

Tabell E6: Antal och mått på facken i gång 9.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>15,1</td>
</tr>
<tr>
<td>B2</td>
<td>7,5</td>
</tr>
<tr>
<td>L1</td>
<td>14,3</td>
</tr>
<tr>
<td>L2</td>
<td>14,3</td>
</tr>
<tr>
<td>M1</td>
<td>4</td>
</tr>
<tr>
<td>M2</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
</tr>
</tbody>
</table>
Area blir därmed följande för gång 9:
$$A_9 = 1185,47 \text{ m}^2$$

Volymen för varje produkt i gång 9 blir:
$$V_{PV} = A_9 \times H_P = 1185,47 \times 6,7125 = 7957,467375 \text{ m}^3$$
$$V_{SV} = A_9 \times H_S = 1185,47 \times 5,5 = 6520,085 \text{ m}^3$$
$$V_{VR} = A_9 \times H_R = 1185,47 \times 6,75 = 8001,9225 \text{ m}^3$$

Gång 10 i Magasin 6

Tabell E7: Antal och mått på facken i gång 10.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>12,5</td>
</tr>
<tr>
<td>Bj</td>
<td>12,5</td>
</tr>
<tr>
<td>Bk</td>
<td>15,3</td>
</tr>
<tr>
<td>Bm</td>
<td>15,3</td>
</tr>
<tr>
<td>Li</td>
<td>22,5</td>
</tr>
<tr>
<td>Lj</td>
<td>15,5</td>
</tr>
<tr>
<td>Li</td>
<td>22,5</td>
</tr>
<tr>
<td>Lk</td>
<td>15,5</td>
</tr>
<tr>
<td>Mi</td>
<td>1</td>
</tr>
<tr>
<td>Mj</td>
<td>1</td>
</tr>
<tr>
<td>Mk</td>
<td>1</td>
</tr>
<tr>
<td>Mo</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>4</td>
</tr>
</tbody>
</table>

Area blir därmed följande för gång 10:
$$A_{10} = 1056,4 \text{ m}^2$$

Volymen för varje produkt i gång 10 blir:
$$V_{PV} = A_{10} \times H_P = 1056,4 \times 6,7125 = 7091,085 \text{ m}^3$$
$$V_{SV} = A_{10} \times H_S = 1056,4 \times 5,5 = 5810,2 \text{ m}^3$$
$$V_{VR} = A_{10} \times H_R = 1056,4 \times 6,75 = 7130,7 \text{ m}^3$$

Gång 11 i Magasin 9

Tabell E8: Antal och mått på facken i gång 11.

<table>
<thead>
<tr>
<th>Beteckning</th>
<th>Värde (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>8</td>
</tr>
<tr>
<td>Li</td>
<td>16</td>
</tr>
<tr>
<td>Mi</td>
<td>5</td>
</tr>
</tbody>
</table>
Area blir därmed följande för gång 11:
\[A_{11} = 768 \text{ m}^2 \]

Volymen för varje produkt i gång 11 blir:
\[V_{P11} = A_{11} \times H_P = 768 \times 6,7125 = 5155,2 \text{ m}^3 \]
\[V_{S11} = A_{11} \times H_S = 768 \times 5,5 = 4224 \text{ m}^3 \]
\[V_{R11} = A_{11} \times H_R = 768 \times 6,75 = 5184 \text{ m}^3 \]
Bilaga F: Antal enheter och massa som får plats i gångarna av varje gods.

Med hjälp av den teoretiska volymen för varje gång av varje produkt från bilaga E och volymen för en enhet från bilaga B beräknades antalet hela enheter med ekvation (3.3). När antalet hela enheter var givet, beräknades den totala massan som får plats i varje gång med hjälp av massa för en enhet från bilaga B och ekvation (3.4). Den teoretiska volymen, antalet hela enheter och total massa visas för respektive produkt i tabellerna F1-F3.

SCA Pure

Tabell F1: Gångarnas teoretiska begränsningar av SCA Pure

<table>
<thead>
<tr>
<th>Gång</th>
<th>Teoretisk Volym Vr (m³)</th>
<th>Hela enheter (antal)</th>
<th>Total massa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång 1</td>
<td>24 836,25</td>
<td>9 606</td>
<td>19 212 129,6</td>
</tr>
<tr>
<td>Gång 2</td>
<td>24 836,25</td>
<td>9 606</td>
<td>19 212 129,6</td>
</tr>
<tr>
<td>Gång 3</td>
<td>37 685,65313</td>
<td>14 576</td>
<td>29 151 810,44</td>
</tr>
<tr>
<td>Gång 4</td>
<td>44 705,25</td>
<td>17 291</td>
<td>34 581 833,29</td>
</tr>
<tr>
<td>Gång 5</td>
<td>42 469,9875</td>
<td>16 426</td>
<td>32 852 741,62</td>
</tr>
<tr>
<td>Gång 6</td>
<td>43 090,89375</td>
<td>16 667</td>
<td>33 333 044,86</td>
</tr>
<tr>
<td>Gång 8</td>
<td>8 638,9875</td>
<td>3 341</td>
<td>6 682 705,622</td>
</tr>
<tr>
<td>Gång 9</td>
<td>7 957,467375</td>
<td>3 078</td>
<td>6 155 514,4</td>
</tr>
<tr>
<td>Gång 10</td>
<td>7 091,085</td>
<td>2 743</td>
<td>5 485 322,625</td>
</tr>
<tr>
<td>Gång 11</td>
<td>5155,2</td>
<td>1 994</td>
<td>3 987 815,01</td>
</tr>
</tbody>
</table>

SCA Star

Tabell F2: Gångarnas teoretiska begränsningar av SCA Star

<table>
<thead>
<tr>
<th>Gång</th>
<th>Teoretisk Volym Vc (m³)</th>
<th>Hela enheter (antal)</th>
<th>Total massa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång 1</td>
<td>20 350</td>
<td>8282</td>
<td>13 251 933,25</td>
</tr>
<tr>
<td>Gång 2</td>
<td>20 350</td>
<td>8282</td>
<td>13 251 933,25</td>
</tr>
<tr>
<td>Gång 3</td>
<td>30 878,375</td>
<td>12 568</td>
<td>20 108 017,91</td>
</tr>
<tr>
<td>Gång 4</td>
<td>36 630</td>
<td>14 908</td>
<td>23 853 479,85</td>
</tr>
<tr>
<td>Gång 5</td>
<td>34 798,5</td>
<td>14 163</td>
<td>22 660 805,86</td>
</tr>
<tr>
<td>Gång 6</td>
<td>35 307,25</td>
<td>14 370</td>
<td>22 992 104,19</td>
</tr>
<tr>
<td>Gång 8</td>
<td>7 078,5</td>
<td>2 881</td>
<td>4 609 523,81</td>
</tr>
<tr>
<td>Gång 9</td>
<td>6 520,085</td>
<td>2 654</td>
<td>4 245 883,598</td>
</tr>
<tr>
<td>Gång 10</td>
<td>5 810,2</td>
<td>2 365</td>
<td>3 783 606,024</td>
</tr>
<tr>
<td>Gång 11</td>
<td>4 224</td>
<td>1 719</td>
<td>2 750 671,551</td>
</tr>
</tbody>
</table>

Färdigvara Renewcell

Tabell F3: Gångarnas teoretiska begränsningar av Renewcells färdigvara

<table>
<thead>
<tr>
<th>Gång</th>
<th>Teoretisk Volym Vs (m³)</th>
<th>Hela enheter (antal)</th>
<th>Total massa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång 1</td>
<td>24 975</td>
<td>13 646</td>
<td>21 833 202,2</td>
</tr>
</tbody>
</table>
Råvara Renewcell

Den totala massan beräknas med hjälp av arean och med antagandet att 1350 kilogram får plats per kvadratmeter. Råvarans begränsningar visas i Tabell F4.

Tabell F4: Gångarnas teoretiska begränsningar av Renewcells Råvara.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Area (m²)</th>
<th>Total massa (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång 1</td>
<td>3700</td>
<td>4 995 000</td>
</tr>
<tr>
<td>Gång 2</td>
<td>3700</td>
<td>4 995 000</td>
</tr>
<tr>
<td>Gång 3</td>
<td>5614,25</td>
<td>7 579 237,5</td>
</tr>
<tr>
<td>Gång 4</td>
<td>6660</td>
<td>8 991 000</td>
</tr>
<tr>
<td>Gång 5</td>
<td>6327</td>
<td>8 541 450</td>
</tr>
<tr>
<td>Gång 6</td>
<td>6419,5</td>
<td>8 666 325</td>
</tr>
<tr>
<td>Gång 8</td>
<td>1287</td>
<td>1 737 450</td>
</tr>
<tr>
<td>Gång 9</td>
<td>1185,47</td>
<td>1 600 384,5</td>
</tr>
<tr>
<td>Gång 10</td>
<td>1056,4</td>
<td>1 426 140</td>
</tr>
<tr>
<td>Gång 11</td>
<td>768</td>
<td>1 036 800</td>
</tr>
</tbody>
</table>
Bilaga G: Fyllnadsgrader

Fyllnadsgrad gång 8 och gång 9

Aktuell vikt i magasin 5 (gång 8 och gång 9) av SCA Pure kan ses i tabell G1 som har tillhandahållits genom extern handledare på SCA Logistics.

Tabell G1: Data från magasin 5 (gång 8 och 9) över hur mycket massa av SCA Pure som lagras.

<table>
<thead>
<tr>
<th>SHED</th>
<th>MILLCODE</th>
<th>NAMN</th>
<th>FAM</th>
<th>FAM_DESC</th>
<th>SKU</th>
<th>LOC</th>
<th>AREA</th>
<th>AMOUNT</th>
<th>WEIGHT(Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E1285210101815</td>
<td>STOCK</td>
<td>12</td>
<td>19</td>
<td>30</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E1290101010102</td>
<td>STOCK</td>
<td>14</td>
<td>92</td>
<td>184</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E12902380610</td>
<td>STOCK</td>
<td>10</td>
<td>244</td>
<td>488</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E1290308611</td>
<td>STOCK</td>
<td>11</td>
<td>52</td>
<td>104</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129031018013</td>
<td>STOCK</td>
<td>14</td>
<td>4</td>
<td>8</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129031301014</td>
<td>STOCK</td>
<td>14</td>
<td>24</td>
<td>48</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129082520112</td>
<td>STOCK</td>
<td>12</td>
<td>216</td>
<td>432</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129082520119</td>
<td>STOCK</td>
<td>19</td>
<td>236</td>
<td>472</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E12908252000</td>
<td>STOCK</td>
<td>20</td>
<td>236</td>
<td>472</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129033201021</td>
<td>STOCK</td>
<td>14</td>
<td>248</td>
<td>496</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T128531401017</td>
<td>STOCK</td>
<td>17</td>
<td>93</td>
<td>186</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T19802510116</td>
<td>STOCK</td>
<td>16</td>
<td>250</td>
<td>500</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>811</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T19802510183</td>
<td>STOCK</td>
<td>13</td>
<td>146</td>
<td>292</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129010101010</td>
<td>STOCK</td>
<td>10</td>
<td>45</td>
<td>90</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129024201914</td>
<td>STOCK</td>
<td>14</td>
<td>78</td>
<td>156</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129030201012</td>
<td>STOCK</td>
<td>12</td>
<td>249</td>
<td>498</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E129030300111</td>
<td>STOCK</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj E1290303001010</td>
<td>STOCK</td>
<td>10</td>
<td>22</td>
<td>44</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T128031101915</td>
<td>STOCK</td>
<td>15</td>
<td>142</td>
<td>284</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T12809900910</td>
<td>STOCK</td>
<td>10</td>
<td>33</td>
<td>66</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T128052000111</td>
<td>STOCK</td>
<td>11</td>
<td>464</td>
<td>928</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T128531401013</td>
<td>STOCK</td>
<td>13</td>
<td>459</td>
<td>938</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
<tr>
<td>911</td>
<td>1845</td>
<td>OST_PÅ</td>
<td>Östrand</td>
<td>Kj T128531401015</td>
<td>STOCK</td>
<td>15</td>
<td>220</td>
<td>440</td>
<td>6682705,622 + 6155514,4 = 0,6553946 ≈ 65,5 %</td>
</tr>
</tbody>
</table>

Då den aktuella vikten i magasin 5 anses som fullt, kan fyllnadsgraden beräknas genom ekvation (3.5).

\[
Fyllnadsgrad = \frac{8414000}{6682705,622 + 6155514,4} = 0,6553946 \approx 65,5 \%
\]

Fyllnadsgrad gång 11

Aktuell vikt i magasin 9 (gång 11) av SCA Pure visas i tabell G2 som har tillhandahållits genom extern handledare på SCA Logistics.

Tabell G2: Visar data från magasin 5 (gång 8 och 9) över hur mycket massa av SCA Pure som lagras
Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung

Fyllnadsgrad

Då det endast fanns två gångar som var klassad som fyllda, användes medelvärdet av procentens fyllnadsgrad av respektive gång:

\[
\frac{0,6553946 + 0,71267097}{2} = 0,684032785 \approx 68,4 \%
\]

Fyllnadsgradens medelvärde

\[
Fyllnadsgrad = \frac{2842000}{3987815,01} = 0,71267097 \approx 71,3 \%
\]
Bilaga H: Beräkning av medelkapacitet

För att beräkna ut medelkapaciteten adderades de olika vikterna för varje produkt som får plats i varje gång och dividerades med antalet. Se tabell H1.

Tabell H1: Visar medelkapaciteten för varje gång.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Total massa SCA Pure (kg)</th>
<th>Total massa SCA Star (kg)</th>
<th>Total massa Färdigvara Renewcell (kg)</th>
<th>Medelkapacitet (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 141 726,52</td>
<td>9 064 756,809</td>
<td>14 934 626,11</td>
<td>12 380 370</td>
</tr>
<tr>
<td>2</td>
<td>13 141 726,52</td>
<td>9 064 756,809</td>
<td>14 934 626,11</td>
<td>12 380 370</td>
</tr>
<tr>
<td>3</td>
<td>19 940 794,08</td>
<td>13 754 543,49</td>
<td>22 661 276,93</td>
<td>18 785 538</td>
</tr>
<tr>
<td>4</td>
<td>23 655 107,73</td>
<td>16 316 562,26</td>
<td>26 882 327</td>
<td>22 284 666</td>
</tr>
<tr>
<td>5</td>
<td>22 472 352,35</td>
<td>15 500 734,14</td>
<td>25 538 210,65</td>
<td>21 170 432</td>
</tr>
<tr>
<td>6</td>
<td>22 800 895,51</td>
<td>15 727 353,06</td>
<td>25 911 576,3</td>
<td>21 479 942</td>
</tr>
<tr>
<td>8</td>
<td>4 571 189,738</td>
<td>3 153 065,409</td>
<td>5 194 828,054</td>
<td>4 306 361</td>
</tr>
<tr>
<td>9</td>
<td>4 210 573,658</td>
<td>2 904 323,582</td>
<td>4 785 013,841</td>
<td>3 966 637</td>
</tr>
<tr>
<td>10</td>
<td>3 752 140,512</td>
<td>2 588 110,566</td>
<td>4 264 037,573</td>
<td>3 534 763</td>
</tr>
<tr>
<td>11</td>
<td>2 727 796,207</td>
<td>1 881 549,521</td>
<td>3 099 944,014</td>
<td>2 569 763</td>
</tr>
</tbody>
</table>

Tabell H2: Medelkapaciteten i gångarna för nuläget.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Medelkapacitet (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12 380</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11 142,5</td>
</tr>
<tr>
<td>5</td>
<td>21 170</td>
</tr>
<tr>
<td>6</td>
<td>21 480</td>
</tr>
<tr>
<td>8</td>
<td>4 306</td>
</tr>
<tr>
<td>9</td>
<td>3 967</td>
</tr>
<tr>
<td>10</td>
<td>3 535</td>
</tr>
<tr>
<td>11</td>
<td>2 570</td>
</tr>
</tbody>
</table>

I modellen för framtiden adderades en stuffningsstation, därmed måste kapaciteten i gång 6 minskas för att utrymmet av stuffningsstationen ska tas i hänsyn. Genom att gång 3 och gång 4 hade haft överensstämmande kapaciteter om inte gång 3 hade en stuffningsstation kunde ett antagande göras över hur mycket utrymme en ny stuffningsstation i gång 6 skulle ta upp.
Beräkningar gjordes därmed för att framställa skillnaden i procent för gång 3 och gång 4, med hjälp av deras medelkapacitet. Kvoten är följande:

\[
\frac{18\,785\,538}{22\,284\,666} = 0,8429
\]

Därmed kan den nya medelkapaciteten för gång 6 beräknas genom att multiplicera dess nuvarande med kvoten för gång 3 och gång 4:

\[
21479942 \times 0,8429 = 18107171 \approx 18107\text{ ton}
\]

Medelkapaciteten för den framtida optimeringsmodellen visas i tabell H3.

Tabell H3: Medelkapaciteten för framtiden.

<table>
<thead>
<tr>
<th>Gång</th>
<th>Medelkapacitet (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 380</td>
</tr>
<tr>
<td>2</td>
<td>12 380</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>11 142,5</td>
</tr>
<tr>
<td>5</td>
<td>21 170</td>
</tr>
<tr>
<td>6</td>
<td>18 107</td>
</tr>
<tr>
<td>8</td>
<td>4 306</td>
</tr>
<tr>
<td>9</td>
<td>3 967</td>
</tr>
<tr>
<td>10</td>
<td>3 535</td>
</tr>
<tr>
<td>11</td>
<td>2 570</td>
</tr>
</tbody>
</table>
Bilaga I: Beräkning av planerad mängd utleverans

Den aktuella mängden av gods för gångarna vid ett visst tillfälle och den planerade mängden utleverans för ett år är givet av extern handledare. Beräkningar av procenten för en produkt som går ut på antingen roro eller breakbulk-fartyg beräknades på följande sätt:

\[
\text{Delen} \quad \frac{\text{Det hela}}{\text{Procenten}}
\]

När procenten är bestämd beräknades hur stor mängd av gods som fanns tillgängligt i gångarna som kommer att levereras ut på roro eller breakbulk-fartyg genom att den totala tonen multiplicerades med den givna procenten. Se figur I1 för de värden som använts.

<table>
<thead>
<tr>
<th>Aktuell mängd ton av varje produkt i varje gång</th>
<th>Planerad utleverans på ett år</th>
<th>Pure(ton)</th>
<th>Star(ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gång 2</td>
<td>Roro</td>
<td>49155</td>
<td>18348</td>
</tr>
<tr>
<td>Gång 3</td>
<td>Bulk</td>
<td>591615</td>
<td>75581</td>
</tr>
<tr>
<td>Gång 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gång 5</td>
<td>7671</td>
<td>6265</td>
<td></td>
</tr>
<tr>
<td>Gång 6</td>
<td>11035</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Gång 7</td>
<td>4 356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gång 8</td>
<td>4 098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gång 9</td>
<td>1 785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gång 10</td>
<td>2 842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gång 11</td>
<td></td>
<td>33864</td>
<td>10350</td>
</tr>
</tbody>
</table>

36 078 12 808 Total ton

Figur I1: Värden på de data och beräkningar som gjort för den planerade mängd utleverans.
Bilaga J: Beräkning av minskad körsträcka för år 2023

För beräkning av minskad körsträcka för år 2023 behövdes tonen som fanns i nuläget jämföras med den totala mängd ton som är planerade att levereras ut för år 2023. Det var 6,7 % av totala mängden ton som lagrades i gångarna för tillfället då data hämtades. Då sträckan minskades med 43 484 meter för 6,7 % av godsen kunde det beräknas hur stor sträcka som skulle vara möjlig att minska för 2023 om minskningen är kontinuerlig och gods placeras på liknande sätt. Det framkom att den totala sträckan som skulle minskats för år 2023 var 64 4873 meter, cirka 645 kilometer. Se figur J1 för värdena och resultaten.

<table>
<thead>
<tr>
<th>Planerad utleverans</th>
<th>Pure (ton)</th>
<th>Star (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RORO</td>
<td>2814</td>
<td>2513</td>
</tr>
<tr>
<td>Bulk</td>
<td>33864</td>
<td>10350</td>
</tr>
<tr>
<td>Total</td>
<td>36678</td>
<td>12863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planerad utleverans på ett år</th>
<th>Pure (ton)</th>
<th>Star (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RORO</td>
<td>49155</td>
<td>18348</td>
</tr>
<tr>
<td>Bulk</td>
<td>551615</td>
<td>75581</td>
</tr>
<tr>
<td>Total</td>
<td>640770</td>
<td>93929</td>
</tr>
</tbody>
</table>

Procent av gods för nuläget 6,7%

Minskad körsträcka för nuläget 43484

Minskad körsträcka för 2023 644873

Figur J1: Värden på de data och beräkningar som gjorts för att beräkna minskad körsträcka för 2023.
Bilaga K: Känslighetsanalys för ett ton av SCA Pure
Med hjälp av resultatet från LINGOs utdata som visas i figur K1 kan det tolkas hur förändringar av ett ton påverkar den totala körsträckan med hänsyn till den lägsta och högsta tillåtna förändringen som visas i figur K2. Om förändringen skulle vara mer än det tillåtna gäller inte samma dualpriser. Dualpriset påvisar hur stor påverkan ett ton har på den totala körsträckan. Målfunktionens värde visas först i båda figurerna, sedan visas bivillkoren 4.2, 4.3 och 4.4 med dess mängder Q, GQ, DQ. Till exempel är $Q4$ mängden Q och bivillkor 4.2.

<table>
<thead>
<tr>
<th>Row</th>
<th>Slack or Surplus</th>
<th>Dual Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALFUNKTIONEN</td>
<td>287289.4</td>
<td>-1.000000</td>
</tr>
<tr>
<td>042(1)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>042(2)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>042(3)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(1,1)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(1,2)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(1,3)</td>
<td>0.000000</td>
<td>154.4531</td>
</tr>
<tr>
<td>G043(2,1)</td>
<td>0.000000</td>
<td>-1.093750</td>
</tr>
<tr>
<td>G043(2,2)</td>
<td>0.000000</td>
<td>-1.093750</td>
</tr>
<tr>
<td>G043(2,3)</td>
<td>0.000000</td>
<td>135.7031</td>
</tr>
<tr>
<td>G043(3,1)</td>
<td>0.000000</td>
<td>-0.875000</td>
</tr>
<tr>
<td>G043(3,2)</td>
<td>0.000000</td>
<td>-0.743750</td>
</tr>
<tr>
<td>G043(3,3)</td>
<td>0.000000</td>
<td>113.8281</td>
</tr>
<tr>
<td>G043(4,1)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(4,2)</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(4,3)</td>
<td>0.000000</td>
<td>101.3281</td>
</tr>
<tr>
<td>G043(5,1)</td>
<td>0.000000</td>
<td>-1.171875</td>
</tr>
<tr>
<td>G043(5,2)</td>
<td>0.000000</td>
<td>-1.171875</td>
</tr>
<tr>
<td>G043(5,3)</td>
<td>0.000000</td>
<td>76.32812</td>
</tr>
<tr>
<td>G043(6,1)</td>
<td>0.000000</td>
<td>-1.796875</td>
</tr>
<tr>
<td>G043(6,2)</td>
<td>0.000000</td>
<td>-1.796875</td>
</tr>
<tr>
<td>G043(6,3)</td>
<td>0.000000</td>
<td>-1.796875</td>
</tr>
<tr>
<td>G043(8,1)</td>
<td>0.000000</td>
<td>-4.218750</td>
</tr>
<tr>
<td>G043(8,2)</td>
<td>0.000000</td>
<td>-4.218750</td>
</tr>
<tr>
<td>G043(8,3)</td>
<td>0.000000</td>
<td>62.26562</td>
</tr>
<tr>
<td>G043(9,1)</td>
<td>0.000000</td>
<td>-4.468750</td>
</tr>
<tr>
<td>G043(9,2)</td>
<td>0.000000</td>
<td>-4.468750</td>
</tr>
<tr>
<td>G043(9,3)</td>
<td>0.000000</td>
<td>76.32812</td>
</tr>
<tr>
<td>G043(10,1)</td>
<td>0.000000</td>
<td>-3.906250</td>
</tr>
<tr>
<td>G043(10,2)</td>
<td>0.000000</td>
<td>-3.906250</td>
</tr>
<tr>
<td>G043(10,3)</td>
<td>0.000000</td>
<td>88.82812</td>
</tr>
<tr>
<td>G043(11,1)</td>
<td>0.000000</td>
<td>-3.046875</td>
</tr>
<tr>
<td>G043(11,2)</td>
<td>0.000000</td>
<td>-3.046875</td>
</tr>
<tr>
<td>G043(11,3)</td>
<td>0.000000</td>
<td>102.8906</td>
</tr>
<tr>
<td>D044(12,1)</td>
<td>0.000000</td>
<td>-9.296875</td>
</tr>
<tr>
<td>D044(12,2)</td>
<td>0.000000</td>
<td>-11.17188</td>
</tr>
<tr>
<td>D044(12,3)</td>
<td>0.000000</td>
<td>-11.17188</td>
</tr>
<tr>
<td>D044(13,1)</td>
<td>0.000000</td>
<td>-3.593750</td>
</tr>
<tr>
<td>D044(13,2)</td>
<td>0.000000</td>
<td>-5.093750</td>
</tr>
<tr>
<td>D044(13,3)</td>
<td>0.000000</td>
<td>85.70312</td>
</tr>
<tr>
<td>D044(14,1)</td>
<td>0.000000</td>
<td>-5.468750</td>
</tr>
<tr>
<td>D044(14,2)</td>
<td>0.000000</td>
<td>-6.218750</td>
</tr>
<tr>
<td>D044(14,3)</td>
<td>0.000000</td>
<td>57.57812</td>
</tr>
</tbody>
</table>

Godsplacering för minskad körsträcka i en intermodal terminal
En studie om att optimera placering av gods hos SCA Logistics
Erik Edvall Ung

Figur K2: Tillåtet området för förändringar utan att baslösningen för optimeringen förändras.

För att analysera hur mycket den totala körsträckan påverkas av en minskning eller ökning av ett ton SCA Pure analyserades mängden DQ, där 12,13,14 är de olika utleveranssätten och 1 är produkten SCA Pure. Om vi analyserar påverkan som ett ton SCA Pure har på utleveranssättet breakbulk-fartyg (DQ(14,1)) resulterar det i en förändring på den teoretiska körsträckan med ca 5,5 meter. Det vill säga om behovet ökar med ett ton ökar körsträckan med 5,5 meter och tvärtom om behovet minskar.

Tabell J1 visar hur stor påverkan ett ton SCA Pure har på den totala körsträckan för de olika utleveranssätten.

<table>
<thead>
<tr>
<th>Row</th>
<th>Current RHS</th>
<th>Allowable Increase</th>
<th>Allowable Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>G043(1, 1)</td>
<td>0.000000</td>
<td>12380.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(1, 2)</td>
<td>0.000000</td>
<td>12380.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(1, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(2, 1)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1672.000</td>
</tr>
<tr>
<td>G043(2, 2)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1672.000</td>
</tr>
<tr>
<td>G043(2, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(3, 1)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1672.000</td>
</tr>
<tr>
<td>G043(3, 2)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1672.000</td>
</tr>
<tr>
<td>G043(3, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(4, 1)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>3613.000</td>
</tr>
<tr>
<td>G043(4, 2)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(4, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(5, 1)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(5, 2)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(5, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(6, 1)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(6, 2)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(6, 3)</td>
<td>0.000000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(8, 1)</td>
<td>0.000000</td>
<td>3944.000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(8, 2)</td>
<td>0.000000</td>
<td>3944.000</td>
<td>362.0000</td>
</tr>
<tr>
<td>G043(8, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(8, 4)</td>
<td>0.000000</td>
<td>3944.000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(9, 2)</td>
<td>0.000000</td>
<td>3944.000</td>
<td>362.0000</td>
</tr>
<tr>
<td>G043(9, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(10, 1)</td>
<td>0.000000</td>
<td>3535.000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(10, 2)</td>
<td>0.000000</td>
<td>3535.000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(10, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(11, 1)</td>
<td>0.000000</td>
<td>2570.000</td>
<td>1941.000</td>
</tr>
<tr>
<td>G043(11, 2)</td>
<td>0.000000</td>
<td>2570.000</td>
<td>0.000000</td>
</tr>
<tr>
<td>G043(11, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1941.000</td>
</tr>
<tr>
<td>D044(12, 1)</td>
<td>258.0000</td>
<td>7529.500</td>
<td>258.0000</td>
</tr>
<tr>
<td>D044(12, 2)</td>
<td>4291.000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>D044(12, 3)</td>
<td>5000.000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>D044(13, 1)</td>
<td>11422.000</td>
<td>7529.500</td>
<td>1672.000</td>
</tr>
<tr>
<td>D044(13, 2)</td>
<td>2630.000</td>
<td>7529.500</td>
<td>1672.000</td>
</tr>
<tr>
<td>D044(13, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>D044(14, 1)</td>
<td>41718.000</td>
<td>7529.500</td>
<td>1941.000</td>
</tr>
<tr>
<td>D044(14, 2)</td>
<td>4329.000</td>
<td>3944.000</td>
<td>362.0000</td>
</tr>
<tr>
<td>D044(14, 3)</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

71
Tabell J1: Ett ton av SCA Pures påverkan på den totala körsträckan.

<table>
<thead>
<tr>
<th>Utleveranssätt</th>
<th>Skillnad i körsträcka för en ökning/minskning av ett ton SCA Pure (dualpriset)</th>
<th>Tillåten minskning av totala ton för samma dualpris</th>
<th>Tillåten ökning av totala ton för samma dualpris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>±9,296875</td>
<td>258</td>
<td>7529,5</td>
</tr>
<tr>
<td>Roro</td>
<td>±3,593750</td>
<td>1672</td>
<td>7529,5</td>
</tr>
<tr>
<td>Bulk</td>
<td>±5,468750</td>
<td>1941</td>
<td>7529,5</td>
</tr>
</tbody>
</table>