
 

 

Transformation of sketchy UML Class 
Diagrams into formal PlantUML models 

Monique Axt 

 

 

Final Project 

Main field of study: Computer Engineering BA (C) 

Credits: 15 

Semester/year: Spring 2023 

Supervisor: Rodi Jolak 

Examiner: Felix Dobslaw 

Course code/registration number: DT133G 

Programme: Software Engineering 



Transformation of sketchy UML Class Diagrams
into formal PlantUML models

Monique Axt
Department of Communication, Quality Management and Information Systems

Mid Sweden University
Östersund, Sweden

mopa1801@student.miun.se

Abstract—Sketching software design models is a common and
intuitive practice among software engineers. These informal
sketches are transient in nature unless converted into formal
models that can be reused and shared. Manual conversion,
however, is time-consuming and redundant, and a method to
automatically transform these sketches into permanent and
formal software models is lacking. This study addresses this
gap by creating and testing SketchToPlantUML, a sketch-
recognition and transformation tool that reduces the effort of
manually transforming static, sketched UML Class Diagrams
(CDs) into formal models. The artefact uses the OpenCV library
to preprocess images, segment UML elements, identify geometric
features, classify relationships and transform the output into the
equivalent, formal PlantUML model. Tested against a dataset of
70 sketched CDs, the artefact achieved overall Precision and
Recall values of 88% and 86% respectively, scoring highest
on classes (0.92 / 0.96) and lowest on association relationships
(0.76 / 0.76). While the approach provides insight into image
processing and object recognition using OpenCV, a more robust
and generalised solution for automating the transformation of
UML sketches into formal models is needed.

Index Terms—UML, OpenCV, PlantUML, sketch-recognition

I. INTRODUCTION

During early-stage design, developers often sketch to com-
municate and explore ideas. These designs are often visu-
ally represented using modelling languages that graphically
model software systems, such as Unified Modelling Language
(UML). A variety of traditional Computer Assisted Software
Engineering (CASE) tools are available to create UML models
digitally. The UML notation has a standardised set of symbols,
rules and semantics that define relationships between compo-
nents and how they should be represented, ensuring clarity
and consistency. Consequently, UML CASE tools tend to
enforce these rules, focusing on correctness and completeness.
During early-stage design, however, sketching UML diagrams
informally is more common [1].

The freedom from the rigidity and structure enforced by
traditional CASE tools naturally allows for more open-ended
exploration of ideas; sketching is faster, more flexible and can
better support collaboration [2]. Recognising that sketching
remains an integral and preferred method of developing and
sharing ideas [3], sketching tools and environments have been
developed to allow flexibility and informality when modelling
designs. Such tools provide sketch-recognition capabilities,
often in real-time, and beautify messy hand-drawn models.

However, these tools do not provide a means to transform
sketches into formalised software models; the focus is placed
on collaborative or real-time sketch recognition. During the
transition from planning to implementation phases in Model-
Based Software Development, informal models often need to
be formalised. Additionally, the lack of focus on static images
limits users on when and where design sketches can be made.

The benefits and ubiquity of informal sketching notwith-
standing, formalisation aids in ensuring that the requirements
and specifications of a software system are well-defined,
unambiguous, and complete. Converting sketches to digital
models, however, is a time- and labour-intensive process [4].
Combining the preference for sketching designs and the ben-
efits of formalisation, automating the process from informal
sketch to formal model is an important topic of research to
support software development efficiency.

This study aims to address this problem by creating an
approach that automatically transforms static UML sketches
into formal software models. Publications by [4], [5] and [6]
on the use of UML in software projects reveal Class Diagrams
(CDs) as the most frequently used component and, based on
these observations, this study is limited to converting sketchy
CDs.

II. PURPOSE AND CONTRIBUTIONS

The initial design phase of the software development cy-
cle is a crucial component of the development process and
sketching is a fundamental activity during planning and com-
munication. Despite modern tools simplifying the creation of
diagrams, developers still feel that using these tools demands
more time than they have available [6].

Many developers do not want to use formal tools or be con-
strained during early-stage design. Cherubini et al. [4] found
limited adoption of formal UML among developers and that,
antithetically, they often used rudimentary box-and-arrows di-
agrams instead. Related works have recognised the preference
for sketching: e-whiteboards or similar computer-supported
sketching environments have been developed, focusing either
on informality (modelling language rules are enforced less
strictly or not at all) or interpreting and beautifying (requiring
more adherence to language rules for correct interpretation).

However, there is a lack of support for automating the ac-
tual static-sketch-to-software-model transformation and, con-

1



sequently, for improving the cost-benefit ratio of manual
conversion. When designs are manually formalised, they are
usually stored as static images [6]. Because many related tools
focus on the collaborative aspect of early-stage design phases,
there is little focus on interpreting static sketches. Moreover,
analogue whiteboards are ubiquitous and economical. Con-
versely, the implementation and upkeep costs of replacing
these with digital sketching environments are considerably
high [4].

The goal of this study is to reduce the effort of manual
static-sketch-to-software-model transformation by creating a
tool that automates the conversion. The proposed tool aims to
address the current gap in the field by focusing on static image
input and the direct transformation of sketches into formal
CASE software models. To achieve this objective, the problem
of interpreting and classifying static images will be tackled
using computer vision. The goal of this interdisciplinary field
is to enable machines to perform tasks that usually require
human visual perception. OpenCV (Open Source Computer
Vision)1 is a popular open-source library widely used for
image recognition due to its numerous image-processing ca-
pabilities. The library has been successfully used by well-
established companies for numerous detection and recognition
applications.

RQ1 How can OpenCV be used to automatically interpret,
classify and transform hand-drawn UML CDs into formal
UML diagrams?

This research question aims to investigate the application of
the library’s computer vision techniques to the specific prob-
lem of sketchy diagram elements. Furthermore, the following
sub-questions are explored:
1a) What are the key characteristics of sketchy UML CDs

that need to be addressed by OpenCV?
1b) What are the potential benefits of using OpenCV?
1c) What are the limitations of this approach?

In addition to determining the advantages of using OpenCV
for the specific task of this study and the limitations of the
implemented approach, the objective is to acquire knowledge
regarding the features of the sketched input that must be
identified for effective analysis and manipulation.

RQ2 What is the effectiveness of the developed tool?

Interpreting sketched input poses a challenge in computer
vision due to its inherent variability. The efficacy of the tool
is expected to vary depending on both the condition of the
original image and the quality of the preprocessing process.
Precision and recall metrics will be used to evaluate the tool.
Precision is the ratio of correctly identified UML CD elements
to the total number of elements identified, whereas recall is
the ratio of correctly identified elements to the total number
of actual UML elements present in the image.

1opencv.org/about

The outlined requirements and subsequent contributions of
this project are:

• A tool that provides direct transformation of UML
sketches into a formal CASE tool model in the form of
PlantUML output.

• A method to create an intermediate representation (IR)
of the original sketched image that can be used as input
for formalisation.

• Freedom from the constraint of having to use a tool while
sketching by using static images as input.

• An approach that is easily reproducible by using open-
source and freely available frameworks, i.e., without the
use of proprietary software or specialised tools.

• Knowledge about how OpenCV can be used to recognise
and classify UML class diagrams.

III. BACKGROUND

This section describes the tools and terms that are relevant
to the rest of the study.

A. OpenCV

OpenCV (Open Source Computer Vision) is an open-source
computer vision and machine learning software library. The
interdisciplinary field of computer vision deals with how com-
puters can interpret, analyse and understand visual data, with
the goal of enabling machines to perform tasks that usually
require human visual perception, such as object recognition.
OpenCV contains more than 2500 optimised algorithms for
computer vision and machine learning applications.

B. PlantUML

Many tools are available that aid in creating formalised
UML models and are categorised as drawing software or text-
to-image software. An example of the former is Dia2, a desk-
top application for drawing technical diagrams. PlantUML3 is
an example of the latter: an online tool that generates diagrams
from simple and intuitive language. Formalising diagrams
using text-based tools is generally simpler, faster and more
portable than many dedicated diagramming applications.

C. Segmentation

Segmentation refers to dividing or extracting regions of
interest (ROIs) in an image for further processing. In the
context of this study, separating the different elements of a
UML CD to recognise and classify them individually.

D. Morphological operations

Morphological operations refer to techniques that are used
to analyse and manipulate the geometric structure of an image.
A small shape called a structuring element (or kernel) is
applied to each pixel in the original image to generate a
corresponding pixel in the processed output. The resulting
pixel value is determined by the specific morphological op-
eration performed. Two common morphological operations

2dia-installer.de
3plantuml.com

2

https://opencv.org/about/
http://dia-installer.de/
https://plantuml.com/


are erosion, which shrinks object boundaries by removing
pixels, and dilation, which expands object boundaries by
adding pixels. These techniques can be used in preprocessing
(to improve input for segmentation) and postprocessing (to
remove imperfections in segmentation output).

E. Thresholding / Binarization

Thresholding is a fundamental method of segmenting im-
ages by converting greyscale or colour images into binary
format. All pixels with intensity values above or below a
specified threshold are turned on, while all other pixels are
turned off. This is often used to simplify image processing
tasks such as edge detection, morphological operations and
object recognition.

F. Noise reduction

Noise reduction or denoising is an essential preprocessing
step that removes unwanted pixels, or noise, from an image.
Filtering algorithms alter pixel values based on their context,
which informs the algorithm which pixels should be changed,
and how. Commonly used algorithms include Gaussian Blur,
which smooths pixels using a Gaussian function; Bilateral
Filter, which smooths an image while preserving its edges;
and Median Blur, which uses a sliding window to replace
each pixel with the median value of its neighbouring pixels.

IV. RELATED WORK

Automatic recognition of UML diagrams is of wide interest,
and tools have been created or proposed to solve this. These
can be separated into two categories: tools that expect precise
computer-generated UML models as input; and tools that focus
on sketched diagrams as input. This study is interested in the
latter. The difficulties in reliably classifying sketched diagrams
is still a challenging task for computers; hand-drawn shapes
and text are inconsistent and imprecise, and recognising the
meaningful patterns implied in sketches is not trivial [7].

A. Interactive recognition approaches

A common approach to the problem of sketch recognition
is using stroke data. The tools discussed in this section use
a combination of temporal and spatial information, i.e., when
and where strokes are made, and in what order. To interpret
strokes, these approaches create and use a digital platform that
aims to mimic and retain the benefits of analogue whiteboard
sketching while providing the advantages of digital modelling.

Hammond et al. [8] developed a tool that focuses on the
importance of sketching, allowing users to sketch on a tablet
or e-whiteboard. It uses a multi-layer framework with multi-
stroke sketch recognition: line segments are processed and
interpreted; strokes are selected based on spatial and temporal
data; and using geometric properties, a collection of strokes is
classified as one of seven supported UML objects.

SUMLOW [3] is another e-whiteboard system that con-
centrates on a minimally interruptive sketching experience. It
addresses the lack of data persistency when using traditional
whiteboards by featuring the preservation of hand-drawn di-
agrams. These can later be automatically beautified at the

request of the user and, notably, exported to a traditional UML
CASE tool.

Focusing on the collaborative aspect of early-stage design,
OctoUML [9] is an exploratory and interactive environment
that supports the means to create both sketched elements and
formal notations simultaneously. It features several modes of
interaction (voice commands, multi-touch, remote collabora-
tion) and offers the ability to transform sketched designs into
computer-drawn representations.

B. Offline recognition approaches
While e-whiteboards and digital platforms are useful medi-

ums that facilitate collaboration, using static images as input
provides flexibility while sketching and the benefit of trans-
forming already-drawn sketches. Since real-time stroke data
cannot be extracted from static images, a modified approach
is required.

To address the challenges of offline sketch recognition,
Bhasin et al. [10] present a preprocessing method for static
hand-drawn images to improve pattern recognition and classi-
fication. While the research is limited to alphabetic characters,
the techniques apply to sketched diagrams. The method’s
pipeline consists of cropping, noise reduction, binary thresh-
olding, inversion, normalisation and thinning.

Deufemia and Risi [7] present a sketch-recognition system
for multi-domain hand-drawn diagrams intended to work on
both interactive and offline sketches. Similar to other online
algorithms, their interactive sketch recognition takes advantage
of the temporal and spatial data of strokes. To interpret static
sketches, the method’s pipeline is amended to include an image
preprocessing step and recognition is performed without using
stroke data.

The tool proposed in this study aims to integrate three key
features not combined in related tools. Specifically, freedom
from using a specialised platform, sketch recognition on static
images, and direct transformation of sketches into a formal
software model.

Problem
Conceptualisation

Solution
Design

Solution
Implementation

Empirical
Validation

Communicate
Findings

Fig. 1: The 5 steps of Design Science Research Methodology:
Empowering iterative progress towards meaningful solutions
and sharing the findings.

3



V. RESEARCH METHODOLOGY

This research aims to reduce the effort of manually trans-
forming design sketches into formal diagrams by creating
a tool that automates this process, thereby enhancing soft-
ware development efficiency. The Design Science Research
Methodology [11] is the design and investigation of artefacts
in context and was used to pursue the goal of this study.
The methodology’s systematic and structured approach is well-
suited for this study as it emphasises the creation of practical
solutions to real-world problems. This paradigm involves a
methodical process of identifying a problem, designing and
implementing the solution, evaluating its effectiveness and
accuracy, and communicating the findings (see Figure 1).
This section details the design, implementation and evaluation
method of the artefact.

A. Artifact

The created tool is developed using open-source software
to make the approach reproducible, accessible and flexible.
The OpenCV library is widely used for image recognition, is
useable on almost any commercial system and supports inter-
faces for several popular programming languages. PlantUML
is simple and portable: generated output can be saved and
shared as plain text files. Both tools can be integrated with
other platforms and libraries.

The code for the artefact can be found on GitHub4 with
installation and usage information in the README file5. The
artefact recognises and classifies sketched UML CDs from
static images and transforms the input into a formal PlantUML
diagram. The process designed to achieve this involves five
main steps: preparation, preprocessing, segmentation, classifi-
cation and transformation.

1) Preparation

The scope of the artefact is limited to CDs, as [4], [5] and [6]
cite these as the most frequently used diagram. Additionally,
because CDs have several different geometric shapes but are
still relatively simple6 (see Figure 2), using these as input pro-
vides a reasonable range to test the capabilities of the OpenCV
library within the time frame of this study. Similarly, given the
time limitations and the primary emphasis on geometric object
recognition, text recognition is excluded from the scope.

A dataset of 70 static images containing sketched UML
CDs was selected to develop and evaluate the tool [12]. The
dataset was created as part of a King’s Undergraduate Research
Fellowship (KURF) project7 at King’s College London [13].
The project uses machine learning to transform informal UML
sketches into textual models. The dataset is a suitable match
due to the similarity between the work done in the KURF
project and the tool created in this study. Moreover, using
an existing dataset reduces the effort of generating samples
from scratch to evaluate an artefact. The selected dataset

4github.com/MoniqueAxt/SketchToPlantUML
5github.com/MoniqueAxt/SketchToPlantUML/blob/main/README.md
6Compared to, e.g., Component or Interaction Overview Diagrams.
7github.com/Nabboru/ModelSketch

meets the key requirements of containing images and sketches
of varying quality: images have bright, poor or non-uniform
lighting, whereas the sketched diagrams differ in terms of
stroke thickness, over-traced lines, and complete contours.

The focus of the study is on the geometric shapes that
represent the components of a UML CD and text recognition is
omitted. The relevant components are shown in Figure 2 (an-
notations in red) and are characterised as classes, inheritance
relationships, and association relationships. Each component
of the UML diagram is processed separately for analysis
and recognition; several passes are made on variations of
the original image to extract the geometric elements of each
component. These elements are:

1) Quadrilaterals, representing classes
2) Closed-headed arrows, representing inheritance
3) Solid lines, representing association

Person

Name

Phone Number

Email Address

Student

Student Number

Average Mark

Address

Street

City

Postal Code

0..1 1

Inheritence

Association

Fig. 2: A typical UML Class Diagram (annotations in red).

The identified constituents together with the differing qual-
ities of the sketched dataset images are the characteristics of
sketched UML CDs that need to be identified and addressed
using OpenCV.

The final preparation step is template creation. Templates
of arrows and asterisks are created based on the images in the
dataset to identify these shapes using template matching. Due
to the variability of sketched arrows, algorithms that rely on
complete or perfect geometric properties to classify arrows do
not provide high accuracy (see Section V-A3 Segmentation).
In this implementation, all text (including UML multiplicity
denotements) is treated as noise. Consequently, the asterisks
templates are used to remove the matched symbols from the
image.

2) Preprocessing

The goal of this step is to detect and store regions of
interest (ROIs), reduce initial noise, binarize the image and
prepare it for segmentation. The quality of the preprocessing
greatly affects subsequent steps. Due to the scope of the study,
text in the CDs is detected but not recognised. The detection
is performed using a pre-trained TextDetection model
using an implementation of the Efficient and Accurate Scene

4

https://github.com/MoniqueAxt/SketchToPlantUML
https://github.com/MoniqueAxt/SketchToPlantUML/blob/main/README.md
https://github.com/Nabboru/ModelSketch


Text Detector (EAST) algorithm8. As the model expects input
image dimensions to be multiples of 32, images are resized
and the resulting bounding box coordinates are adjusted to the
corresponding regions on the original image.

Template matching is performed on the original image
to identify and extract the arrow and asterisk ROIs. The
former are later used for segmentation purposes. The image
is then converted to greyscale, as morphological operations
and edge detection algorithms typically expect this format.
Before thresholding, the issue of non-uniform illumination in
the dataset is addressed by removing the background using a
light pattern. This process typically works well when external
conditions are supervised and well-known (e.g., an empty
background image is available). In this study, the light pattern
is estimated by applying a blurring filter to the image with a
large kernel size. As the illumination changes in the dataset
are multiplicative (non-uniform scaling of brightness), the
greyscaled image is then divided by the approximated light
pattern.

The resulting image is then binarized and inverted, using
Ostu thresholding. This method separates the image into a
foreground or background class by finding an optimal thresh-
old value. The algorithm maximises the between-class variance
of the image, defined as the sum of the foreground and back-
ground variances, weighted by their respective probabilities.
In practice, this automates the determination of an optimal
threshold value used to reduce noise and enhance contours of
interest. Different types of binary transformations are available
in OpenCV and the appropriate method to select depends on
the input and desired outcome.

Finally, the image undergoes final preprocessing before
segmentation. This involves further noise reduction using
morphological operations, skeletonization and the closing of
contour gaps. The accuracy of the segmentation process relies
on closed contours to detect the quadrilaterals that represent
UML classes, determine the direction of arrows and isolate the
lines representing relationships between classes. Consequently,
gap closing is a crucial step. To achieve this, kernels are
created and used in Hit-Or-Miss morphological operations to
join extreme pixels within a specified proximity. Defined as
points connected to only one of their surrounding neighbours,
the eight variations of contour-terminating pixels, illustrated
in Figure 3, are used by the Hit-Or-Miss operations to detect
these particular binary patterns of foreground and background
pixels. Once found, the points are joined by drawing a line
between them.

3) Segmentation

After preprocessing, the diagram undergoes segmentation
and the separated elements are placed into lists. The output of
this step is three lists containing the relevant pixel locations
representing quadrilaterals, arrows and association lines.

8doi.org/10.48550/arXiv.1704.03155


1 1 1
0 1 0
0 0 0




0 0 1
0 1 1
0 0 1




0 0 0
0 1 0
1 1 1




1 0 0
1 1 0
1 0 0




0 0 0
0 1 0
1 0 0




1 0 0
0 1 0
0 0 0




0 0 1
0 1 0
0 0 0




0 0 0
0 1 0
0 0 1



Fig. 3: Contour-terminating pixel variations: Visualizing the
8 kernel matrices representing possible ’loose end’ pixel
configurations in contours. Foreground pixels are denoted as
1, background pixels as 0.

(a) An arrow missing
explicit endpoints

(b) Overdrawn lines creates an impre-
cise arrowhead

Fig. 4: Identifying sketchy input: a simple challenge for
humans, a complex puzzle for computers.

Arrows
Arrows are isolated first to reduce misclassifications due

to potential processing distortions later in the segmentation
process. Using the ROI bounding boxes, arrows are extracted
and the arrow-head and -shaft are segmented. The key points
of both are determined using goodFeaturesToTrack and
the pair of points furthest away from each other are marked
as the arrow endpoints. The tip is classified as the point of the
pair that is present in the isolated arrowhead, providing the
direction of the arrow. This approach proved more accurate
than using the traditional geometric properties of an arrow. As
an example, the convex hull of an arrow will optimally contain
two fewer points (the concave intersection of the shaft and
arrowhead) than the approximate contour points. Using this
method, however, would immediately misclassify a sketched
arrowhead that is an imperfect triangle (e.g. more than or less
than three corners). Figures 4 and 5 illustrate this computer
vision problem of object classification that is trivial to solve
using human perception.

Classes
Quadrilaterals representing classes are isolated by using the

segmentation technique of watershedding. The watershed

5

https://arxiv.org/abs/1704.03155


(a) Connected components create non-
standardised shapes

(b) Gaps and curved
strokes are common in
sketches

Fig. 5: Human perception is less reliant than computers on
precise and structured data to interpret meaning.

algorithm separates an image into distinct regions, or seg-
ments, by treating the image as a topographic map, where
the intensity values of the image are equivalent to the heights
of the terrain. The map is then flooded from the lowest points,
specified by markers, with the water level rising at each step
until it reaches the highest point. This creates boundaries
between, and thus segments, the different regions in the image.

To prepare the image for the algorithm, the contours in
the image are filled and distanceTransform is applied,
resulting in the value of each pixel being replaced by its
distance to the nearest background pixel. The thresholded
result of the transform marks the pixels within the filled
contours as the foreground. Similarly, the image is dilated
to obtain background pixels, and the differences between the
foreground and background pixels are marked as unclassified.
Unique labels are then applied to each region using the
connectedComponents function, generating the markers
needed for the watershed algorithm. To deal with quadri-
laterals that extend beyond the image border and thus do not
have a boundary marked, a white border is drawn around the
initially skeletonised image, effectively creating a boundary,
and this is used as the input image for watershedding.

Finally, UML classes are isolated by first removing po-
tentially included arrowheads using the template ROIs and
then extracting the external quadrilateral contours. Doing the
former step before watershedding results in potential distortion
of quadrilateral contours and less effective removal of these
contours when isolating and detecting the lines representing
relationships. The latter step is required because the watershed
markers include the background contour and both internal and
external contours of shapes. While visually the quadrilateral
will appear isolated, the precise location and count of the
contours are important for later use in the Classification step
(Section V-A4).

Lines
Masking the resultant quadrilateral image with the prepro-

cessed, skeletonised image isolates the lines and potential ar-
rows. This image subsequently undergoes denoising to isolate
only lines of interest. Firstly, arrows and text regions are
removed. Secondly, noise due to gap closure and imperfect text
and arrow removal is mitigated. Small lines below a threshold

are removed using connectedComponents, while mor-
phological closing, contour filling, morphological opening,
masking, thinning and gap closing are used to remove larger
residual noise while preserving lines. Each line’s contours are
retrieved and stored. While OpenCV offers several algorithms
to identify lines and their features, sketched lines are often
imperfect and lack the properties to be classified as a line,
e.g., linearity, constant direction, collinearity or parallelism.

4) Classification

The classification step receives the segmented elements and
creates an IR in the form of a tuple representing a relationship,
i.e., two classes and the relevant relationship element.

The classification of relationships is based on the location
of elements relative to each other and is highly dependent on
the quality of segmentation and denoising in previous steps.
Inheritance relationships are classified first to remove lines
that are part of a forked arrow. This simplifies the subsequent
classification of association relationships, as once all inheri-
tance relationships have been determined, all remaining lines
are considered associative.

If arrows are present, the class closest to the arrow’s tip
is classified as a parent and, if the arrow is not forked (i.e.,
single-child scenarios), the child located on or near the arrow’s
shaft endpoint is found. Proximity is determined with the
pointPolygonTest function. To determine whether an
arrow represents a multi-child relationship, the locations of
all detected lines relative to the arrow are calculated. If a line
is within a specified proximity, it is identified as an extension
of the forked arrow and all classes located on or near the line’s
endpoints are found, using the Hit-Or-Miss method discussed
in Section V-A2 Preprocessing. The relationship between the
relevant classes is then created and the line is removed from
the list. Any remaining lines are categorised as associative and
relationships are created based on the classes closest to its two
endpoints, within a specific distance threshold.

5) Transformation

Text recognition is outside the scope of this study, and
consequently, to distinguish between different classes in the
textual output, short hashes based on the related components
are created and used as class names. Each relationship is then
generated using the relevant PlantUML syntax.

@startuml
Person <|-- Student
Person <|-- Teacher
Person – Address
@enduml

(a) Syntax (input)

Person

Student Teacher

Address

(b) Rendered diagram (output)

Fig. 6: From text to graphic: The PlantUML syntax for each
diagram is generated based on the identified relationships.

6



Associative relationships are denoted using a dash, whereas
base/inherited relationships are expressed using a less-than
sign, vertical bar and dash. The input syntax and resultant
model are shown in Figure 6.

B. Evaluation

The objective of the evaluation is to assess the effectiveness
of the developed tool. A systematic approach, informed by
the Design Science Research Methodology, is conducted to
determine whether the artefact meets the intended objectives
(demonstrates utility) and furthers knowledge in the field
(provides contribution). The process involves five key steps:
identifying the evaluation criteria, selecting an appropriate
evaluation method, conducting the evaluation, analysing the
results, and drawing conclusions based on the findings. This
section details the design of this process.

To assess the effectiveness of the tool, precision and re-
call metrics are used as evaluation criteria, in line with the
evaluation method used in Deufemia and Risi’s paper [7]
discussed in Section IV Related Work. As opposed to using
only accuracy, i.e., the overall correctness of predictions made
by a model, precision and recall provides a more nuanced and
comprehensive evaluation of effectiveness. Precision measures
the ability of a model to identify only the relevant data points,
defined as the proportion of true positives (TPs) to all positive
predictions, including false positives (FPs). High precision, for
example, indicates that when a positive prediction is made, it
is likely to be correct, which is important when false positives
are costly. Recall measures the ability of a model to find all
the relevant data within a data set, defined as the ratio of true
positives to all positive predictions, including false negatives
(FNs). Also referred to as the sensitivity rate, high recall is
crucial when minimising false negatives is a priority.

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

Both measures are important regarding the aim of this
research; resulting transformations should be accurate in iden-
tifying components, but a high amount of false positive pre-
dictions are also contrary to the aim. The use of these metrics
provides an objective means to identify effectiveness as well
as gaps in the model and, consequently, the viability of the
approach used to address the issue of manual transformation.

Quantitative analysis is selected as the evaluation method.
This method involves the use of numerical data which can be
objectively measured and analysed, making it well-suited for
evaluating the identified criteria.

The performance evaluation is conducted by manually com-
paring the sketched UML diagrams with the PlantUML models
produced by the artefact. With the dataset diagrams as a
benchmark, the comparison is used to measure the precision

and recall of the tool, identifying UML elements that are
misclassified, undetected or correctly identified.

To determine the contribution, utility and limitations of
the artefact, the research questions are addressed, the data
collected in the evaluation are analysed and the results of the
tool’s performance are indicated by the evaluation metrics.
These are presented in Section VI Results and conclusions
drawn based on the results are presented in Section VII
Discussion.

VI. RESULTS

The goal of this study is to reduce the effort of manually
transforming sketchy UML CDs into formal PlantUML mod-
els by creating an artefact that automates this process using
the OpenCV image processing library. This section details the
identified characteristics of sketched UML diagrams and the
artefact’s performance results. Comparative analysis, limita-
tions and validity are presented in Section VII Discussion.

To evaluate the effectiveness of the tool, precision and recall
metrics were used. Performance was individually evaluated
for each group of UML elements (i.e., classes, inheritance
relationships and association relationships) and combined to
provide an overall measure. Table I displays the raw numbers
regarding correct classifications (True Positives), misclassi-
fications (False Positives) and missed classifications (False
Negatives). The corresponding precision and recall metrics are
shown in Table II.

A. RQ1 a) What are the key characteristics of sketchy UML
CDs that need to be addressed by OpenCV?

The automatic recognition of sketched input poses a sig-
nificant challenge compared to human perception due to the
inherent variability present. Consequently, the identification of
features within sketches plays a crucial role in enabling effec-
tive detection and classification. The following section lists
identified characteristics accompanied by a brief explanation.

Irregular lines Hand-drawn sketches exhibit lines that are
curved and retraced, with varying stroke weights (see
Figure 7). These features can result in regions of the
line having varying contrasts, affecting which pixels
are retained during binarization. Additionally, generalised
morphological operations have different effects on thick

Fig. 7: Irregular lines: imperfect rectangles and the uncon-
ventional connection between classes in sketched UML Class
Diagrams.

7



(a) Overextended lines (b) Intersecting boundaries

Fig. 8: Characteristic features of sketching.

versus thin strokes. Curved lines also pose a challenge
in shape classification: using strict geometric properties,
a sketchy rectangle would be misclassified as it is con-
sidered to have more than four vertices, i.e. straight,
connected lines.

Intersecting elements Effectively separating objects of inter-
est for further analysis is complicated by intersecting
contours common in freehand drawing, which can ob-
scure the intended structure of the diagram (see Figure
8b and 9). This is particularly common when sketching
relationships between classes using lines and arrows in
UML diagrams. This can distort the geometric properties
of individual elements and impact segmentation.

Line overextension Similarly, geometric distortions occur
due to extensions of lines beyond intended boundaries,
illustrated in 8a. This characteristic of sketching also
obfuscates distinctions between meaningful and irrele-
vant contours. Association lines originating from class
boxes, for example, demonstrate qualities analogous to
overextended class lines, introducing the possibility of
misclassifying elongated contours as a relationship.

Failure of co-termination Gaps in contours affect the suc-
cessful extraction of relevant data. Many processing
techniques rely on correct co-termination for precise
results. Edge- and contour-detection, for example, will
map disjointed contours as separate objects. Classification
methods such as using the convex hull to identify an
arrow result in FNs if strokes do not terminate at their
endpoints. Segmentation methods like watershedding may
under- or over-segment due to failures of co-termination.

Varying illumination In contrast with precise computer-
generated diagrams, sketched input contains inconsistent
lighting conditions, shading or shadows. This affects
the quality of the image and the extraction of relevant
details, primarily in thresholding processes, which are
affected by uneven contrast, pixel intensity variations and
illumination noise.

B. RQ1 b) What are the potential benefits of using OpenCV?

The OpenCV library is widely adopted, open-source and
freely available under the BSD family of permissive free

Fig. 9: Association lines forming a closed rectangle (light grey)
are misclassified as UML classes (dark grey).

software licenses9, making it accessible and cost-effective.
Artefacts created using OpenCV are consequently repro-
ducible. The library is platform-independent, supports multiple
languages (C++, Python, Java, MATLAB) and integrates with
other tools and libraries (such as NumPy, SciPy and Tensor-
flow), expanding the capabilities and possibilities for image
processing and machine learning.

OpenCV offers a set of tools for both basic and advanced
computer vision tasks, allowing developers to implement com-
plex vision systems. The library is developed by a commu-
nity of researchers, engineers and contributors who actively
incorporate computer vision and image processing algorithms
that have been validated and published in scientific papers.
Moreover, OpenCV Extra Modules10 contains algorithms that
are not as extensively tested and available as an optional
addition.

During the development of the artefact, several techniques
were implemented and tested during each of the Research
Methodology stages (Section V). Various methods exist to
achieve a goal depending on the desired outcome, resulting in
the ability to customise OpenCV’s image processing to specific
tasks. For example, the library offers multiple algorithms to
perform noise reduction via blurring and thresholding. Com-
bining or using several methods at different stages of the pre-
processing pipeline is beneficial. In this study, medianBlur
and threshold were used for illumination correction, while
GaussianBlur and THRESH_OTSU were used to remove
noise.

C. RQ2 What is the effectiveness of the developed tool?

Inheritance relationships represented by closed-headed ar-
rows achieved high precision and recall. All three FN and
FP predictions occurred due to imprecise templates and con-
sequent misclassification of arrow-tip and -shaft endpoints,
resulting in incorrectly identifying the roles of the relevant
classes in the relationships.

Correct identification of classes relies on binarized images
being denoised and the complete closure of gaps in the
quadrilaterals. Almost 42% of faulty class predictions were
caused by inadequate thresholding: imperfect correction of

9opencv.org/license
10github.com/opencv/opencv contrib

8

https://opencv.org/license
https://github.com/opencv/opencv_contrib/


UML element Qty TP FP FN

Classes 212 196 8 16
Inheritances 37 34 3 3
Associations 139 105 34 34
Total 388 335 45 53

TABLE I: Classification Results of UML Elements.
TP = true positives, FP = false positives, FN = false negatives.

non-uniform background illumination, causing residual noise
to be classified as a class, resulted in FPs, while FN predictions
were due to contour degradation during binarization, resulting
in gap distances that were above the threshold for closure. The
approach used to segment classes by filling closed contours,
however, accounted for 13 of the 16 FNs and 54.2% of all
inaccurate classifications of this element, as the artefact does
not distinguish between closed forms that represent classes
and those that represent association relationships (see Figure
9).

The successful recall of classes also impacted the clas-
sification of relationships as, without two relevant classes,
relationships cannot be formed. Only association relationships
in the dataset were impacted by this, causing 39.7% of all
incorrect predictions in this group. The majority of FN and FP
predictions resulted from imprecise text detection and removal,
which was responsible for 54.4% of incorrect association
predictions. Notably, all association identification errors were
due to imperfect processing in previous steps.

VII. DISCUSSION

In this section, the artefact’s performance is discussed and
compared to similar work, proving a basis for assessing the
contribution in context and situating this research within the
existing literature. Additionally, the validity and limitations
of the artefact are identified and ethical considerations are
addressed.

The model expectantly classified inheritance relationships
successfully, as the templates for identifying arrows via tem-
plate matching were derived directly from the dataset. The
identification of association relationships was predicted to
achieve the lowest scores, primarily due to the challenging
obstacle of distinguishing between (particularly short) associ-
ation lines and irrelevant contours. While class classification
performed well, it was anticipated that a generalised threshold-
ing approach would not necessarily be suitable for every image
due to differing light conditions. Surprisingly, the exclusive use
of OpenCV’s image processing techniques without machine
learning resulted in higher overall metrics than anticipated.
These observations are elaborated on in subsequent sections.

A. Constrasting results with related work

Similar to the results in Deufemia and Risi [7], the ele-
ments with the highest recognition rate are classes, whereas
association relationships scored lowest, compared in Table III.

UML element Precision Recall

Classes 0.92 0.96
Inheritances 0.92 0.92
Associations 0.76 0.76
Total 0.86 0.88

TABLE II: Precision and Recall Evaluation Metrics for UML
Element Classification.

While the tools achieved similar values for classes,
Deufemia and Risi analysed over double the number of class
elements (480 versus 212) and, in addition to the elements
analysed in this study, their tool supports recognition for
UML packages (which were never confused for classes), and
aggregation and composition relationships.

SketchToPlantUML Deufemia & Risi

Precision Recall Precision Recall

Classes 0.92 0.96 0.99 0.95

Inheritance 0.92 0.92 0.92 0.89

Association 0.76 0.76 0.65 0.84

TABLE III: Comparison of Precision and Recall Metrics:
SketchToPlantUML vs. Deufemia & Risi tool.

Direct comparisons to interactive sketch recognition ap-
proaches are difficult, as these methods differ significantly
in implementation to offline or static sketch recognition, or
lack evaluation data. As the SUMLOW [3] tool was eval-
uated using recognition rate (RR) metrics, the recall rates
of SketchToPlantUML are used as a comparison, illustrated
in Table IV. The SketchToPlantUML tool, however, supports
recognition for fewer UML elements (three vs 15), and the
need to differentiate between geometrically similar elements
accounts for the differences in evaluation values. For example,
components recognised by SUMLOW include classes, objects,
packages, components and notes, which exhibit similar ge-
ometric properties. The approach used in this study would
simply classify these components as classes.

The differences in association classification are attributable
to SUMLOW’s method of recognising only pre-determined
symbols drawn in supported orderings. The comparison of
SUMLOW’s method to the SketchToUML method demon-
strates the trade-off between accuracy and flexibility. While
the former tool achieves higher accuracy when matched in the
number of geometrically similar elements, the latter allows for
more flexibility.

B. RQ1 c) What are the limitations of the approach?

The limitations of the artefact’s design result from the
dependence of each step on the preceding step’s output,
particularly in the segmentation process. Once isolated, the
quadrilaterals representing UML classes are masked to iso-
late relationship elements. This caused two main drawbacks.

9



SketchToPlantUML vs. SUMLOW

Recall Recogition Rate

Classes 96% 89%

Inheritance 92% 79%

Association 76% 90%

TABLE IV: Comparison of tools. Note that recall values
are compared to recognition rate (RR) values.

Firstly, FN quadrilateral predictions caused disjointed class
contours to be classified as association lines. A more robust ap-
proach might involve examining the UML elements in context:
classifying a class-association-class relationship as a whole
rather than as individual elements that are later associated.
Secondly, the artefact is highly sensitive to noise and relies
on perfect denoising to avoid FN association classifications:
noise due to thresholding and inexact text removal caused
over half of all incorrect predictions of all elements. However,
there is a trade-off between precision and recall: a higher
threshold removed all noise, but shorter association lines were
inadvertently ignored, while a lower threshold resulted in
the classification of all associations, but a larger amount of
FP predictions. While this can be mitigated by additional
processing before thresholding and more precise text detection,
it must be noted that the dataset images themselves were
relatively noiseless.

Thus, the approach would need to be adapted for sketches
created in more noisy environments. A typical use case in real-
world conditions would involve images of sketches created
on a whiteboard, which is likely to contain more irrelevant
markings than pen-and-paper drawings. As the goal of this
study is to minimise the effort involved in transitioning from
sketched planning diagrams to formal models, the limitation
of the artefact regarding potential noise on a popular medium
(the whiteboard) is important.

Moreover, the scope of the artefact is limited to CDs,
which consist of geometrically different shapes that are also
semantically different. In its current form, the artefact will
classify geometrically similar shapes that are semantically
different as the same UML component. For example, classes
and packages.

C. Threats to validity
The limitations of the design and implementation assist in

highlighting several potential threats to validity. While ac-
knowledging the limitations, the artefact’s performance should
be interpreted within the context of the specific scope and
conditions of the study, as further research would be needed
to establish its effectiveness in other scenarios.

Construct Validity
Assumption of UML CD as input: The model was designed

and developed to accurately predict UML CD elements and
focuses on positive predictions. Accordingly, it does not ac-
count for images that are not specifically UML CDs. Given

additional development time, this construct threat could have
been addressed through additional implementation and testing
efforts aimed at inspecting and classifying input before further
processing.

Internal Validity

Reliance on developer proficiency: The artefact’s perfor-
mance relies on the proficiency and knowledge of the devel-
oper. Consequently, the evaluated effectiveness of the artefact
is not necessarily reflective of the effectiveness of using
OpenCV in achieving the goal of the study.

Manual evaluation process: The evaluation was conducted
by a single evaluator visually inspecting the dataset images and
manually comparing them to the artefact’s output. Although
efforts were made to mitigate potential human error and
multiple evaluations were conducted on separate occasions,
the manual nature of the process increases the likelihood of
errors compared to an automated process. To mitigate this
threat, future research could explore implementing automated
evaluation techniques or utilising multiple evaluators to ensure
inter-rater reliability. While the evaluation results are expected
to be reliable and indicative of the artefact’s effectiveness, it
is prudent to recognise the limitations and potential sources of
error introduced by the manual evaluation process.

External Validity

Generalisability: The artefact’s current design is not neces-
sarily generalisable to sketches drawn on alternative mediums
or in noisier contexts (such as whiteboards). The findings may
not accurately represent how the artefact would perform in
similar but distinct conditions.

Dataset representativeness: The selected dataset contains
input diagrams sketched by only one individual on a limited
sketch medium (paper). This lack of variation in sketching
style, medium, or authorship may restrict the generalisabil-
ity of the artefact’s performance to a broader population
of sketchy UML diagrams and subsequently may not fully
capture the range of variability present in real-world scenarios.

Efforts to mitigate these external threats involved inspecting
the dataset to ensure variation in lighting conditions, sketch
variability and diagram complexity. Further research might
consider collecting or creating an expanded dataset, incorpo-
rating diagrams sketched by multiple individuals on different
sketching mediums.

D. Ethical considerations

OpenCV and PlantUML are open-source, allowing full
access to the source code. The former is distributed under the
3-clause BSD license11 which imposes minimal restrictions
on the use and distribution of software, while PlantUML is
distributed under the copyleft GNU General Public License12,
requiring derived works to remain open source. The use of

11opencv.org/license
12gnu.org/licenses/gpl-3.0.en.html

10

https://opencv.org/license
https://www.gnu.org/licenses/gpl-3.0.en.html


these libraries and the intended goal of this research pose no
ethical concerns.

However, caution should be exercised when using external
or online tools in conjunction with the developed artefact. The
artefact outputs the relevant PlantUML textual model but does
not automatically render the corresponding graphical model.
Data privacy and confidentiality should be considered when
using external or online tools to render graphical PlantUML
models from their textual representations.

VIII. CONCLUSIONS

The objective of this study is to reduce the effort of
manually transforming sketched UML CDs into formal Plan-
tUML models, by developing a reproducible artefact called
SketchToPlantUML that automates this process. The created
artefact interprets static sketches, without needing to use a
specialised or interactive tool, and directly transforms informal
diagrams into formal models. An intermediate representation
of the sketched CD is implemented as a set containing related
elements.

Important characteristics of sketched input and UML dia-
grams were identified, complementing the existing body of
research on sketch interpretation and object recognition using
OpenCV, particularly in the context of hand-drawn UML
diagrams.

The tool is suitable for transforming sketched UML CDs
containing the supported elements and can successfully reduce
the effort of manual transformation. The evaluation indicated
overall precision and recall values of 86% and 88%, re-
spectively. Noting that this study had a narrower scope, the
results are comparable to related work. The main causes
of inaccurate predictions are ascribable to noise (caused by
incomplete text removal and imperfect thresholding) and the
segmentation method used (misclassifying closed association
lines as rectangles representing classes).

OpenCV was an appropriate and useful tool in achieving
the goal of the study and, assuming sufficient experience with
the library, addressing the causes of the inaccurate predictions
is an approachable goal that would considerably improve the
artefact’s classification performance. Exploring methods such
as image resizing to reduce execution time (primarily related
to template matching) would also be useful.

Nevertheless, a combination of image processing in con-
junction with machine learning would likely result in a more
robust and generalisable method of classification that is less
susceptible to the variabilities of static images and free-hand
sketching. While this approach was not explored, further re-
search that combines these methods would provide a valuable
contribution to the goal of supporting developers by reducing
the effort of manually transforming sketched diagrams into
formal models.

REFERENCES

[1] M. Petre, “Uml in practice,” in 2013 35th international conference
on software engineering (icse). IEEE, 2013, pp. 722–731. [Online].
Available: https://doi.org/10.1109/ICSE.2013.6606618

[2] G. Goldschmidt, “The backtalk of self-generated sketches,” Design
issues, vol. 19, no. 1, pp. 72–88, 2003. [Online]. Available:
https://www.jstor.org/stable/1512057

[3] Q. Chen, J. Grundy, and J. Hosking, “Sumlow: early design-stage
sketching of uml diagrams on an e-whiteboard,” Software: Practice
and Experience, vol. 38, no. 9, pp. 961–994, 2008. [Online]. Available:
https://doi.org/10.1002/spe.856

[4] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s
go to the whiteboard: how and why software developers use
drawings,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 2007, pp. 557–566. [Online]. Available:
https://doi.org/10.1145/1240624.1240714

[5] B. Dobing and J. Parsons, “How uml is used,” Communications of
the ACM, vol. 49, no. 5, pp. 109–113, 2006. [Online]. Available:
https://doi.org/10.1145/1125944.1125949

[6] F. Chen, L. Zhang, X. Lian, and N. Niu, “Automatically recognizing
the semantic elements from uml class diagram images,” Journal of
Systems and Software, vol. 193, p. 111431, 2022. [Online]. Available:
https://doi.org/10.1016/j.jss.2022.111431

[7] V. Deufemia and M. Risi, “Multi-domain recognition of hand-
drawn diagrams using hierarchical parsing,” Multimodal Technologies
and Interaction, vol. 4, no. 3, p. 52, 2020. [Online]. Available:
https://doi.org/10.3390/mti4030052

[8] T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition
system for uml class diagrams,” in ACM SIGGRAPH 2006 Courses,
2006, pp. 25–es. [Online]. Available: http://dx.doi.org/10.1145/1185657.
1185786

[9] B. Vesin, R. Jolak, and M. R. Chaudron, “Octouml: an environment
for exploratory and collaborative software design,” in 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 2017, pp. 7–10. [Online]. Available: https:
//doi-org.proxybib.miun.se/10.1109/ICSE-C.2017.19

[10] D. Bhasin, G. Goyal, and M. Dutta, “Design of an effective
preprocessing approach for offline handwritten images,” International
Journal of Computer Applications, vol. 98, no. 1, 2014. [Online].
Available: http://dx.doi.org/10.5120/17147-7179

[11] P. Runeson, E. Engström, and M.-A. Storey, “The design science
paradigm as a frame for empirical software engineering,” Contemporary
empirical methods in software engineering, pp. 127–147, 2020. [Online].
Available: http://dx.doi.org/10.1007/978-3-030-32489-6 5

[12] L. Piucco, “Handwritten uml class diagrams,” Sep
2021. [Online]. Available: https://www.kaggle.com/datasets/
eb72f3b6dfddec0fdf05a6e2f46116cce40e5d0d5e15f0532389d24d9f09fb70

[13] K. C. London. King’s undergraduate research fellowships (kurf).
[Online]. Available: https://keats.kcl.ac.uk/course/view.php?id=106869&
section=6#tabs-tree-start

11

https://doi.org/10.1109/ICSE.2013.6606618
https://www.jstor.org/stable/1512057
https://doi.org/10.1002/spe.856
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/1125944.1125949
https://doi.org/10.1016/j.jss.2022.111431
https://doi.org/10.3390/mti4030052
http://dx.doi.org/10.1145/1185657.1185786
http://dx.doi.org/10.1145/1185657.1185786
https://doi-org.proxybib.miun.se/10.1109/ICSE-C.2017.19
https://doi-org.proxybib.miun.se/10.1109/ICSE-C.2017.19
http://dx.doi.org/10.5120/17147-7179
http://dx.doi.org/10.1007/978-3-030-32489-6_5
https://www.kaggle.com/datasets/eb72f3b6dfddec0fdf05a6e2f46116cce40e5d0d5e15f0532389d24d9f09fb70
https://www.kaggle.com/datasets/eb72f3b6dfddec0fdf05a6e2f46116cce40e5d0d5e15f0532389d24d9f09fb70
https://keats.kcl.ac.uk/course/view.php?id=106869&section=6#tabs-tree-start
https://keats.kcl.ac.uk/course/view.php?id=106869&section=6#tabs-tree-start


APPENDIX 1: TIME PLAN

Fig. 10: Initial vs. Actual Timeline for the study. Adopting the iterative Design Science Research Methodology resulted in
several phases of design, implementation and testing. Additionally, the manual collection and interpretation of results required
more time than initially planned.

12


