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Sammanfattning 
Fordonsindustrin är inne i ett skifte, där förbränningsmotorer (ICE) bör-

jar fasas ut och det satsas mer på eldrift med hjälp av batterier (BEV).  

I detta arbete, som efterfrågades av Volvo Cars, utvecklades en matema-

tisk modell som uppskattar den lägsta temperaturen i en elbils högspän-

ningsbatteri. Modellen delades initialt upp i två delar, där den ena delen 

utgick från hur omgivningstemperaturen samt fordonets hastighet på-

verkar eventuell värmeövergång mellan batteri och omgivning. Den 

andra delen utgick från hur batteriets kylsystem påverkar batteriets 

temperatur, där kylsystemets temperatur och flöde var de styrande fak-

torerna. De styrande variablerna filtrerades med lågpassfilter där olika 

tidskonstanter användes. Den del som för varje tillfälle visade lägst tem-

peratur var gällande. Modellen togs fram med hjälp av mätdata från 

testkörningar i kallt klimat där testbilens batteri var preparerad med ett 

antal externa temperatur sensorer, och de preparerade sensorerna an-

sågs visa batteriets verkliga temperatur.  Tidiga resultat visade att mo-

dellen för omgivningstemperatur och hastighet visade relativt bra vär-

den men saknade inflytande från kylsystemets dynamik medan mo-

dellen för kylsystemet fungerade mindre bra i de flesta fall. Modellen 

modifierades därför till att ha hastighet och omgivningstemperatur som 

basfunktion och kylsystemets påverkan adderades. Resultatet visade att 

den senare modellen hanterade systemets dynamik bättre än tidigare 

modell.  

Nyckelord: BEV, lågpassfilter, temperaturestimering 
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Abstract 
The automotive industry is shifting from internal combustion engines 

(ICE) cars to battery electric vehicles (BEV). In this work, requested by 

Volvo Cars, a mathematical model was developed that estimates the 

lowest temperature of an electric car's high-voltage battery. The model 

was initially divided into two parts, where one part was based on how 

the ambient temperature and the vehicle's speed affect any heat transfer 

between battery and surroundings. While the second part was based on 

how the battery's cooling system affects the battery temperature, where 

the cooling system temperature and flow were the controlling factors. 

The controlling variables were filtered with low-pass filters where dif-

ferent time constants were used. The part that showed the lowest tem-

perature for each occasion was valid. The model was developed using 

measurement data from test runs in cold climates where the test car's 

battery was prepared with more temperature sensors than are in a pro-

duction battery and the prepared sensors were considered to show the 

battery's actual temperature. Early results showed that the ambient tem-

perature and speed model showed relatively good values but lacked in-

fluence from the cooling system, while the model for the cooling system 

worked less well in most cases. The model was therefore modified to 

have speed and ambient temperature as the base function and the cool-

ing system's impact was added. The results showed that the latter model 

handled the dynamics of the system better than the previous model. 

Keywords: BEV, temperature estimation, lowpass filter 
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Terminology 

Acronyms / Abbreviations 

BEV Battery electric vehicle. 

BMS Battery management system 

BTMS Battery thermal management system 

C-rate Charge/discharge-rate, (charge/discharge cur-

rent divided by the nominally rated battery ca-

pacity)  

ICE Internal combustion engine 

LIB Lithium-ion battery 

SOC State of charge 

SOH State of health 



1 Introduction 
The high-voltage battery is a crucial part in a BEV, therefore the longev-

ity of the traction battery is important. Thermal management plays an 

important role keeping the battery within a specified temperature range 

to maintain reasonable power-limits for the user of the vehicle without 

damaging the battery. The focus of this study is to develop a model that 

keeps track of the lowest temperature of the traction battery for a pro-

duction BEV. 

1.1 Background and problem motivation 

To reach the climate goal of the Paris Agreement where the goal is to 

reach net zero emissions of greenhouse gases by 2050 [1] car companies 

are moving away from combustion engines (ICE) to focus more on bat-

tery-electric vehicles (BEV). For this transition, automotive companies 

need to make electric cars with similar performance and affordability as 

the combustion engine vehicles while also having a lower environmen-

tal footprint. Some of the issues today is the range anxiety, charging 

time and battery longevity. A long lifetime for car-batteries in such vehi-

cles would be beneficial not only for technical and economic reasons but 

also for environmental aspects. When designing electric vehicles today it 

is important to try to preserve the SOH of the battery. Through testing 

the performance of the batteries, it is possible to learn about its physical 

limits and how fast it ages under different scenarios.  

The most important factors is the temperature and current. To prevent 

certain problems that can occur in a battery due to unwanted tempera-

ture levels, one need to know the critical levels of the battery. [2]  

1.2 Overall aim 

The primary aim was to develop a mathematical model to estimate the 

minimum temperature of the traction battery of a BEV. The outcome of 

the calculations was to be compared with a prior model and matched to 

a set of measurement data containing temperature readings, not only 

from sensors in production battery modules, but also from additional 

sensors that where in advance mounted on selected location in the bat-

tery pack for test purpose. The aim with the model was to match the 

readings of these additional sensors as good as possible.  



A model was given to approach the problem and should be used as at 

first hand, but there was also room for own ideas. 

The model was intended, if the project was successful and time was suf-

ficient, to be implemented in a test vehicle for on-board real-time esti-

mation of the lowest temperature for the traction battery pack, to apply 

power limitations for driving and charging for the purpose of prevent-

ing battery damage and prolong battery life.  

1.3 Scope 

The battery pack was considered as one unit and the geometry of cells 

and cell-modules was not considered. The model should use ambient 

temperature, vehicle speed, inlet coolant temperature and coolant flow 

as input. At the time of this project there were only measurement data 

available for cold climate, hot climate is therefore not taken into consid-

eration. As the model was meant to estimate the lowest temperature of 

the battery, heat generated from the battery was also left out. 

The model was to be developed in MATLAB or Simulink. 

1.4 Concrete and verifiable goals 

Design a model that estimates the minimum temperature for the high-

voltage battery pack of BEV with a better precision than the previous 

model. 

The temperature should be as close to the minimum measured tempera-

ture using external sensors, but never overestimated.  

How does the cooling system the battery affect the minimum tempera-

ture, and how much does the flowrate of the coolant system? 

How does the ambient temperature surrounding the vehicle affect the 

minimum temperature and does the speed of the vehicle play a part?  

1.5 Contributions 

Me and Emil hade the same goal but different focus areas of the pro-

ject. Emil looked at case by case and focused deeply on the relationship 

between the variables, modeling scripts after thought out assumptions 

in a mathematical sense while I focused on the filtering of the variables 



 

 

 

and completing the picture. Emil made a great contribution for finding 

reasonable values for the heat transfer coefficients. 

I worked on developing a script for structuring measurement data and 

for plotting with overview perspective in MATLAB. Emil started early 

finding the relations between input variables for specific scenarios. 

The measurement data and a mathematical model was provided by the 

employer of the study (Volvo Cars). 



 

 

 

2 Theory / Related work 
As the primary battery of a BEV is an essential part of the vehicle it’s im-

portant to ensure that the battery lasts as long as possible. It’s expensive 

and contains a variety of different materials which are not all easy to ex-

tract from the ground, even though there is a lack of research for total 

environmental impact of LIB-production, its fairly well-known that pro-

duction of LIBs is connected to pollution and ethical issues [3] [4]. 

Therefore, the importance of keeping the lifespan as long as possible. 

The traction battery in a modern BEV is usually a lithium-based battery 

but the composition of lithium and other compounds can vary. [5] 

Temperature measurements for batteries is complex, as the core temper-

ature not always matches the surface temperature. Previous studies 

have shown that there are several ways to estimate the temperature of a 

LIB [6] [7]. However, these studies are mainly estimated temperature re-

lated to the generated heat due to the internal resistance. 

2.1 Lithium plating 

Lithium plating is a phenomenon that can occur in LIBs when they are 

charged in low temperatures. Most BEV batteries have graphite anodes 

and lithium plating refers to the metallic lithium deposition on the 

graphite anodes. Lithium plating is strongly connected to battery ageing 

and along with it comes power output reduction and potentially safety 

hazards. As temperature and C-rate is related to lithium plating its im-

portant with accurate temperature estimations and power limitations to 

maintain reasonable battery longevity [8] [9]. 

2.2 Heat transfer 

The cooling plates of the BTMS is located underneath the cell modules 

and heat is transferred via conduction. The heat transfer between the 

cooling plates and the cell-modules is considered as linear. 

The cooling plates is slightly elevated from the bottom plate of the bat-

tery pack casing and therefore the heat transfer between bottom plate 

and the cooling plates via convection. 

The battery case is located under the car and the bottom plate of the cas-

ing is exposed to the surrounding air, the heat transfer between the am-

bient air and the battery case is transferred via convection which 

changes with the vehicle speed. When the vehicle is moving, forced 



 

 

 

convection is occurring and the heat transfer is considered as nonlinear 

to the speed. [10] 

As the cooling plates is attached to the cell modules, the impact of 

changes in the coolant temperature is assumed influence the battey tem-

perature faster than changes in the ambient temperature and speed.  

2.3 Generated heat 

When current flows through the battery cells they will generate heat due 

to the internal resistance of the cells. For calculating the generated heat, 

it is preferred that the BMS reads the internal resistance continuously as 

the internal resistance of a LIB is variating with the battery temperature 

and with SOC which makes it difficult to calculate [11]. The generated 

heat can be referred to as 𝐼2𝑅 losses and relates to ohm’s law. 

𝑼 = 𝑰 ∙ 𝑹 

Eq 1 

𝑷 =  𝑼 ∗ 𝑰 

Eq 2 

𝑷𝒉𝒆𝒂𝒕𝑮𝒆𝒏 = 𝑰𝟐 ∙ 𝑹𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 

Eq 3 

 

 

 

  

2.4 Mathematical formulas 

 

2.4.1 MATLAB Polyfit 

The polyfit function in Matlab was used for curve fitting, using least 

squares regression method. 

This method is a classic part of regression, and it is a set of formulas that 

are usable when trying to find the relations of two different variables [b] 

The classic linear regression method tries to find the relation of variable 

X and variable Y by fitting it into a curve according to the formula: 



 

 

 

�̂� = 𝒂 ∙ 𝑿 + 𝒃 

Eq 4 

 
  

�̂� is the regressed function of the data input X 

The letter a is the slope of the curve and b is the offset from 0 when X is 

0.  

The point is to be able to minimize the error by finding the best possible 

values for a and b. The least squares method is shown below where the 

error for a data set of i length is expressed below. Y and X are the re-

spective input variables and  is derived from the formula above. 

𝜺 = ∑(𝒀𝒊 − 𝒀�̂�)
𝟐

=

𝒊

∑(𝒀𝒊(𝒂 ∙ 𝑿𝒊 + 𝒃))𝟐

𝒊

 

Eq 5 

By using the derivative of  with respect to a and b and put the formulas to 0 you get 

the definition of the normal equations 

𝝏𝜺

𝝏𝒃
= 𝟐𝑵𝒃 + 𝟐𝒂 ∑ 𝑿𝒊 − 𝟐 ∙ ∑ 𝒀𝒊 = 𝟎 

Eq 6 

  

𝝏𝜺

𝝏𝒂
= 𝟐𝒂 ∑ 𝑿𝒊

𝟐 − 𝟐 ∙ ∑ 𝒀𝒊𝑿𝒊 = 𝟎 

Eq 7 

Solving for these equations gives the estimates of a and b. 

 



 

 

 

𝒃 = 𝒀𝒎𝒆𝒂𝒏 − 𝒂𝑿𝒎𝒆𝒂𝒏 
 

Eq 8 

𝒂 = ∑
(𝒀𝒊 − 𝒀𝒎𝒆𝒂𝒏)(𝑿𝒊 − 𝑿𝒎𝒆𝒂𝒏)

∑(𝑿𝒊 − 𝑿𝒎𝒆𝒂𝒏)𝟐
 

 

Eq 9 

[12] 

2.4.2 Lowpass filter 

The formulas below were used for filtering signals and functions. The for-

mula was provided by Volvo. 

As all used variables converted vid a raster of 100 ms the sample time for 

all filter was the same. 

𝑡𝑠𝑎𝑚𝑝𝑙𝑒 = 1/10 

 

𝜏 = 𝑡𝑖𝑚𝑒𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where the time-constant is the time for a step response to reach 63% of 

the step.  

𝒌 =
𝑻𝒔𝒂𝒎𝒑𝒍𝒆

𝝉
 

 

Eq 10 

𝑭𝒇𝒊𝒍𝒕𝒆𝒓𝒊
= 𝑭𝒊−𝟏 ∗ (𝟏 − 𝒌) + 𝑭𝒊 ∗ 𝒌  

Eq 11 

                 



 

 

 

2.4.3 Given model 

The given model was provided by Volvo and was used as an initial ap-

proach for the project. 

𝑻𝑴𝒊𝒏𝑪𝒐𝒐𝒍𝒕 = 𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝒌𝟐 ∙ 𝑴𝑨𝑿(𝟎, 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑪𝒐𝒐𝒍𝒕𝒊𝒏) 

Eq 12 

𝑻𝑴𝒊𝒏𝑨𝒎𝒃 = 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝒌𝟏 ∙ 𝑴𝑨𝑿(𝟎, 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃) 

Eq 13 

𝑻𝑴𝒊𝒏 = 𝑴𝑰𝑵(𝑻𝑴𝒊𝒏𝑨𝒎𝒃, 𝑻𝑴𝒊𝒏𝑪𝒐𝒐𝒍𝒕) 

Eq 14 

The formula above, where TMin is the estimated temperature for the 

given model and is equal to lowest of either TMinAmb or TMinCoolt. 

Where TMinAmb is the part where ambient temperature and vehicle 

speed is included and TMinCoolt is calculated with respect to coolant 

temperature and coolant flow rate.  

TMinRaw is lowest measured temperature of the sensors mounted on 

top of the production battery pack and is the reference temperature for 

the model offset. 

TCooltin is the temperature of inlet coolant to the battery pack and 

TAmb is the ambient temperature.  

𝑇𝑚𝑖𝑛𝑀𝑜𝑑𝑃𝑜𝑠 is representing the lowest temperature reading from the 

additional sensors and is considered as representative to the lowest tem-

perature of the battery pack. 𝑇𝑚𝑖𝑛𝑀𝑜𝑑𝑃𝑜𝑠 is therefore the temperature 

that the new is being matched to and is the framework of the new 

model. Eq 13  and Eq 12 can therefore be expressed as:    

𝑻𝒎𝒊𝒏𝑴𝒐𝒅𝑷𝒐𝒔 = 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝒌𝟏 ∙ 𝑴𝑨𝑿(𝟎, 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃) 

Eq 15 

𝑻𝒎𝒊𝒏𝑴𝒐𝒅𝑷𝒐𝒔 = 𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝒌𝟐 ∙ 𝑴𝑨𝑿(𝟎, 𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑪𝒐𝒐𝒍𝒕𝒊𝒏) 

Eq 16 

 

 

  



 

 

 

For curve fitting of 𝑘1 and 𝑘2 the above formulas can be rewritten as: 

𝒌𝟏 =
𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝑻𝒎𝒊𝒏𝑴𝒐𝒅𝑷𝒐𝒔

𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃𝒕
 

 

Eq 17 

And  

𝒌𝟐 =
𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝑻𝒎𝒊𝒏𝑴𝒐𝒅𝑷𝒐𝒔

𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑪𝒐𝒐𝒍𝒕𝒊𝒏
 

Eq 18 

 

𝑘1 represents the heat transfer coefficient between ambient temperature 

and the battery pack and depends on vehicle speed. 

𝑘2 represents the heat transfer coefficient between the coolant system and 

the battery pack and depends on the coolant flow rate.  



 

 

 

3 Methodology  
The studied related work was mainly focusing on temperature estima-

tion related to the generated heat within the battery cell, and the focus of 

this work was to estimate the lowest temperature of the battery pack, 

therefore the given model was chosen as a first approach. 

3.1 Measurement data 

The data was provided by Volvo and came from a cold climate expedi-

tion in Jokkmokk, Sweden. The data came in MF4 format, containing 

thousands of variables, from various test drives and charge cycles per-

formed during 12 days and distributed over 61 files.  

In ETAS MDA the needed variables for the project could be sorted out 

and the measurement files was converted to .dat files, using a fixed ras-

ter off 100 ms for all needed variables. A list of the variables related to 

this project is shown in appendix 2. Conversion was performed for 

MATLAB compatibility. In MATLAB all .dat files was imported using 

the program MDF Import and a script was made to sort all data in a sin-

gle struct, containing all measurement data sorted day by day. This was 

done to be able to plot measurements stretching over several files, as the 

maximum time for each measurement file was two hours. And for the 

most days there where more than one measurement performed. A script 

for plotting the desired variables was developed and this gave the abil-

ity to get a good overview of long periods of measurements and simpli-

fied the discovery of desired scenarios. 

3.2 Ambient heat transfer 

For the ambient part of the given model Eq 15, appropriate driving sce-

narios was selected where the cooling system was relatively inactive 

and therefore should have low impact on the battery temperature. In 

this way the ambient temperature and speed could be isolated for calcu-

lating 𝑘1 using Eq 17. 

𝑘1 was plotted for the selected scenarios to validate the plausibility of 

this approach and as the heat transfer coefficient 𝑘1 was assumed to be 

related to the vehicle speed and considered as non-linear, 𝑘1 was loga-

rithmized before polyfit function was used. The outcome of the selected 

scenarios was saved and can be seen in appendix 1.  



 

 

 

3.3 Cooling system heat transfer 

For the coolant system part of the given model, Eq 16, the aim was to 

find scenarios where speed and ambient temperature was fairly con-

stant, and the cooling system was cooling the battery.  

The same method as for the ambient heat transfer coefficient was used 

for finding 𝑘2, but as the heat conductions between the cooling system 

and the battery is considered as linear, 𝑘2 was not logarithmized before 

using polyfit. A chart of the results can be seen in appendix 1. 



 

 

 

4 Design / Implementation 
The ambient model described in 3.3 showed relatively good results in an 

early design, but the model for the cooling system, described in 3.4, did 

not and an overlap of these two functions did not seem to complete the 

model. A decision was made to try out another approach for further 

testing and comparison. 

Rather than having two separate sub-models and choosing the model 

that estimates the lowest temperature, the new approach was to use the 

ambient model as a base and add a component representing the contri-

bution from the cooling system. 

As 𝑘1 was considered as nonlinear the TMinAmb model rewritten as: 

𝑻𝑴𝒊𝒏𝑵𝒆𝒘 = 𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝒆𝒂 ∗ 𝒆𝒃∗𝑺𝒑𝒆𝒆𝒅 ∙ (𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃) 

Eq 19 

 

Where 𝑒𝑎 is the constant part of 𝑘1 and 𝑒𝑏∙𝑆𝑝𝑒𝑒𝑑  representing the in-

crease of 𝑘1 related to vehicle speed. 

4.1 Speed filtering 

For Eq 19, filters were added to both the Speed and TAmb raw inputs 

for smoother estimation due to fluctuations in in both speed and tem-

perature. 

𝑻𝑴𝒊𝒏𝑵𝒆𝒘 = 𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝒆𝒂 ∗ 𝒆𝒃∗𝑺𝒑𝒆𝒆𝒅𝒇𝒊𝒍𝒕 ∙ (𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃𝒇𝒊𝒍𝒕) 

Eq 20 

 

 



 

 

 

4.2 Physical setup 

The layout of the battery pack from the measurement data. The pictures 

below show the location of the external thermocouples:  

Figure 1. Battery pack showing locations of external thermocouples. 

 

Figure 2. Cell-module showing location of external thermocouples 

  



 

 

 

4.3 Cooling system seen as a contribution 

As the given model for coolant only deviates from TminRaw when the 

coolant temperature is lower than TminRaw, and is not really taken ac-

count for until the TMinCoolt is lower than TMinAmb, except that the 

BTMS will influence the cell module temperature sensor but as the 

BTMS influences on the battery from below, and the cell module tem-

perature sensors is located at the top of the cells there might be a delay. 

And therefore the coolant system was chosen to be added as a compo-

nent to TMinAmb instead, both as heating and cooling. Meaning that 

the delta temperature between TminRaw and Cooltin was scaled, fil-

tered and added to TMinAmb, this variable is called ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙. This 

could potentially pick up the dynamics from the temperature changes in 

the BTMS faster than the given model.  

𝑻𝑴𝒊𝒏𝑵𝒆𝒘 = 𝑻𝒎𝒊𝒏𝑹𝒂𝒘 − 𝒆𝒂 ∗ 𝒆𝒃∗𝑺𝒑𝒆𝒆𝒅𝑭𝒊𝒍𝒕 ∙ (𝑻𝑴𝒊𝒏𝑹𝒂𝒘 − 𝑻𝑨𝒎𝒃)
+ 𝒉𝒆𝒂𝒕𝒄𝒐𝒐𝒍 

 

Eq 21 

 



 

 

 

5 Results 
The final results of the model were achieved after testing and comparing 

the different values for 𝑘1 that were found in method section and shown 

in appendix 1, and by tuning the filter constant and 𝑘1 for the model to 

be as close matched to the framework as possible. 

𝑇𝑀𝑖𝑛𝑁𝑒𝑤 = 𝑇𝑚𝑖𝑛𝑅𝑎𝑤 − 𝑒−1,7 ∗ 𝑒0,0055∗𝑆𝑝𝑒𝑒𝑑𝐹𝑖𝑙𝑡 + ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙 

𝑎 =  −1,7 

𝑏 = 0,0055 

Where ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙 is the delta between 𝐶𝑜𝑜𝑙𝑡𝑖𝑛 and 𝑇𝑚𝑖𝑛𝑅𝑎𝑤 with a factor 

of 0,11: 

ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙 = 𝐿𝑃𝐹((𝐶𝑜𝑜𝑙𝑡𝑖𝑛 − 𝑇𝑚𝑖𝑛𝑅𝑎𝑤) ∙ 0,11) 
 

The filter constants that were used in the final solution is shown in chart 

below. Noticeable is that constants related to the ambient heat transfer 

(Speed and TminAmb/Stand-by) is much higher than the heatcool con-

stant. 

 

 

 

 

 

 

 

 

The following section of this chapter is showing plots with both vehicle 

dynamics and model comparisons. 

 

  

Time constant (s) Variable 

500 AmbT 

1000 Speed 

10 TMinAmb 

200 TMinCoolt 

20 TMinAmbV3  

(Charging/Driving) 

1200 TMinAmb  

(Stand-by) 

100 heatcool 



 

 

 

Figure 5 and 6 below is showing the dynamics of a normal driving sce-

nario with fast charging at the end, the ambient temperature is about -10 

℃. The fluctuations of the coolant temperature and how it impacts 

TminRaw and the framework is showing in figure 5 as well as a fairly 

quick temperature rise due to fast charging between ca 10500s to 11000s.  

            Figure 5 

              Figure 6 



 

 

 

Figure 7 below shows comparison of the old model “TMin Old” and the 

two parts of the given model split up, where “Tmin AMB” is the Ambi-

ent part with a fixed 𝑘1 without speed influencing and “Tmin AMB exp 

Speed” have the speed component included. And “Tmin COOLT” is the 

TMinCoolt part. “Heating/Cooling” is the contribution from the BTMS 

referred to as the variable ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙 in the design chapter.  

Figure 7 

Figure 7 is showing that the TMin COOLT is mostly following the Tmin 

Raw line, wich is the lowest measured temperature of the production 

pack, and is not matching the curvature of the framework for the most 

part of this scenario. Only when heavy cooling is going on the TMin 

COOLT is a fairly good match to the framework. This is a representative 

behavior of the TMin COOLT for the most tested scenarios. 

The ambient submodel  Tmin AMB and Tmin AMB exp Speed is a better 

match to the framework but is not picking up 

Further on, only the “Tmin AMB exp Speed” showed in green color in 

figure 7, with the addition of “Heating/Cooling” showed in purple in 

figure 7 above, will be compared with the old model and matched with 

TminModPos as reference (blue color in figure 7). The new model, from 

here on “Tmin New” is referred to the model in the beginning of this 

chapter.  

𝑇𝑀𝑖𝑛𝑁𝑒𝑤 = 𝑇𝑚𝑖𝑛𝑅𝑎𝑤 − 𝑒−1,7 ∗ 𝑒0,0055∗𝑆𝑝𝑒𝑒𝑑𝐹𝑖𝑙𝑡 + ℎ𝑒𝑎𝑡𝑐𝑜𝑜𝑙 



 

 

 

Figure 8 below shows the final results of the new model compared to 

the old and matched to the framework. The old model is overestimating 

for the most part of this scenario while the new model is a better match 

and following the curvature of the framework more accurately.  

Figure 8 

  



 

 

 

Figure 9 and 10 is showing the dynamics of the time window just after 

what’s shown in figure 8, and figure 11 is showing the comparison be-
tween the models. The first section, til about 12500s, the vehivle is being 

charged and then the vehicle is being driven at normal speeds until about 

13900s when the vehicle is being charged again with farily low speed. 

Figure 9 

Figure 10 

 

  



 

 

 

Figure 11 below shows the comparison between the old an new model. 

The new model is slightly underestimating in the beginning and in the 

and while the old model is slightly overestimating during the driving 

part. 

Figure 11.  

 

 

 



 

 

 

Figure 12 and 13 is showing the dynamics of the time window in the be-

ginning of the same day shown in figure 8. This scenario shows a 

driving pattern with heavy accelerations followed by steady driving and 

heavy regenerative breaking done multiple times, finishes off with 

charging. The battery temperatures is lower than ambient in the 

beginning as it is increasing during this whole scenario. 

Figure 12.  

Figure 13. 



 

 

 

The comparison of the models shows that the new model slightly under-

estimates during this scenario of fairly aggressive driving. 

Figure 14. 

 

  



 

 

 

Figure 15 and 16 is showing the dynamics of a different scenario from 

2023-02-20. This scenario represents a fairly normal driving scenario for 

about 3 hours. In the beginning of the scenario the vehicle is inside a 

garage with 18℃ ,even thou that the battery is about -5℃, and then driv-

ing out to about -10℃. In the end of the session the BTMS is heating the 

battery quite a lot. 

Figure 15.  

Figure 16. 



 

 

 

Figure 17 below shows that model follows the curvature of the frame-

work well during this driving scenario which is representative of a nor-

mal driving scenario in cold ambient temperature. 

Figure 17. 

  



 

 

 

Figure 18 and 19 is showing the dynamics of a time window from the 

same day as figure 17. The vehicle drives out from a garage with 18℃ to 

about 0℃, the battery is fairly evenly tempered at about 12℃. After driv-

ing out of the garage the vehicle is being charged at moderate rate while 

the BTMS is trying to raise the temperature of the battery. 

Figure 18. 

 
Figure 19. 



 

 

 

Figure 20 is showing how the new model is following the framework 

fairly well with slight underestimation. The old model follows the ambi-

ent temperature drop in the beginning and underestimates more than 

the new model. 

Figure 20. 

  



 

 

 

Figure 21, 22 shows the dynamics of a scenario where the vehicle has 

been parked inside a garage with 23℃ overnight, and where the battery 

is evenly tempered. As the vehicle drives out of the garage the ambient 

temperature drops to about 0℃. The driving is fairly aggressive. 

Figure 21. 

Figure 22. 

 



 

 

 

In the beginning of this scenario the ambient temperature drops from 

about 23℃ to 0℃ while Tmin Raw is increasing. The new model is not 

coping with the rapid temperature drop well and struggles to match the 

framework even though that the curvature is following the framework 

fairly well. The old model is a batter match to the framework but is ini-

tialized low and strongly underestimates in the beginning and glitches 

in the middle. 

Figure 23. 

 



 

 

 

6 Discussion 
In most cases, new model is a better match to the external sensors when 

we are “adding” the heating and the cooling component from the BTMS 

rather than having two separate variables, TminAmb and TminCoolt 

and choosing the lowest of them. 

For the most scenarios, the new model also is a better match than the old 

model, with some exceptions. 

Examples of were the old model fits better than the new model was in 

scenarios where rapid ambient temperature occurred, for example when 

the car was standing indoors overnight and then drove out in a cold cli-

mate. 

Even though that the new model for the most tested scenarios where a 

better match than the old one there might be some drawbacks with the 

adding component. For the most tested scenarios the BTMS was heating, 

rather than cooling, due to the cold surrounding temperature, and for 

this the “adding” was a working way of approaching the minimal tem-

perature. It might be different for hot climate driving, where the BTMS 

probably is cooling to a greater extent and in that kind of scenario the 

new model might be overestimating the temperature.  

  

6.1 Social and ethical aspects 

The purpose of this model is to estimate the minimal temperature in the 

battery to prolong battery life and prevent lithium plating, and from a 

social point of view, prolonging battery life for BEVs is positive regard-

ing sustainability and safety. However, its unclear if this work is going 

to be implemented and if it will improve battery life at this point.  

Some of the key materials for the battery composition is mined in places 

with poor environmental laws and where working condition is not well 

regulated. This affects the local environment as well as the people work-

ing and people living in the near surroundings of these mines. Some of 

the emissions that is connected to battery manufacturing is due to a lo-

cal energy mix with a great portion coming from fossil fuels. From an 

ethical standpoint these arguments are obviously negative, but the in-

tention regarding the model is more related to maximizing battery life 

than maximizing profit from poor working conditions. Nevertheless, 

there is room for improvement regarding these aspects.  



 

 

 

7 Conclusion 
For the conclusions related to the concrete and verifiable goals the an-

swers are not very clear. 

Regarding how the cooling system and the ambient temperature affects 

the minimum temperature there is no clear answer. However, as the fi-

nal results shows with the time constants in mind, it is clear that the 

minimum temperature is affected faster from temperature changes in 

the cooling system compared to changes in ambient temperatures, 

which was assumed. 

The results shows that the new model “Tmin New” follows the desired 

curve in most cases. The estimation works well in scenarios for normal 

driving and charging, where speed and temperature in the thermal 

management system fluctuates, in most of these cases the new model es-

timates a temperature that is closer to the prepared sensors and picks up 

dynamics more accurate than the old model. However, sometimes it 

overestimates the temperature. 

The model does not handle rapid changes in ambient temperature very 

well, as the model is heavily dependent on ambient temperature. Dy-

namic filters might be a solution. 

It also tends to drift during longer periods of heavy driving scenarios 

with high speeds and full accelerations. The estimation for these scenar-

ios tends to be a bit low, adding a component for generated heat from 

the battery can possibly tackle this problem. 

More research testing and calibration is suggested. 

  



 

 

 

7.1 Future work 

 

Further development of the new model, optimizing filter constants and 

controlling factors for more accurate offset estimation. 

 

Testing the model in hotter climate conditions. 

 

Implement a factor for the thermal mass and calculations for the heat 

generated from the battery while current rushing through it. As the 

inner-resistance varies with temperature, SOC and somewhat with SOH, 

it would be beneficial to get inner-resistance readings from the BMS 

continuously to calculate the generated heat, this could possibly give the 

model ability to predict where the model is “heading” after rapid 

changes in the dynamics have occurred.    

 

Investigating the possibility to mount temperature sensors closer to the 

cooling plates, and if possible, mount them inside the battery modules 

rather than outside. And then do test expeditions to gather data. This 

could possibly give a more accurate picture of lowest temperature of the 

battery pack.  

 

Implement some kind of machine learning algorithm and feed it with as 

much data as possible to learn how the dynamics affects the battery 

temperature. Might not be suitable for production vehicles if heavy 

calculations if required but possibly for test vehicles.     
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Appendix 1: < Matlab Polyfit values> 
 

The Datafiles describes what day the measurement was taken and what 

specific measure-file that was used like (date/file-number). 

Car-state describes what is happening during this specific calculation. 

Interval describes the starting position and ending position of each calcu-

lation where each step is 100 ms. This is unanimous in all the calculations 

during the project.  

𝑘1 

Datafile Car state Interval 

(start-end) 

A-value B-

value 

Comments 

02-14/4 Standby 5703-71983 4.56e-06 0.1180 Good fit 

02-14/5 Standby 3-71983 -2.72e-06 0.1448 Good fit 

02-25/5 Standby 15120-30300 0.0035 -5.1545 Bad fit 

02-18/5 Standby 647-4663 0.0011 -0.0535 Decent fit 

02-13/1 Driving 6350-23300 -2.88e-06 0.3246 Good fit 

02-17/3 Driving 24880-30810 1.29e-04 -0.1617 Bad fit 

02-20/5 Driving 19610-52860 5.93e-06 0.2334 Good fit 

02-20/6 Driving 18049-30149 -7.09e-07 0.2211 Good fit 

02-22/4 Driving 8240-30000 4.80e-06 0.2187 Good fit 

02-24/2 Driving 3964-16590 3.32e-05 0.2529 Good fit 

02-17/5 DC charge 56680-71780 4.01e-04 -0.0401 Bad fit 

02-20/9 DC charge 3142-18350 1.62e-05 0.0265 Good fit 

02-21/1 DC charge 55690-71200 -1.93e-05 0.3074 Bad fit 

 

 

Table : Calculated values using least squares method for a function f(t)=A*t+B to 

look at linear K-values for the AmbT-part of the model. 

 

 

 

 

 

  



 

 

 

𝑘2 
 

Datafile Car state Interval (start-

end) 

A-value B-

value 

Comments 

02-14/4 Standby 8-71983 -0.0002 -2.6603 Decent fit 

02-14/5 Standby 8-71983 0.0002 -3.0980 Decent fit 

02-25/5 Standby 15120-30300 -0.0001 -0.5898 Bad fit 

02-18/5 Standby 647-4663 -1.33e-05 0.0653 Decent fit 

02-13/1 Driving 6350-23300 0.0009 2.3051 Bad fit 

02-17/3 Driving 24880-30810 -0.0068 16.7089 Bad fit 

02-20/5 Driving 19610-44130  -0.0010 0.7842 Bad fit 

02-20/6 Driving 18049-30149 -0.0001 -0.2878 Decent fit 

02-22/4 Driving 8240-30000 -0.0027  2.5847 Bad fit 

02-24/2 Driving 3964-16590 0.0015  2.4799 Bad fit 

02-17/5 DC charge 61880-69280 7.37e-05 -0.0277 Bad fit 

02-20/9 DC charge 3142-18350 0.0007 -1.0934 Bad fit 

02-21/1 DC charge 55690-71200 -2.20e-05 -0.2607 Decent fit 

 

 

 

𝐾1 exponential 

 

Datafile Car state Interval 

(start-end) 

A-value B-

value 

Comments 

02-14/4 Standby 5000-71983 
 

 0.1362 Good fit 

02-14/5 Standby 8-71983 
 

0.1350 Good fit 

02-25/5 Standby 15120-30300 
 

 2.0178 Bad fit 

02-18/5 Standby 1259-4663 
 

0.2489 Decent fit 

02-13/1 Driving 12420-23300 0.0010 0.2950 Good fit 

02-17/3 Driving 24880-30810 -0.0020 0.2256 Good fit 

02-20/5 Driving 19610-52860 0.0043 0.1741 Good fit 

02-20/6 Driving 18049-30149  -0.0007 0.2329 Good fit 

02-22/4 Driving 8240-30000 -0.0002 0.2332 Good fit 

02-24/2 Driving 3964-16590 -0.000028 0.2940 Good fit 

02-17/5 DC charge 56680-71780 
 

0.2104 Good fit 

02-20/9 DC charge 10000-18350 
 

 0.0383 Good fit 

02-21/1 DC charge 55690-71200 
 

0.1769 Good fit 

   



 

 

 

Apendix 2: Variable list 
Variable list Unit Description 

HvBattActFlow_1 L/min 
The Current Flow of the coolant-sys-
tem under the battery 

HvBattAmbT_1 
Degree 
(°C) 

The ambient surrounding tempera-
ture 

HvBattChrgnLvlForDisp_1 % The SOC Battery state level 

HvBattCooltTIntk_1 
Degree 
(°C) 

Flow in temperature of the coolant-
system 

HvBattCooltTOutl_1 
Degree 
(°C) 

Flow out temperature of the coolant-
system 

HvBattTAvg_1 
Degree 
(°C) 

Measured average temperature of 
the sensors in the battery 

HvBattTMax_1 
Degree 
(°C) 

Old model for calculated maximum 
temperature of the battery 

HvBattTMin_1 
Degree 
(°C) 

Old model for calculated minimum 
temperature of the battery 

HvBattTMinRaw_1 
Degree 
(°C) 

Sensorinput for Tminraw used in 
model 

HvChrgnIAct_1 Ampere Electrical current in the battery 

IRV_TcModBattUsgMod_ReadData_1 Unitless Car state indicator 

Mod01Pos1_1 
Degree 
(°C) 

Temp from module 1 position 1 used 
to calculate modelkey  

Mod01Pos2_1 
Degree 
(°C) 

Temp from module 1 position 2 used 
to calculate modelkey  

Mod03Pos1_1 
Degree 
(°C) 

Temp from module 3 position 1 used 
to calculate modelkey  

Mod03Pos2_1 
Degree 
(°C) 

Temp from module 3 position 2 used 
to calculate modelkey  

Mod05Pos1_1 
Degree 
(°C) 

Temp from module 5 position 1 used 
to calculate modelkey  

Mod05Pos2_1 
Degree 
(°C) 

Temp from module 5 position 2 used 
to calculate modelkey  

Mod07Pos1_1 
Degree 
(°C) 

Temp from module 7 position 1 used 
to calculate modelkey  

Mod07Pos2_1 
Degree 
(°C) 

Temp from module 7 position 2 used 
to calculate modelkey  

Mod09Pos1_1 
Degree 
(°C) 

Temp from module 9 position 1 used 
to calculate modelkey  

Mod09Pos2_1 
Degree 
(°C) 

Temp from module 9 position 2 used 
to calculate modelkey  

Mod09Pos3_1 
Degree 
(°C) 

Temp from module 9 position 3 used 
to calculate modelkey  

Mod09Pos4_1 
Degree 
(°C) 

Temp from module 9 position 4 used 
to calculate modelkey  

Mod10Pos1_1 
Degree 
(°C) 

Temp from module 10 position 1 
used to calculate modelkey  

Mod10Pos2_1 
Degree 
(°C) 

Temp from module 10 position 2 
used to calculate modelkey  

Mod12Pos1_1 
Degree 
(°C) 

Temp from module 12 position 1 
used to calculate modelkey  

Mod12Pos2_1 
Degree 
(°C) 

Temp from module 12 position 2 
used to calculate modelkey  



 

 

 

Mod14Pos1_1 
Degree 
(°C) 

Temp from module 14 position 1 
used to calculate modelkey  

Mod14Pos2_1 
Degree 
(°C) 

Temp from module 14 position 2 
used to calculate modelkey  

Mod16Pos1_1 
Degree 
(°C) 

Temp from module 16 position 1 
used to calculate modelkey  

Mod16Pos2_1 
Degree 
(°C) 

Temp from module 16 position 2 
used to calculate modelkey  

Mod17Pos1_1 
Degree 
(°C) 

Temp from module 1 position 1 used 
to calculate modelkey  

Mod17Pos2_1 
Degree 
(°C) 

Temp from module 1 position 2 used 
to calculate modelkey  

sVcCatcRx_I_HvBattI_1 Ampere Electrical current in the battery 

sVcCatcRx_Te_AmbTRaw_1 
Degree 
(°C) 

Sensorinput for Tminraw used in 
model 

sVcCatcRx_v_VehSpdLgt_1 km/h 
Sensorinput for vehicle speed used in 
model 

sVcScVehMtn_v_VehSpdLgt_1 km/h 
Sensorinput for vehicle speed used in 
model 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HeatPmpFromHvBatt_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattActvCoolg_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattActvHeatgFromClima_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattActvHeatgFromDtElec_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattBal_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattCooltFlow_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattDtElecCnct_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattHeatgAllwd_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattPasCoolgFromDtElec_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattPasHeatgFromClima_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

sVcTcThermCoorr_Bus_HvBattThermStpB_
HvBattPasHeatgFromDtElec_1 

Boo-
lean 

Boolean for understanding the wa-
terflow-system in the car 

TcEst_HvBattIAct1SlowFild_HvBat-
tIAct1SlowFild_1 Ampere 

Filtered electrical current in the bat-
tery 

TcMod_BattUsgMod_BattUsgMod_1 Unitless Car state indicator 

time_1 

Time 
(100ms
) Time input divided into 100ms raster 
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Lärosätet/DiVA utan ansvar för eventuella brott mot upphovsrättsliga regler
avseende författarens verk. Lärosätet tillhandahåller enbart en plattform,
vilket innebär att författaren är "den som publicerar" i DiVA.

4. Examinator ansvarar för att det examinerade verket i fulltext skickas till
berörd fakultetshandläggare.
Författaren ansvarar sedan själv för att verket har godkänts för publicering;
avhandlingar, examensarbeten och liknande måste vara godkända för
publicering innan de får läggas ut i DiVA. Fakultetshandläggare ansvarar för
att ladda upp och publicera godkänd fulltext i DiVA.



5. Publiceringen i DiVA vilar på icke-kommersiella grunder.
Lärosätet debiterar ej författaren några avgifter för publiceringen i DiVA.
Författaren har inte rätt till ekonomisk ersättning från Lärosätet för
publiceringen i DiVA. Lärosätet har inte rätt att ta ut avgifter för allmänhetens
användning av författarens verk i DiVA.

6. Lärosätet har rätt att ta bort författarens verk från DiVA om författaren
bryter mot Publiceringsvillkoren.
Enligt Lärosätets anvisningar för publicering i DiVA är författaren skyldig att
ta del av och godkänna Publiceringsvillkoren. Detta bekräftas genom
knapptryckning i DiVA:s registreringsmodul, vid uppladdning av fulltextfil.

7. Den som lägger upp fulltext i DiVA svarar för att samtliga författare till
verket informerats om och godkänt Publiceringsvillkoren.
Denna punkt reglerar ansvarsförhållandena vid flerförfattarverk samt sådana
fall där någon annan än författaren, på dennes uppdrag, lägger in verket i
DiVA.

8. Författaren har möjlighet att avstå från delar av sin förfoganderätt till
verket.
Genom att förse verket med särskild licens, till exempel av typen Creative
Commons, kan författaren ge användarna rättighet att använda verket inom
vidare ramar än vad som gäller enligt Upphovsrättslagen.

9. Publiceringsvillkoren gäller i tillämpliga avseenden även om Lärosätet
övergår till annan systemlösning än DiVA.
Metadata och uppladdade filer överförs i sådana fall till det nya systemet.




