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Östersund, Sweden

{sika2001, albe2003}@student.miun.se

Abstract—In recent years, there has been a surge in research
on the impact of architectural smells on software maintainability.
Maintainability in turn encompasses several other quality at-
tributes as sub-characteristics, such as modularity and testability.
However, the empirical evidence establishing a clear relationship
between these quality attributes and architectural smells has been
lacking. This study aims to fill this gap by examining the correla-
tion between seven architectural smells and testability/modularity
across 378 versions of eight open-source projects. A self-developed
tool—ASAT—was used to collect data on architectural smells
and metrics relating to modularity and testability. The collected
data was analyzed to reveal correlations at both the project-
level and within packages. Contrary to expectations, the findings
show that, generally, there is no negative correlation between
smells and modularity at the project-level, except for the Dense
Structure smell. Remarkably, project-level testability showed the
opposite result. However, a rival explanation proposes that the
increasing size of a project may be a stronger factor in this
relationship. Similarly, package-level smells, as a whole, did not
exhibit a negative correlation with testability. However, most
smells demonstrated a stronger negative relationship with the
quality attributes they were claimed to impair, in comparison
to their counterparts. This empirical evidence substantiates the
assertion that specific architectural smells indeed relate to distinct
quality attributes, which had previously only been supported by
argument.

Index Terms—architectural smells, software architecture, soft-
ware maintenance, software metrics, software quality
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I. INTRODUCTION

Architectural smells are recurring, identifiable architectural
design decisions that mainly impact the maintainability of a
system [1]–[4]. Architectural smells are conceptually similar
to code smells, but they operate at different levels. While code
smells focus on the implementation level, such as methods,
classes, parameters, and statements, architectural smells target
the architecture level, including components, connectors, in-
terfaces, and configurations [5]. In a study comparing the two,
Fontana et al. found that there was no correlation between code
smells and architectural smells, and that addressing one did not
affect the other [6]. They conclude that architectural smells are
“independent from code smells, and therefore deserve special

attention by researchers, who should investigate their actual
harmfulness.”

Recent studies show that architectural smells are preva-
lent in open-source projects. In a dataset of more than 86
thousand Java and C# GitHub repositories, Sharma et al. [7]
found nearly 1.2 million instances of seven distinct types of
architectural smells. Meanwhile, Fontana et al. [6] observed at
least two different types of architectural smells in 102 out of
103 open-source projects they investigated. Notably, they only
measured three unique types of architectural smells, indicating
that the actual prevalence of architectural smells might have
been even higher.

However, architectural smells lack a universal definition,
leading to different interpretations among researchers. One
widely-used definition [5] considers them a cause of quality
degradation, while another [8] views them as indicators of
potential problems that require individual analysis. Recent
research reflects this lack of consensus, with some researchers
treating architectural smells as symptoms of underlying issues
such as technical debt or architectural decay [3], [9], [10],
while others treat them as a measure of software quality itself
[7], [11].

The assertion that architectural smells negatively impact
quality has been criticized as being based on individual
developer experience and intuition, rather than qualitative data
[1], [9]. Some recent studies show that certain architectural
smells can negatively impact the number of issues and changes
in open-source projects [4], [9]. However, other recent studies
show that sometimes architectural smells are benign, or even
part of a deliberate solution [3], [12]. The assertion that
architectural smells themselves are the underlying cause of
quality degradation has also been questioned, as co-changes
in files were found to appear before any smell was detected
[11].

Architectural smells have been gaining increased attention
in recent years, with a surge in published articles, as well
as new tools to detect smells. Many of these tools require a
license and may claim to improve software quality and reduce
costs [13]–[15]. Detected smells may impact the development
of a project, such as where to spend development time and
resources. However, refactoring an architectural smell is a
nontrivial task, that may introduce other smells in the process
[16]. Considering these factors, there is a need for quantitative
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data to measure the impact of individual smells to help
developers make informed decisions.

The objective of this paper is to collect quantitative data on
the impact of architectural smells on maintainability by exam-
ining various open-source software projects. The paper aims
to investigate how detected architectural smells affect certain
quality attributes, specifically modularity and testability, which
are sub-characteristics of maintainability. By examining the
relationship over time, the study aims to uncover the nature
of this relationship. Hopefully, this will contribute to a more
consistent definition of architectural smells. Furthermore, the
study will analyze individual types of architectural smells to
determine how they influence the measured quality attributes,
providing more detailed insights into the effects of each smell.

II. PURPOSE AND CONTRIBUTIONS

Architectural smells are often claimed to negatively impact
software quality, specifically maintainability, but there is a lack
of quantitative data. Maintainability comprises several sub-
characteristics1, and individual architectural smells are inferred
to impair certain sub-characteristics based on violated design
principles [1], as shown in Table I. This, however, has not
been empirically measured. In a systematic mapping study on
architectural smells detection, Mumtaz et al. stress that it is
paramount to investigate the sub-characteristics of a quality
characteristic such as maintainability [18]. They suggest that
future studies should explore methods for measuring and
analyzing the relationship between architectural smells and
these sub-characteristics—including testability in particular,
which has received limited attention in research thus far.

TABLE I
QUALITY ATTRIBUTES IMPAIRED BY ARCHITECTURAL SMELLS

Smell Analyzability Modularity Reusability Modifiability Testability
Ambiguous
Interface X X X

Cyclic Depen-
dency X X X X

Dense
Structure X X X X X

Feature Con-
centration X X

God Compo-
nent X X X X X

Scattered
Functionality X X X X X

Unstable De-
pendency

Shows the architectural smells considered in this study, and the sub-
characteristics of maintainability that they impair according to Rachow et al.
[1].

This project aims to gain a deeper understanding of the
relationship between architectural smells and two of the qual-
ity attributes that they are said to impair: modularity and
testability. To do so, the evolution of architectural smells and
specific metrics related to modularity and testability will be
investigated across several diverse open-source projects.

The research questions that will be answered are:

1The sub-characteristics of maintainability according to ISO/IEC
25010:2011 [17] are modularity, reusability, analyzability, modifiability, and
testability.

RQ1: What is the relationship between architectural smells
and:

RQ1a: Project-level modularity?
RQ1b: Project-level testability?
RQ1c: Testability in packages?

RQ2: How do negative relationships compare between
different types of architectural smells and:

RQ2a: Project-level modularity?
RQ2b: Project-level testability?
RQ2c: Testability in packages?
The purpose of RQ1 is to establish whether there is a neg-

ative relationship between the measured architectural smells
and quality attributes, where the quality attributes decrease as
architectural smells increase, and vice versa. RQ2 looks at
each measured type of architectural smell individually to see
how they relate to the measured quality attributes. The purpose
is to examine whether smells that are said to impair modularity
or testability exhibit stronger negative relationships compared
to their counterparts.

The contributions of this study are two-fold: first and
foremost, this study provides empirical evidence highlighting a
clear distinction among different types of architectural smells
concerning their relationships with modularity and testability.
By confirming previously held theoretical assumptions about
architectural smells, this initial step validates existing knowl-
edge and paves the way for future research, which can further
explore the connections between specific architectural smells
and quality attributes. For software developers, the results
can help provide practical guidance regarding the architectural
smells present in their own projects, by providing insights on
the specific issues they may indicate.

Second, this study introduces a tool named ASAT that
researchers can use to gather data about architectural smells,
modularity, and/or testability. ASAT offers an efficient means
of data collection by downloading and batch processing mul-
tiple versions of open-source projects from GitHub. Addition-
ally, software developers can potentially benefit from this tool
by obtaining concrete and quantitative metrics regarding their
own projects over time.

III. BACKGROUND

This section presents a brief overview of architectural
smells, and the related concepts of software quality, maintain-
ability, design principles, and technical debt. Each concept is
described in the associated subsection.

A. Architectural Smells

Architectural smells are recurring solutions at the architec-
tural level of a project that, while not erroneous, can still
pose a problem [5]. They are mainly characterized as violating
design principles [1], [8], [19], and negatively impacting the
maintainability of a system [1]–[5]. Since architectural smells
operate on the architectural level, they involve components
such as classes, packages, and subsystems, and as such, require
larger refactorings to remove [8].
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An example of an architectural smell is the Cyclic Depen-
dency smell. It is claimed to impair all sub-characteristics of
maintainability and is therefore thought to be one of the most
critical smells [1], [20]. It refers to two or more components
that depend on each other, forming a cycle. A component can
be either a class or a package—or even a whole subsystem
[8]. The dependency “chain” doesn’t have to be a circle, but
can take many different shapes, as illustrated by Figure 1.
Lippert & Roock explain that cyclic dependencies can affect
maintainability negatively since they can have “severe and
unpredictable consequences”—modifications to one part of the
cycle can have side-effects in any other part of the cycle [8].

Fig. 1. Various shapes of Cyclic Dependencies. From Azadi et al. [19]

B. Software Quality

According to the ISO/IEC 25010:2011 standard [17], there
are two distinct facets of software quality: quality in use and
product quality. While quality in use is concerned with how a
system meets the needs of its users during actual use, product
quality is concerned with the design and operation of the
software that enables and supports its use. Architectural smells
are concerned with the latter. The standard’s product quality
model comprises eight characteristics (functional suitability,
reliability, performance efficiency, usability, security, compat-
ibility, maintainability, and portability) and their related sub-
characteristics. The purpose of the model is to aid stakeholders
in specifying and evaluating the quality of a software system.
This can involve metrics that measure certain properties of
the source code. However, it is sometimes difficult to quantify
quality characteristics to provide an appropriate measurable
value [21].

C. Maintainability

This study uses the concept of maintainability and its
sub-characteristics, as defined by the ISO/IEC 25010:2011
standard [17]. Maintainability refers to the efficiency and
effectiveness with which a system can be modified by its in-
tended maintainers, including error correction, improvements,
adaptations, updates, and upgrades. It can be viewed as either
an inherent capability of the system to facilitate maintenance
or the quality in use experienced by the maintainers. Given
that software often has a long lifespan and evolves over time,
maintainability is a critical aspect of software engineering.
Maintainability consists of the sub-characteristics modularity,
reusability, analyzability, modifiability, and testability. In this
study, only modularity and testability are considered.

Modularity refers to the degree to which a system is
composed of discrete components such that a change to one
component has minimal impact on other components. Low
modularity, characterized by high coupling, low cohesion,

or poor separation of concerns, can increase the number of
unnecessary changes to neighboring components.

Testability refers to the degree of effectiveness and effi-
ciency with which test criteria can be established and tests
can be performed to determine whether those criteria have
been met for a system or component.

D. Design Principles

According to Lippert & Rook [8], architectural smells occur
when recognized design principles are violated. Therefore,
adhering to these design principles can provide a starting point
for developing a better system structure. Martin [22] describes
the SOLID design principles in relation to software architec-
ture as guidelines for arranging functions and data structures
into classes and interconnecting those classes to create well-
designed systems. Moreover, the principles can also be applied
to larger architectural building blocks. In addition to SOLID,
there are other well-established design principles such as the
DRY—or Don’t Repeat Yourself—principle which stipulates
that you should not write the same or similar code more than
once.

E. Technical Debt

In 1992, Cunningham introduced the use of debt as a
metaphor in software development [23]. It suggests that using
”immature” code may speed up the development process but at
the cost of incurring a ”debt” that would eventually need to be
repaid through rewrites—what we now refer to as refactoring.
Failing to address this debt can impede progress and hinder
future development efforts.

In the ensuing decades, the metaphor has become known as
technical debt and has grown in both adoption and meaning.
Kruchten et al. describe it as “the invisible result of past
decisions about software that negatively affect its future”,
with emphasis on the “invisible” aspect [24]. They assert
that technical debt can impede a system’s evolvability and
maintainability. Furthermore, many different elements can
contribute to technical debt, such as a system’s architecture
in the form of architecture debt. Martini et al. further expand
on this concept, using the term Architecture Technical Debt
to mean sub-optimal architecture decisions that violate the
intended architecture [25].

The phenomenon of architecture deviating from its intended
design has been defined in many ways. Baabad et al. identify
several related concepts including architectural degeneration,
erosion, drift, mismatch, decay, degradation, and more [10]. In
their study on the use of technical debt terminology, Stochel et
al. conclude that there is ambiguity in how the various terms
are applied in research [26].

IV. RELATED WORK

The first architectural smells were defined by Lippert &
Roock [8], which included the Cyclic Dependency smell that
has been cited as the most impactful smell [1], [20]. However,
they note that this smell can be a part of certain design patterns
and can be harmless in such cases. They argue that not all
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smells are problematic, and need to be analyzed on a case-
by-case basis. Subsequently, Garcia et al. defined four new
architectural smells, and characterized architectural smells as a
commonly used architectural decision that negatively impacts
system quality, whether intentional or not [5]. This notion
that architectural smells always impact software negatively has
become widespread. However, in a study on the relationship
between design patterns and architectural smells, Pigazzini et
al. found that some patterns can introduce smells [27], as
noted by Lippert & Roock [8]. They label these smells as
false positives since they are present because developers had
intended to program them. Martini et al. observe a similar
result in interviews and questionnaires with developers about
their own systems, where many Cyclic Dependencies were part
of a deliberate solution according to the developers themselves
[3].

Presently, numerous other architectural smells have been
identified. In a systematic mapping study, Mumtaz et al.
[18] found and described 108 architectural smells. However,
many of these smells are not detectable by existing tools
or techniques. Azadi et al. [19] presented a catalog of 12
architectural smells that are detectable by current tools, clas-
sified according to violated design principles. Subsequently,
Rachow et al. [1] conducted a systematic literature review to
look for explicit connections between identified architectural
smells and quality attributes. They identified 132 connections
between architectural smells and maintainability or one of its
sub-characteristics and 139 connections to violations of design
principles. Based on the fact that design principles promote
quality, they argued that a violation of a principle should
impair the associated quality attributes. The results were used
to compile a knowledge base of 114 architectural smells with
links to the sub-characteristics of maintainability that they
were found to impair2. However, the authors acknowledged
that in general the connections between architectural smells
and quality attributes or design principles were merely asserted
or supported by argument, rather than being demonstrated
empirically.

Gnoyke et al. [20] conducted a study on the evolution of
three architectural smells across 485 versions of 14 open-
source projects. They found that although the number of smells
tended to increase with the size of the system, the relative
amount of smells remained mostly stable. They suggest that
smells may be caused more by the sheer amount of source
code than by specific architectural properties, although they
note that further research is needed to support this claim.
However, they emphasize the need to first examine to what
extent architectural smells are actually a problem.

Le et al. [9] aimed to provide empirical evidence of the
impact of architectural smells on software maintainability.
They examined reported issues and the number of commits as
proxies for maintainability and compared them to six detected
architectural smells across 421 versions of eight open-source

2Table I shows the sub-characteristics impaired by the architectural smells
considered in this study according to the knowledge base.

projects. The results revealed that files affected by architectural
smells not only had more reported issues but also more
commits, particularly in files with long-lived smells where
both metrics increased over time.

Sas et al. [4] also used source code changes to explore the
impact of four architectural smells on maintainability. They
measured change frequency and change size as proxies for
maintenance effort and analyzed commits taken at 4-week
intervals in 31 open-source Java systems. The results showed
that components affected by architectural smells change more
frequently and have larger changes. They also found that as the
number of smells that affect a component increase, so does the
likelihood that it will change. The type of architectural smell
did not have a significant correlation with changes, but they
note that potentially not all types of cycles are impactful on
changes, which is consistent with previous research [3], [8],
[27]. However, they found that the introduction of a smell only
increased the number of changes in the affected component in
some cases—sometimes the opposite was true.

Similar to the aforementioned empirical studies, this study
will also measure architecture smells in several versions of
open-source projects over time. It will employ a methodology
inspired by Sas et al. [4] for project selection, and using a fixed
interval of versions for each project. However, this study will
measure seven architectural smells—a greater number than
prior studies. Additionally, previous studies used various met-
rics as proxies for technical debt or maintainability, whereas
this study will aim to measure sub-characteristics of maintain-
ability, specifically modularity, and testability. To the best of
our knowledge, no studies have been conducted on the cor-
relation between architectural smells and sub-characteristics
of maintainability, even though it has been identified as an
important subject for future research [18]. Furthermore, this
will help verify the links between individual architectural
smells and these sub-characteristics in the knowledge base by
Rachow et al. [1], which currently lacks supporting empirical
evidence.

V. RESEARCH METHODOLOGY

The study was conducted as an embedded multiple case
study [28]. The case study design is presented in Figure 2.
Each case consists of an open-source Java project with multi-
ple units of analysis in a chronological sequence. Specifically,
each unit of analysis is a version of the project at a given point
in its development3.

A. Propositions

To guide the case study, we propose several theoretical
propositions that highlight the key aspects to be explored
and provide a structured approach for analyzing the study’s
findings.

• Proposition A: There is a negative relationship be-
tween architectural smells as a whole and modularity
and testability. Architectural smells are often described

3In other words, a commit to the project’s main branch on GitHub.
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Fig. 2. Case study design.

as impacting maintainability negatively [1]–[4], which
implies they should also affect testability and modular-
ity since they are sub-characteristics of maintainability.
Consequently, architectural smells should have a negative
relationship with the modularity and testability of a
system as a whole.

• Proposition B: There is a negative relationship be-
tween architectural smells in individual packages and
the testability of those packages. Previous studies have
found a correlation in components between architectural
smells and changes and issues [4], [9], which were
used as proxies for maintainability. Since testability is
a sub-characteristic of maintainability, it is reasonable to
assume that testability in packages should also have a
negative relationship with architectural smells.

• Proposition C: Types of architectural smells that are
said to specifically impair modularity and/or testabil-
ity exhibit a stronger negative relationship with those
attributes. Rachow et al. [1] presented a knowledge
base of architectural smells and the sub-characteristics
of maintainability that they are said to impair, based
on violated design principles and stated links between
architectural smells and quality attributes in research.
Based on this, certain types of architectural smells should
have a stronger negative relationship with associated sub-
characteristics.

Furthermore, we present a contrasting proposition as a rival
explanation.

• Proposition D: There is a stronger relationship be-
tween architectural smells and size, as well as mod-
ularity/testability and size, than the relationship be-
tween smells and modularity/testability. Gnoyke et al.
theorized that architectural smells might be a symptom
of the size of a project, rather than any architectural
properties [20]. As a rival explanation, size may be a
confounding factor that explains the observed correlations
between architectural smells and modularity/testability,
whereby size explains both the increase in architectural
smells and the decrease in modularity/testability.

B. Cases

To ensure a representative sample of open-source projects
across diverse domains, eight projects (see Table II) were
selected from GitHub based on the following inclusion criteria,
inspired by Sas et al. [4]:

• The project is nontrivial and has a size of at least 10,000
lines of code in its latest commit.

• The project contains at least one instance of an architec-
tural smell in its latest commit.

• The project has been in active development for at least
three years.

• The project shows consistent activity during develop-
ment4.

The projects were analyzed over their entire lifetime, pro-
viding a total of 378 versions with roughly 29 years of active
development data.

All the cases included in this study were free and open-
source projects. Open-source projects provide a transparent
and collaborative environment, where source code is freely
accessible to the public. This accessibility eliminates any
potential ownership issues, as the projects are typically gov-
erned by open licenses that grant the freedom to view, mod-
ify, and distribute the code. Moreover, the nature of open-
source projects promotes a culture of shared knowledge and
collaboration. Developers who contribute to these projects
understand and expect that their code will be publicly available
for scrutiny and analysis. Therefore, the gathering and analysis
of source code from these projects pose no ethical concerns
regarding ownership or privacy.

C. Data Collection and Analysis

For each project, versions were taken at 4-week intervals
from project inception to the latest commit. This interval
has been used in previous research, where it was found to
produce a meaningful level of change in calculated metrics
between versions [4]. Moreover, using a fixed interval for
all cases ensures consistent results without biases. However,
using a lower interval would provide more granular results, but
would also require additional processing time due to increased
computational demands.

For each version, Designite5 was used to detect the number
of each architectural smell Ambiguous Interface, Cyclic De-
pendency, Feature Concentration, God Component, Scattered

4As shown by the Contributors page on GitHub. Here is an example of
what a project showing consistent, active development across its lifetime
might look like:

5Designite can be found here: https://designite-tools.com.
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TABLE II
PROJECTS SELECTED FOR ANALYSIS

Description Project Name First Version Versions Unique
Packages

LOC in Last
Version

Classes in
Last Version

Architectural
Smells in
Last Version

Microservices framework light-4j 2016-10-09 76 115 68k 906 101
RPC framework motan 2016-04-20 61 76 43k 621 108
Performance monitoring tool MyPerf4J 2018-11-04 33 118 17k 322 56
Distributed transaction solution seata 2019-02-10 51 372 238k 2527 405
Flow control component Sentinel 2018-08-24 50 366 181k 1516 354
RPC framework sofa-rpc 2018-06-08 46 186 84k 1239 189
Validation framework yavi 2018-08-21 33 18 20k 533 40
Java library zip4j 2019-07-04 28 17 15k 150 56

Functionality, and Unstable Dependency. As for the Dense
Structure smell, it is either present or absent in a project,
leading to a binary value representation. Since a binary value
wouldn’t be conducive to performing a meaningful analysis,
the average degree of each detected Dense Structure was used
instead, which measures the intensity of the smell. This is
discussed further in the Discussion section. In addition, metrics
relating to modularity and testability were measured.

Modularity is defined as the degree to which a system is
made up of discrete components that can be changed with
minimal effect on each other [17]. The first property was
measured as Decoupling Level [29], which measures how well
a system is divided into discrete modules. The second property
was measured by Propagation Cost [30], which measures how
tightly coupled a system is. In a study of eight industry
projects, Mo et al. found that the two measures reflected the
knowledge of the software architecture by the architects them-
selves, and that they helped the architects present architecture
quality issues in a quantitative way [31]. Propagation Cost and
Decoupling Level were measured using the tool DV86.

Testability is defined as the degree of effectiveness and
efficiency with which test criteria can be established and tests
can be performed to determine whether those criteria have
been met [17]. This was measured by the code coverage—or
the percentage of lines of code that are executed by tests. For
each version, the code coverage was measured using JaCoCo7.
If there is a reduction in the effectiveness and efficiency of
establishing test criteria and the ability to perform tests, it is
likely to negatively impact the code coverage.

Measuring architectural smells and the metrics related to
modularity was done using static analysis of the source code.
However, measuring the code coverage of each version re-
quired dynamic analysis. In other words, each version had
to be built and have its unit tests run in order to generate
the results. As reported by Yasi et al., not only are build
failures exceedingly common, the leading root cause of build
failures is test failure [32]. As a consequence, project selection
was heavily influenced by the ability to build a project and
successfully run its tests. Projects where code coverage results
were deemed to be unreliable, due to either a high number of

6DV8 can be found here: https://archdia.com/.
7JaCoCo can be found here: https://www.jacoco.org/jacoco/trunk/index.html.

unsuccessful tests or sudden fluctuation in test success rate
between versions were excluded. In addition, certain versions
which would not build, such as the initial commit in several
projects, were excluded from the analysis. Figure 3 displays
boxplots of the test success rate across all included versions
in the selected projects. This is also discussed in further detail
in the Threats to Validity section.

Fig. 3. The percentage of successful tests in all versions of the selected
projects.

Size has been identified as a potential confounding variable.
Gnoyke et al. theorized that the quantity of source code might
affect the occurrence of architectural smells [20]. Furthermore,
the number of classes in a system may impact Propagation
Cost [29]. Therefore, lines of code (LOC) and the number of
classes were gathered for each version as well.

The collected data was analyzed by comparing the number
of detected architectural smells in each project to Propagation
Cost, Decoupling Level, and code coverage, to identify any
correlations. The architectural smell data for each project was
analyzed using the Shapiro-Wilks normalcy test and found
not to be normally distributed. Therefore, correlations were
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measured using Spearman’s correlation coefficient ρ8. As per
convention, the p-value must be less than .05 to be statistically
significant [4], [9], [12], [28], and −0.1 > ρ < 0.1 is treated
as being too weak to be significant. As potential confounding
variables, correlations with LOC and the number of classes
were compared to the detected smells and aforementioned
metrics as well. Excluding Decoupling Level and Propagation
Cost which is only available for a project as a whole, this
analysis was also performed on the package level, by analyzing
all unique packages in each project. In addition, a comparative
analysis was conducted between different types of architectural
smells. To assess potential differences, the correlations of
architectural smells associated with impaired modularity or
testability were compared to those of the non-impairing groups
of smells.

To further analyze the findings, resulting empirically observ-
able patterns were compared with this study’s propositions,
and the findings from each case were compared and contrasted
in a cross-case synthesis.

D. Artifact

Fig. 4. Overview of the design of ASAT.

The principal artifact of this study, hereafter referred to as
ASAT (Architectural Smell Analysis Tool), served as the pri-
mary means of data collection and analysis for this study. As
shown in Figure 4, ASAT consists of three distinct modules:

1) Snapshot Downloader: This module is responsible
for methodically retrieving versions at 4-week intervals
from the inception to the most recent commit of the
chosen GitHub repositories.

8It is important to note that a negative relationship with modular-
ity/testability does not necessarily imply a negative ρ value. Specifically,
a higher Propagation Cost indicates a decrease in modularity, while a
higher Decoupling Level signifies an increase in modularity. For increased
comprehensibility, the term ”negative correlation” is used interchangeably
with ”negative relationship,” indicating that the involved quality attribute
decreases as the other variable (e.g. smell or size) increases. Since the negative
relationship with Propagation Cost results in positive ρ values, the negative
relationships with Decoupling Level and code coverage are also presented as
positive ρ values to facilitate analysis.

2) Snapshot Analyzer: This module serves to integrate
three tools, namely Designite, JaCoCo, and DV8. Desig-
nite is utilized within ASAT to detect and measure dif-
ferent architectural smells within each version. JaCoCo
is integrated within ASAT to measure testability in the
form of code coverage. Finally, DV8 is used to mea-
sure the modularity of the versions by measuring their
Decoupling Level and Propagation Cost. The generated
output consists of files generated by each integrated tool,
mostly in CSV format.

3) Data Extractor: The final module in ASAT extracts the
relevant data from the output generated by the Snapshot
Analyzer and compiles it into structured CSV files for
subsequent inspection and analysis.

ASAT was instrumental in answering the research ques-
tions posed in this study, enabling an efficient and objective
assessment of the relationships between architectural smells,
modularity, and testability in software projects. The code for
the Architectural Smell Analysis Tool can be accessed via
GitHub9. All generated data is available in a reproduction
package on GitHub as well10.

VI. RESULTS

This section presents the study’s findings, which are ana-
lyzed in accordance with the stated propositions. Additionally,
the findings for the included cases are compared and contrasted
to investigate patterns and tendencies.

A. The Relationship between Architectural Smells and Project-
level Modularity (RQ1a)

Fig. 5. Comparison of project-level correlations between smells and the metric
Propagation Cost (PC) and Decoupling Level (DL). Shows negative correla-
tions (Accept); positive correlations (Reject); and statistically insignificant
correlations, where either −0.1 > ρ < 0.1 or p > .05 (Unsupported).

Figure 5 shows the results of analyzing the correlations
between architectural smells and the modularity metrics Prop-
agation Cost and Decoupling Level. For most cases, there was
not a negative correlation between modularity and architectural
smells—only three out of eight cases (light-4j, yavi, and zip4j)

9https://github.com/albe2003miun/ASAT
10https://github.com/albe2003miun/ASAT-reproduction-package
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showed a mostly negative correlation. One exception was the
Dense Structure smell which showed a negative correlation in
all cases where it was detected except a single one: seata.

The majority of cases did not exhibit negative corre-
lations between architectural smells and modularity
at the project level. The Dense Structure smell was
an exception, showing the opposite result.

As a rival explanation, proposition D proposes that the
negative relationship between architectural smells and mod-
ularity can be explained by size instead, whereby the decrease
in modularity and the increase in smells both more strongly
correlate with size. Comparing modularity-smell correlations
and modularity-size correlations (both LOC and number of
classes) revealed that four out of eight cases (Myperf4J,
seata, Sentinel, and sofa-rpc) clearly show a stronger negative
correlation between architectural smells and modularity than
modularity and size. Interestingly, these four cases all rejected
proposition A. In other words, the architectural smells in these
projects showed a positive correlation with modularity, but the
positive correlation between size and modularity is stronger. In
the remaining results, only a single case (yavi) clearly accepts
proposition D for modularity and size, while the remaining
three cases (light-4j, motan, and zip4j) show mixed results.

In contrast, comparing smell-modularity correlations and
smell-size correlations showed that in all cases but one, archi-
tectural smells, in general, have a stronger positive correlation
with size than a negative correlation with modularity. The
remaining case—zip4j—showed mixed results. One smell that
showed an exception was the Dense Structure smell, which
only showed a stronger correlation to size in three out of the
seven cases where it was detected.

The majority of cases did not have a stronger negative
correlation between project-level modularity and size
than architectural smells. In large part, this was be-
cause even if there was a positive correlation between
architectural smells and modularity, the positive cor-
relation between size and modularity was stronger.
Also, architectural smells correlated more strongly
with size than modularity, with the exception of the
Dense Structure Smell.

B. The Relationship between Architectural Smells and Project-
level Testability (RQ1b)

Analyzing the correlations between architectural smells and
code coverage showed a negative relationship in most cases,
as shown in Figure 6. Two cases, sofa-rpc and zip4j, showed
a positive relationship instead. These two cases were the only
ones that showed a trend of code coverage increasing as
the projects expanded, instead of decreasing. Another outlier
was the Dense Structure smell that only showed a negative
correlation with testability in one case—light-4j. In all other
cases, it showed a positive correlation or was not statistically
significant (p > .05).

Fig. 6. Comparison of project-level correlations between smells and the code
coverage. Shows negative correlations (Accept); positive correlations (Reject);
and statistically insignificant correlations, where either −0.1 > ρ < 0.1 or
p > .05 (Unsupported).

At the project level, six out of eight cases had
stronger negative correlations between testability and
architectural smells than size. However, for the Dense
Structure smell the same result was only seen in a
single case.

As a rival explanation, the strength of the correlation
between testability and architectural smells was compared to
both the correlations between testability and size, and archi-
tectural smells and size. The results showed that testability
had stronger negative correlations with size than architectural
smells for all but two cases (sofa-rpc and zip4j). The results
mirror the project-level modularity results (RQ1a), where the
cases that showed a positive relationship with architectural
smells also showed an even stronger positive relationship with
size. In other words, the two cases where code coverage
increased as the projects grew showed more of a positive
correlation with size than smells.

Comparing the strength of negative correlations between
architectural smells and testability and positive correlations
between architectural smells and size, all cases showed a
stronger correlation to size than to testability. The only smell
that showed a stronger correlation with testability was Dense
Structure in a single case: MyPerf4J.

Overall, testability had a stronger negative correlation
with size than with architectural smells at the project
level. However, the opposite was seen in cases that
had a positive correlation between testability and
architectural smells. For architectural smells, all cases
unanimously showed a stronger correlation between
architectural smells and size than architectural smells
and testability.

C. The Relationship between Architectural Smells and Testa-
bility in Packages (RQ1c)

As shown in Figure 7, most detected architectural smells in
packages did not show a correlation with the code coverage in
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those packages11. Out of the eight cases, six predominately did
not establish correlations for the majority of smells. Out of the
remaining two cases, one case—motan—showed mostly posi-
tive correlation between three out of five categories of smells
(God Component, Unstable Dependency, and total smells),
thereby rejecting proposition B. The final case, MyPerf4J,
showed a tie between smells with mostly established and
mostly unsupported correlations, with two out of three mostly
established correlations (Feature Concentration and Scattered
Functionality) showing mainly negative correlations.

Fig. 7. Comparison of package-level correlations between smells and the code
coverage. Shows % of packages with negative correlations (Accept); positive
correlations (Reject); and statistically insignificant correlations, where either
−0.1 > ρ < 0.1 or p > .05 (Unsupported).

Putting unsupported correlations aside, the two cases where
code coverage increased with size (sofa-rpc and zip4j) showed
a majority of positive correlations. However, unlike at the
project-level, the opposite result was not observed in the
remaining cases. In total, five of the eight cases had mostly
positive correlations. In contrast, only two cases showed a
majority of negative correlations (light-4j and MyPerf4J), and
yavi was a tie. It is worth noting, however, that the cases
zip4j and yavi presented a relatively small number of unique
packages, with only 17 and 18, respectively. Therefore, any
conclusions drawn from those results should be treated with

11No correlation means that either p > .05 or −0.1 > ρ < 0.1. If a
detected smell is a constant, i.e. its value does not change across all versions,
it is not possible to calculate a ρ value, so it is not included.

caution. The number of unique packages in each case can be
found in Table II.

In most cases, the majority of correlations between
architectural smells and testability in packages were
statistically insignificant.

As a rival explanation, the negative correlations between
testability and architectural smells in packages were compared
to the negative correlations between testability and size, and
the positive correlations between architectural smells and size.
The results show that the negative correlations were stronger
with testability and size than with testability and smells in
all cases. The same was true for all types of smells, but
the relationship between Cyclic Dependency and testability
compared most favorably to size, beating it in three cases and
tieing in one.

In addition, the positive relationship between architectural
smells and size was clearly stronger than the negative re-
lationship between architectural smells and testability in all
cases. There were only two outliers among the detected smells,
Feature Concentration in yavi and Cyclic Dependency in zip4j.

All cases showed that, within packages, both testabil-
ity and architectural smells correlated more strongly
with size than with each other.

D. Comparing Relationships between Different Types of Ar-
chitectural Smells and Project-level Modularity (RQ2a)

The purpose of this RQ was to test whether architec-
tural smells that are said to specifically impair modularity
exhibit a stronger negative correlation with it than other
smells (proposition C). The results are shown in Table III,
where a higher ρ signifies a stronger negative correlation
with the associated metric Propagation Cost or Decoupling
Level. Comparing the group mean of the smells in the impair-
ing group (Ambiguous Interface, Cyclic Dependency, Dense
Structure, God Component, and Scattered Functionality) to
the smells in the non-impairing group (Feature Concentration
and Unstable Dependency) shows that the impairing group
has a stronger correlation with modularity in six out of eight
cases. The remaining two cases show mixed results, with one
(light-4j) having a lower correlation with Propagation Cost
in the impairing group, and the other (zip4j) having a lower
correlation with Decoupling Level in the impairing group.
Interestingly, two of the smells in the impairing group (God
Component and Scattered Functionality) exhibit a lower corre-
lation with modularity than the non-impairing smells in most
cases. However, the rest of the impairing smells make up for
the difference. Especially Dense Structure, which showed an
average 98% higher correlation with modularity relative to the
non-impairing smells12. Cyclic Dependency showed a stronger
correlation in all cases except two—seata and sofa-rpc—where
it was slightly lower. Ambiguous Interface was only present in
seata, but showed a 10% and 23% percent higher correlation

12Calculated using the combined averages of Propagation Cost and Decou-
pling Level.
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TABLE III
PROJECT-LEVEL COMPARISON OF THE ρ DIFFERENCE OF ARCHITECTURAL SMELLS THAT IMPAIR MODULARITY AND THEIR COUNTERPARTS

light-4j motan MyPerf4J seata Sentinel sofa-rpc yavi zip4j
Smell PC DL PC DL PC DL PC DL PC DL PC DL PC DL PC DL
Ambiguous
Interface 0.069 0.194

Cyclic Depen-
dency 0.022 0.026 0.184 0.078 0.032 -0.010 -0.016 0.064 0.064 -0.046 -0.069

Dense
Structure 0.030 -0.021 1.119 0.961 0.985 0.184 0.289 1.354 1.359 1.247 1.221 0.006 0.498

God Compo-
nent -0.209 -0.017 -0.141 -0.080 -0.074 0.041 0.042 -0.005 -0.015 0.056 0.069

Scattered
Functionality 0.069 0.025 -0.096 -0.004 -0.148 -0.073 -0.004 -0.002 0.530 0.069

Group mean -0.022 0.010 0.298 0.299 0.338 0.003 0.064 0.364 0.365 0.399 0.379 0.056 0.069 0.268 -0.048

Shows the ρ difference of (a) correlations between the indicated metric and modularity-impairing smells, and (b) the mean of the correlations between the
indicated metric and non-modularity-impairing smells. Red indicates a weaker negative correlation. PC: Propagation Cost, DL: Decoupling Level.

TABLE IV
PROJECT-LEVEL COMPARISON OF THE ρ DIFFERENCE OF

ARCHITECTURAL SMELLS THAT IMPAIR TESTABILITY AND THEIR
COUNTERPARTS

Smell light-4j motan MyPerf4J seata Sentinel sofa-rpc yavi zip4j
Dense
Structure -0.003 -0.858 0.232 -0.061

God Compo-
nent -0.073 -0.011 0.168 0.105 0.051 0.249

Scattered
Functionality 0.013 -0.007 -0.020 0.028 0.412

Group mean -0.021 -0.011 -0.433 0.074 0.067 0.142 0.249 0.176

Shows the ρ difference of (a) correlations between testability-impairing
smells and code coverage, and (b) the mean of the correlations between
non-testability-impairing smells and code coverage. Red indicates a weaker
negative correlation.

with Propagation Cost and Decoupling Level respectively,
relative to the group of non-impairing smells.

At the project level, the modularity-impairing archi-
tectural smells Ambiguous Interface, Cyclic Depen-
dency, and Dense Structure all showed stronger nega-
tive correlations than their non-modularity-impairing
counterparts. In particular, Dense Structure showed
an especially strong negative correlation with mod-
ularity. The two remaining modularity-impairing
smells, God Component and Scattered Functionality
showed weaker negative correlations than the non-
impairing group of smells in most cases.

E. Comparing Relationships between Different Types of Ar-
chitectural Smells and Project-level Testability (RQ2b)

As shown in Table IV, the group mean of architectural
smells that are said to impair testability (Dense Structure, God
Component, and Scattered Functionality) showed a stronger
negative correlation than non-impairing smells (Ambiguous
Interface, Cyclic Dependency, Feature Concentration, and
Unstable Dependency) in five out of eight cases. Two of
the three remaining cases—motan and light-4j—still exhibit
strong correlations in their impairing smells, only losing to
the non-impairing smells by a 1% and 2% relative difference,
respectively. It should be noted that for motan only a single

TABLE V
PACKAGE-LEVEL COMPARISON OF THE ρ DIFFERENCE OF

ARCHITECTURAL SMELLS THAT IMPAIR TESTABILITY AND THEIR
COUNTERPARTS

Smell light-4j motan MyPerf4J seata Sentinel sofa-rpc yavi zip4j
God Compo-
nent 0.240 0.200 -0.441 0.657 0.829

Scattered
Functionality 0.601 0.343 0.123 -0.059 -0.338

Group mean 0.420 0.200 0.343 -0.159 -0.059 0.657 0.829 -0.338

Shows the ρ difference of (a) correlations between testability-impairing
smells and code coverage, and (b) the mean of the correlations between
non-testability-impairing smells and code coverage. Red indicates a weaker
negative correlation.

type of testability-impairing smell was present, namely God
Component.

Looking at the individual smells, Dense Structure only
shows a stronger correlation with testability than the non-
impairing smells in one case out of the four where it is
present. The other impairing smells, God Component and
Scattered Functionality beat their non-impairing counterparts
in the majority of cases.

At the project level, two of the three architectural
smells that are said to impair testability—God Com-
ponent and Scattered Functionality—showed stronger
negative correlations than their non-impairing coun-
terparts. The third smell—Dense Structure—showed
the opposite result in most cases.

F. Comparing Relationships between Different Types of Archi-
tectural Smells and Testability in Packages (RQ2c)

The group mean of testability-impairing smells showed a
stronger negative correlation with testability in five out of
eight cases, thus accepting proposition C. The remaining cases
that rejected proposition C were the two largest projects
containing the most packages (seata and Sentinel), and the
smallest project with the least packages (zip4j). It is also
noteworthy that there was no overlap between which cases
rejected proposition C at the project-level (RQ2b) and at the
package-level (RQ2c). The results are displayed in Table V.
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As for individual smells13, God Component had a higher
correlation with testability than non-impairing smells in four
out of five cases where it was present. Similarly, Scat-
tered Functionality showed a higher correlation in three out
of five cases where it was present. The finding was in
line with the architectural smells on the project-level, but
there was no overlap between which cases did not show a
higher correlation for these smells. One of the non-testability-
impairing smells—Feature Concentration—tied in the number
of stronger and weaker negative correlations when compared
to the group of testability-impairing smells. Notably, consid-
ering all results for both modularity and testability at both the
project and package level, it was the only non-impairing smell
that did not exhibit a distinctly weaker negative correlation.

Within packages, both God Component and Scattered
Functionality, which are said to impair testability,
showed stronger negative correlations than their non-
impairing counterparts in the majority of cases.

VII. DISCUSSION

Contrary to expectations, architectural smells did not show
a negative correlation with modularity in RQ1a. A theory to
explain this is that the absolute modularity of a project tends
to increase with project size. As an example, Propagation Cost
has been shown to decrease as the number of classes increases,
because as new classes are added the number of dependencies
among classes must also increase proportionately for the value
to not decrease. However, Decoupling Level should not be
sensitive to size in this way, yet it also showed a positive
relationship with size in a majority of cases. Indeed, the
positive correlations between modularity and size were found
to be stronger than modularity and architectural smells in
general. In addition, architectural smells were found to be
more strongly correlated to size than to modularity. In other
words, while both architectural smells and modularity tend to
increase as a project grows in size, that positive correlation
is likely a spurious relationship that can be explained by the
increasing size.

It is also important to note that there was a single
smell—Dense Structure—that stood out from the rest in RQ1a.
It showed a negative correlation with modularity in six out of
seven cases where it was detected and a stronger correlation
with modularity than size in four out of seven cases. This is
no surprise, given how Dense Structure is measured. Unlike
the other detected architectural smells, Dense Structure can
only be detected at the project-level for all packages and is
binary in that it is either detected or it isn’t. As such, in order
to be able to meaningfully measure correlations with Dense
Structure, the strength of the smell—measured in average
degree—was used instead of the number of detected instances.
The average degree is a measure of the average amount of
dependencies between packages in a project. This makes it

13Dense Structure is not included since it is only detected at the project-
level, and not in individual packages.

similar to Propagation Cost, which is calculated from depen-
dencies (including transitive dependencies) between classes.
Therefore, both measure coupling, albeit in different ways and
at levels of granularity.

On the other hand, the results of RQ1b showed that there
is a negative correlation between architectural smells and
code coverage at the project-level. There were two cases that
showed the opposite results. In both of these cases code cover-
age increased as the size of the project increased. This resulted
in positive correlations between smells and code coverage, but
as with modularity in RQ1a, these correlations were weaker
than the positive correlations between code coverage and size.
However, the same was true for the negative correlations
observed in other cases as well—they were weaker than
the negative correlations with size. Furthermore, architectural
smells also showed a weaker relationship with code coverage
than size. As with modularity, this also suggests a spurious
relationship between architectural smells and code coverage,
although this relationship was mostly negative rather than
positive, since unlike modularity, testability tended to decrease
in the observed cases. The increase in code coverage in two
cases warrants further investigation. It is plausible that an
undisclosed variable, beyond size, might be contributing to
this pattern. This assumption gains credibility considering the
inconsistent positive or negative correlations observed between
size and testability. However, uncovering such a variable
would require additional investigation and research.

The results for code coverage at the package-level in RQ1c
were quite different. First of all, the majority of detected
architectural smells in packages did not show a correlation
with code coverage. A possible theory for this is that many
packages only exist in a limited number of versions—and
the detected smells do not vary significantly across those
versions—making it difficult to establish a correlation. A
similar pattern can be observed in smaller packages as well,
which tended to exhibit fewer smells. Even though they may
exist in many versions, the smaller variance in smells may
make it harder to establish statistically significant correlations.
Looking at only established correlations in RQ1c, the results
were the opposite of the project-level results showing mostly
positive correlations. Further, the negative correlation with
code coverage was found to be stronger with size than with
smells. In other words, there does not seem to be a negative
correlation between architectural smells as a whole and code
coverage in packages. However, looking at individual smells,
Feature Concentration, God Component, and Scattered Func-
tionality had more negative correlations than positive ones.
This shows that there is a significant difference between types
of smells, and this finding is reflected in RQ2c as well.

While the results in RQ1 do not indicate that architectural
smells are a causal factor, it does not preclude a common
confounding factor. We have shown that size was a stronger
factor than smells in both the negative correlation with testa-
bility and the positive correlation with modularity. But it is
possible that there is another variable than size that is affecting
both architectural smells and modularity/testability, such as
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technical debt. Several previous studies treat architectural
smells as an indicator or symptom of technical debt (or a
derivative thereof). But this would need to be investigated
further. However, quantifying technical debt is difficult, given
its definition as the “invisible result of past decisions” [24].
Another theory, presented by Gnoyke et al., is that architectural
smells are simply a result of a project’s size rather than
any architectural properties [20]. While this seems to be in
line with the findings presented here, since overall, smells
correlated more strongly with size than any other metric,
this too would require further research to prove definitively.
Another possible confounding factor is age, but it is difficult
to isolate it from size since projects tend to grow over time.
Therefore it was not considered in this study; however, it is a
factor worthy of future investigation.

The purpose of RQ2 was to test whether architectural smells
that are said to impair specific sub-characteristics of main-
tainability actually have a stronger negative relationship with
said characteristics than their counterparts. Based on violated
design principles and mentions in previous literature, it is pro-
posed that Ambiguous Interface, Cyclic Dependency, Dense
Structure, God Component, and Scattered Functionality should
impair modularity and that Dense Structure, God Component,
and Scattered Functionality should impair testability [1]. As
shown in the results of RQ2, this turned out to be mostly the
case. In total, the smells said to impair modularity or testability
displayed a higher negative correlation for seven out of the ten
smells investigated at both package and project levels. Dense
Structure had an especially high affinity with modularity, the
possible reason for which was discussed earlier. However,
Dense Structure did not show the same result with regard to
testability. God Component and Scattered Functionality on the
other hand did not show a stronger negative relationship with
modularity but did do so for testability at both the project and
package levels. Although not said to impair testability, Feature
Concentration demonstrated a tie in the number of cases
where it showed a stronger or weaker negative relationship
with testability in packages when compared to the group of
impairing smells. But overall, there were no non-impairing
smells that showed a pattern of stronger negative correlations
than the group of affecting smells.

As far as we are aware, this is the first empirical result
that shows that different types of architectural smells relate
to different sub-characteristics of maintainability. With this in
mind, the results from RQ1c can be reexamined using only the
smells that are said to impair testability—which now produces
the opposite result with a majority of negative correlations (if
discounting statistically insignificant results). This result is a
large departure from previous research, which did not make
any distinction between the type of smell [9], or did not see
any significant difference in impact on the number of source
code changes based on the type of smell [4]. The results lend
credence to the notion that different smells can be used as
indicators of potential quality issues. For example, the smells
God Component and Scattered Functionality act as stronger
indicators of reduced testability than their counterparts. This

knowledge may help give clues to developers about which
parts of their systems have specific issues, or where to prior-
itize refactorings.

Still, it is important to acknowledge the notion that not every
instance of an architectural smell is necessarily harmful, but
rather requires individual analysis. Alternatively, some smells
might be implemented on purpose as part of a solution, such
as in certain design patterns. In this study, this has not been
taken into consideration, since it would require considerable
effort. Rather, we have looked for trends by analyzing types of
architectural smells as a group, as opposed to analyzing each
individual instance of a smell.

A. Threats to Validity

This study does not try to establish any causal relationships,
so threats to internal validity are not applicable.
Construct validity

Construct validity is concerned with the suitability and
accuracy of measurements used in the study. One threat is
the interval between versions. We chose four weeks since
it had been used in previous studies with good results, and
because employing a lower interval would have made it
computationally infeasible to analyze the versions without
reducing the number of projects. However, in projects with
a lot of activity, it is possible that using a lower interval
would result in more detailed results. Conversely, two of the
included projects showed lower activity than desired, having
more than four weeks between some commits. This was an
unfortunate side-effect of having to prioritize projects where
it was possible to get uniform test coverage data. In addition,
there were a few versions that had to be discarded due to build
issues which made it impossible to gather code coverage data.

Another possible threat is the uniformity of successful
tests across versions since it might affect code coverage and
therefore the reliability of the results. As shown in Figure 3,
the largest variance is in light-4j by 8.56%. However, this was
a very gradual decrease over six and a half years, where the
number of tests go from less than 100 to over 800. Therefore,
there was not a large fluctuation between versions, but as there
were failed tests the code coverage data is not perfect. The
same can be said for all included projects except yavi, which
had a 100% test success rate across all versions.

The choice of Propagation Cost and Decoupling Level to
measure modularity could also pose a threat. Both Propagation
Cost and Decoupling Level tended to increase with project
size. As discussed earlier, we theorize that this is simply a
characteristic of large projects, where the number of classes in-
creases more in proportion than the dependencies among them,
resulting in an overall lower modularity. However, while these
metrics give an estimate of the modularity of a project as a
whole, it does not say anything about the modularity in smaller
components such as modules or packages. Unfortunately, we
were unable to find a means of quantifying modularity at these
levels, which might otherwise have provided a more detailed
analysis.
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We believe that using code coverage to measure testability
was apt since it is the practical application of the concept. Of
course, code coverage can still be influenced by outside factors
such as the development culture in a project. In addition, one
aspect of testability—the “efficiency with which test criteria
can be established”—is hard to measure. Code coverage does
not account for the amount of developer effort that was needed
to implement the tests. Without input from the developers
themselves, it is impossible to conclude definitively whether
architectural smells have an effect on the efficiency of writing
tests.
External validity

External validity is concerned with the generalizability of
the findings in the study. There are two threats concerning
the cases that were included in this study. The first one
is about the type of projects that were selected. While all
projects are open-source and implemented in Java, we strove
to select projects from diverse domains and of varying sizes.
Moreover, only non-trivial projects with sufficient activity
were included. However, none of the included projects are
older than seven years or have more than 250k LOC. The
second threat concerns the number of cases. While eight cases
are not low compared to many other recent studies about
architectural smells14, including more cases would certainly
increase the generalizability of the findings. Both of these
factors were largely influenced by the effort required to
perform the dynamic code coverage analysis of each included
project.

Another threat concerns the applicability of the presented
findings on all architectural smells. The results in this study
only apply to the architectural smells that were measured and
do not make any conclusions about other smells that were not
included or all architectural smells as a whole. In addition,
the Ambiguous Interface smell was only present in a single
case, so results concerning this smell should be treated with
caution.
Reliability

Reliability is concerned with the replicability of the study.
This study follows a well-established case study design frame-
work by Yin [28] and is transparent about the methodology
used to produce its results. In addition, the self-developed tool
(ASAT) used in this study, as well as all collected data, is
freely available online for study or replication.15. However, it
is worth noting that the integrated tools used to perform static
analysis on architectural smells (Designite) and modularity
metrics (DV8) require an academic or paid license.

VIII. CONCLUSIONS

The main findings of this study show that: Firstly, there was
not a negative relationship between project-level modularity
and architectural smells as a whole in the majority of cases.
However, the Dense Structure smell stood out as an exception,

14For example, Le et al. [9] also used eight cases in their study.
15The tool is avaiable at: https://github.com/albe2003miun/dt133g project.

The reproduction package is available at: https://github.com/albe2003miun/
dt133g-project-reproduction-package.

showing a strong negative correlation with modularity—even
stronger than its correlation with size. Secondly, a negative
correlation was observed between architectural smells and
project-level testability. However, project size shows a stronger
relationship with both, suggesting it may be a spurious asso-
ciation. Thirdly, the analysis of package-level smells revealed
that they generally did not exhibit significant correlations
with testability, and when correlations were present, they
were not predominantly negative. Fourthly, seven out of the
ten examined architectural smells demonstrated a stronger
negative correlation with the specific quality attributes they
were claimed to impair when compared to their counter-
parts. Three out of five smells associated with modularity
impairment—Ambiguous Interface, Cyclic Dependency, and
Dense Structure—exhibited higher negative correlations at the
project-level. For testability, the associated smells God Com-
ponent and Scattered Functionality displayed higher negative
correlations at both the project and package levels. The impli-
cations of this are twofold. Firstly, for software developers, it
can serve as a guide to better understand the significance of
specific architectural smells in their own projects. Secondly,
for researchers, it provides empirical evidence that substanti-
ates parts of the existing knowledge base about the effects of
specific architectural smells, which has to date predominantly
relied on intuition and individual experience.

A future research recommendation is to explore ways to
quantify not only package-level modularity but also additional
sub-characteristics of maintainability, in order to examine their
relationships with different architectural smells. In particular,
to investigate whether these quality attributes also have a
stronger negative relationship with the smells that are said to
impair them. Moreover, we have theorized that the observed
increase in architectural smells and modularity might be a
natural consequence of projects growing in size. But it is
possible that there is another lurking factor that is responsible
for the observed correlations between architectural smells and
modularity/testability, such as technical debt or even age.
Investigating whether there are alternative factors that can
better explain the correlations between architectural smells and
quality attributes would certainly be an interesting subject for
research.
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