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Abstract—Software performance is of interest to all who
want to lower their hardware costs and provide services with
speedy responses to users, to this end reactive programming
can be employed. Therefore it is important to measure the
performance of tools such as reactive frameworks and to
compare and contrast them with each other in order to improve
the development of these tools, and help provide developers
with the information they need when searching for a reactive
framework that suits their project. To achieve this the study
will aim to indicate the reproducibility of the research on
reactive framework performance conducted by Ponge et al.
on three commonly used reactive frameworks. Further, a
root cause analysis to identify the sources of the identified
bottlenecks will be carried out and complemented by suggestions
for improving the performance of those parts in the reactive
frameworks that are causing performance issues. An analysis
of how performance correlates with the cyclomatic complexity
of the frameworks will also be presented. We find, that in
some test cases, the performance of the frameworks differs
depending on the machine used, and that the latest framework
versions do not show a marked performance increase. Further,
we discover hotspots in the Mutiny framework and reason
about potential synchronization bottlenecks. We attempt to find
a novel use case for cyclomatic complexity as an indicator
for performance but find that no correlation exists between
cyclomatic complexity and performance for reactive frameworks.

Index Terms—Benchmarking, Java, RxJava, Reactor, Mutiny,
Reactive frameworks, Reactive streams, Reactive programming

I. INTRODUCTION

Since the turn of the last decade the software industry has
been moving away from monolithic systems toward microser-
vices, a type of distributed system where the application as
a whole is composed of several smaller applications with a
delimited functional scope and an API for allowing other ser-
vices in the architecture to utilise its function. These services
can be scaled up or down depending on demand, which allows
for more efficient utilisation of hardware and thereby lowers
the costs of cloud services [1].

Imperative style blocking I/O is not resource efficient for
services that need to scale on demand, as each new connection
will instantiate a new thread which at some point might block
for I/O, each new thread requires memory and puts additional
strain on the kernel scheduler. The ability to scale services
according to demand is important for modern cloud services
and to enable this services must be able to send requests to

each other without blocking the thread making the request
whilst waiting for a response as each created thread requires
additional memory and context switches [2]. Asynchronous
programming allows for a “fire and forget” model to be
achieved, a request can be sent by a thread to another service
and immediately be reused for another purpose. The response
is then handled by another thread with no active waiting having
been required.

Reactive programming is an inherently asynchronous pro-
gramming paradigm, it is in essence a publish-subscribe pat-
tern as the data is pushed through a pipeline of operators that
transform the data before consuming or sending it down the
pipe to a proceeding operator. Reactive Streams is a protocol
accompanied with dependencies for implementing reactive
extensions [3], in a previous study by Ponge et al. [2] three
reactive extensions or reactive frameworks were benchmarked
against each other, namely RxJava, Reactor and Mutiny. This
study showed that RxJava performs best for single opera-
tion reactive types whilst Reactor proved to be the slowest.
For multiple operations RxJava and Reactor showed similar
performance whilst Mutiny, which includes less optimization,
performed worse than the other two. However, the study did
not include a root cause analysis as to why these frameworks
manifest different performance characteristics.

A core tenet of science is that published research should
be reproducible, C. Collberg and T. Proebsting [4] examine
the repeatability of 601 papers from ACM journals and con-
ferences and find that 33% of them have weak repeatability
due to a number of different factors such as source code
not being provided and build issues. The authors go on to
say: ”Repeatability and reproducibility are cornerstones of
the scientific process, necessary for avoiding dissemination of
flawed results”. In accordance with this statement our study
will examine the reproducibility of the research conducted by
Ponge et al. [2].

Good performance makes for happy customers and lower
operating costs and is therefore an important part of software
development and maintenance [5]. A crucial part of this pro-
cess is the identification of software components that causes
performance drag [6]. Bottlenecks are one such common
issue, these are commonly found when synchronizing access
to shared data as it creates a funnel for threads leading
to decreased concurrency and thereby performance. Locating

1



bottlenecks however is often a labour intensive, so research is
being done to construct smart profiler tools that help alleviate
the task for developers [7], [8], [9], [10]. A profiler is a tool
that can obtain frequency, memory usage and execution time
[5]. For this study, we used a profiler in conjunction with
the benchmarks [11] constructed in the study conducted by
Ponge et al. [2] to try and identify ”hotspots” in the reactive
frameworks and suggest possible solutions.

Cyclomatic complexity (CC) is a metric measuring the
complexity of a piece of software. The value of CC represents
the number of linearly independent paths in the software, i.e
a program with one if statement has a CC of 2. It is most
associated with predicting software maintainability but has
also shown a correlation with the number of defects found
in a code base [12]. In this paper we explore the possibility
of CC being correlated with performance in the three reactive
frameworks mentioned above.

II. PURPOSE AND CONTRIBUTIONS

Reactive programming is becoming increasingly popular
[13]. There are multiple frameworks available and it is hard
to know which one to pick based on required needs. A
study conducted by Ponge et al. [2] compares three different
reactive java frameworks, namely RxJava [14], Reactor [15]
and Mutiny [16] where equivalent operators and operator
chains are benchmarked against each other.

A reproducibility study will be conducted to ensure the
results can be replicated. What the previous research did
not take into account was the potential performance differ-
ences arising from running the tests on different hardware.
Therefore, the study will include an investigation to establish
if the results of “Analysing the performance and costs of
reactive programming libraries in Java” will differ when the
benchmarks are executed on different machines with other
hardware specifications, as well as how the latest versions of
the frameworks perform under the same benchmarks.

Finally, the study will include an evaluation of the code to
check for potential bottlenecks and if cyclomatic complexity
and performance correlate in the evaluated frameworks.
To the best of our knowledge we are the first to investigate if
cyclomatic complexity correlates to performance in reactive
frameworks and the first to document an investigation into the
reasons as to why the frameworks mentioned above showcase
different performance characteristics.

RQ1 Can the study “Analysing the performance and costs
of reactive programming libraries in Java” be successfully
reproduced?
RQ2 Do the findings in “Analysing the performance and
costs of reactive programming libraries in Java” generalise
to different hardware and framework versions?
RQ3 Identify bottlenecks in each framework and suggest
adjustments.
RQ4 How does cyclomatic complexity and performance
correlate in the evaluated frameworks?

The contributions of this study includes:
• Determining the reproducibility of the study “Analysing

the performance and costs of reactive programming li-
braries in Java” [2].

• Show if and how the performance differs depending on
hardware and version.

• Present identified bottlenecks in the code.
• An investigation on the possible correlation between

cyclomatic complexity and performance.

III. BACKGROUND

Reactive programming is a programming paradigm that
follows the principles of the Reactive Manifesto [17], which
can be summarized by the following keywords:

• Responsive: The system provides rapid and consistent
response times.

• Resilient: If a system fails for any reason, it should
still be responsive. This is achieved by “replication,
containment, isolation and delegation”. For example, con-
taining the failures within a component and isolating all
components from each other will make a failure in one
component not affect others.

• Elastic: Should react to changes and stay responsive
under dynamic workloads.

• Message driven: In order to adhere to the resiliency
principle, reactive systems need to establish a boundary
between components by relying on asynchronous mes-
sage passing. This ensures loose coupling, isolation and
location transparency.

This paradigm also utilizes asynchronous data streams and
thus effectively implements the observer pattern [18]. The
observer pattern is one out of many design patterns. A design
pattern can be described as a reusable solution to common
problematic design situations in software development [19].
The ground principle of the observer pattern is to allow
modelling a one-to-many relationship between objects. When
an observable changes state any observer that is subscribed to
said observable will get notified and updated accordingly [19].

Fig. 1: Example of a reactive stream pipeline [2].

So, what is a stream? It is an orderly sequence of events
that take place over time. It includes values, errors, and com-
pletion signals. These are emitted by a publisher (Observable)

2



and consumed by a subscriber (Observer). An example of a
reactive stream pipeline can be seen in Fig. 1 where a publisher
is emitting a stream of numbers (1, 2, 3, 4, 5...), the stream
then continues through two processors which filters out all odd
numbers and multiplies all even numbers (2, 4, 6, 8...) with
10. In the end the subscriber then receives 20, 40, 60, 80... .

A. RxJava & Reactor
RxJava and Reactor share many similarities. They both

implement optimizations such as operator fusing and pre-
fetching, as well as naming operators according to functional
programming terminology. RxJava and Reactor are based on
the joint research done in reactive-streams-commons [15], [20]
and thus share common characteristics. The biggest difference
between these frameworks is the reactive APIs. Reactor pro-
vides two base classes, Mono and Flux, for single and multi-
event streams whilst RxJava has five. Developers thereby have
more options when developing their solutions with RxJava,
e.g., backpressure support is optional with the Observable and
Flowable classes (the latter implementing backpressure whilst
the other does not) [14].

Cyclomatic complexity indicates the complexity of a code
base [21], RxJava and Reactor have considerably greater
cyclomatic complexity than Mutiny as can be seen in Table I,
this can be attributed to the optimizations employed by these
frameworks such as operator fusion which describes merging
operators in order to reduce the number of round trips made
to memory thereby, in theory, increasing performance.

B. Mutiny
Unlike RxJava and Reactor, Mutiny [16] does not include

operator fusing or pre-fetching and thus has a much smaller
code base. When comparing the lines of code for each frame-
work Reactor has more than three times the lines of code as
Mutiny and RxJava almost five times more, as shown in Table
I.

The above discussion sums up the idea of Mutiny, keeping
it small and simple whilst still adhering to the reactive streams
specification. An example of this is that instead of being
confronted with hundreds of possible methods when using
IDE completions Mutiny instead shows about ten. This kind
of design will often lead to more verbosity but improve
readability and navigability [2]. As stated above the cyclomatic
complexity (CC) of Mutiny is far lower than that of RxJava
and Reactor, metrics gathered by running Sloc, Cloc and Code
[22] show that RxJava has a CC score of 11 690 and Reactor
13 533, in contrast to Mutiny’s score of 3 220 for the latest
versions. More information on cyclomatic complexity can be
found below (D. Cyclomatic Complexity).

C. Bottlenecks
A bottleneck occurs when the performance of a system

is dragged down by a single component, often this stems
from inefficiently synchronizing access to shared data in a
multi threaded application, the threads heap up as they try to
acquire the lock causing them to become blocked and unable

to continue execution. The performance of the system as a
whole is now dependant on this one block of code, just as the
speed at which water can be poured from a bottle is dependant
on the width of its neck. Bottlenecks are a common problem in
real-world software and while some are easily fixed [7] most
are generally difficult to detect and address [8]. Application
profiling is one way to expose bottlenecks, using a profiling
tool to obtain frequency, memory usage and elapsed execution
time of method calls [5] helps developers identify hotspots in
the code that might be holding back the performance of the
software and requires attention.

D. Cyclomatic Complexity
As mentioned in the introduction cyclomatic complexity

(CC) is a measure used to evaluate the complexity of a
software program [23]. It was developed in 1976 by Thomas
J. McCabe and is therefore also referred to as ”the McCabe
metric” [24]. Historically, the actual usefulness of CC has
been questioned and the metric was, according to M. Shepperd
& D.C. Ince, accepted by researchers relatively unquestioned
[24]. Cyclomatic complexity is in essence an estimate of
decision making nodes and paths in a program.

IV. RELATED WORK

The work by Ponge et al. [2] investigates the performance
of three reactive libraries that have been introduced in the
background. This was done by creating a suite of tests for
CPU-bound single- and multi/-operator pipelines and single
and stream publishers as well as I/O bound multi-operator
pipelines for streams in file system operations and network
requests.

The results showed that for all CPU-bound single operations
(uni individual operations and single direct transformations),
both with single and multiple operators, RxJava had the best
performance, thereafter Mutiny and lastly Reactor.

For all CPU-bound stream pipelines (multi individual op-
erations and stream direct transformations), both with single
and multiple operators, RxJava and Reactor showed near equal
performance whilst Mutiny lagged.

For handling file operations and network requests (I/O-
bound benchmarks), the results showed no statistical advantage
in either of the libraries.

Comparisons of frameworks have been done before. An
example of this is the research conducted by Alkatheri et al.
[25] where four different frameworks were compared: Apache
Hadoop, Apache Spark, Apache Storm, and Apache Flink.
They concluded that Apache Flink was the best performing
framework followed by Spark but these frameworks are not
related to reactive programming and thus differ from our
research.

However, there is an example of research aimed at inves-
tigating the usage of reactive frameworks and the blocking
violations that occur when calling blocking system calls from
non-blocking threads in reactive projects. F. Dobslaw et al.
[18] investigate the occurrences of blocking violations in
projects implemented with RxJava and Reactor frameworks.
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Library Java Lines of Code (LOC) Number of F iles Cyclomatic Complexity (CC)

RxJava 3.0.13 100313 907 11750
RxJava 3.1.4 182016 855 11690

Reactor 3.4.8 72858 444 13358
Reactor 3.4.18 116442 418 13533

Mutiny 1.0.0 21177 300 2840
Mutiny 1.4.0 40056 325 3220

TABLE I: Code metrics for framework versions used by Ponge et al. [2] and
the latest framework versions used in our measurements.

A profiling tool, BlockHound, is used in conjunction with
a custom made tool to automatically append BlockHound
to GitHub projects targeted for investigation. The projects
included for testing had large code coverage to provide ample
data for the profiler as well as being developed in Java with the
use of RxJava and/or Reactor. The study found that from the
29 projects that were successfully evaluated 24.1% had one or
more blocking violations. Through stack tracing the blocking
violations it was found that the main causes of this were five
system calls used incorrectly by calling them in non-blocking
threads.

The study by F. Dobslaw et al. [18] differs from our
intended research as we will investigate the performance of
the reactive frameworks and attempt to identify if and where
bottlenecks occur rather than investigating incorrect usage of
these frameworks.

Bottlenecks are a common occurrence in software [26],
[27], [28] but locating them is often a labour intensive
undertaking. To find bottlenecks software has to be executed
in such a way as to expose them. Such performance tests are
not always readily available as most tests are often written
to check for correctness rather than performance. Toffoloa
et al. [7] developed PerfSyn to automatically synthesize test
programs that expose bottlenecks. The tool gathers execution
feedback and employs graph search algorithms to mutate
inputs in such a way as to reveal performance issues in
the tested software. However, the tool is not yet publicly
available and could therefore not be used in this study.
Similar to the previous study is the work of T. Yu and M.
Pradel in [8]. The authors developed the tool SyncProf which
detects and suggests improvements to remove synchronization
bottlenecks by analysing execution time and CPU usage
under varying workloads. However, the tool is made for
analyising C/C++ applications and as such was not employed
in our study. T. Field and R. Nair developed a lightweight
runtime profiler GAPP (Generic Automatic Parallel Profiler)
to identify serialization bottlenecks [9] by tracing context
switches inside the kernel to keep track of all active threads,
allowing the tool to measure the degree of parallelism which
is an indicator for the existence of synchronization bottlenecks.

A number of studies have been done on, or related to,
cyclomatic complexity [29], [30], [31]. Gill, G.K. and Ke-
merer, C.F. investigated the relationship between cyclomatic

complexity and software maintenance with the assumption
being that systems with high cyclomatic complexity would
be harder to maintain [29], Farooq et al. simply proposed a
model to decrease cyclomatic complexity [30] while Hutajulu
et al. measured a software engineer’s programming skills by
comparing it to the cyclomatic complexity of the code pro-
duced [31]. However, to our knowledge, few have compared
actual performance in correlation to the stated metric.

V. RESEARCH METHODOLOGY

This study aimed to investigate the reproducibility of the
study Analysing the Performance and Costs of Reactive Pro-
gramming Libraries in Java [2]. The benchmarks were run on
different hardware with the same framework versions used by
Ponge et al. [2], as well as the latest versions. We investigated
the performance of the frameworks with a profiler tool and
analysed the results. Finally, we compared the performance
results to the cyclomatic complexity score gathered by using
Sloc, Cloc and Code [22]. This section is comprised of the
following three subsections: Preparation, Data Collection and
Analysis.

A. Preparation

The preparation is divided into two subsections: Hardware
and Software.

1) Hardware: Three different machines were used for
our measurements, one for the reproducibility part and two
for finding performance variation due to hardware and/or
framework versions. The specifications of all machines can
be seen in Table II where we have listed all hardware and
software specifications of the machines used.

Hardware limitations - RQ1
• Intel Core i7-8565U as opposed to Intel Xeon CPU in

the study reproduced.

• 2.80GHz clock speed as opposed to 3.50GHz in the study
reproduced.

• 16GB RAM as opposed to 252GB RAM in the study
reproduced.

• 4 cores as opposed to 16 cores in the study reproduced.

4



Hardware Machine Reproduced Machine 1 Machine 2 Machine 3

CPU Intel Xeon CPU Intel Core i7-10870H Intel Core i7-1165G7 Intel Core i7-8565U
Clock Speed 3.50GHz 2.21GHz 2.50GHz 2.80GHz
Number of Cores 16 8 2 4
RAM 252GB 16GB 16GB 16GB

Software Machine Reproduced Machine 1 Machine 2 Machine 3

Operating System Linux Windows 10 Windows 10 Ubuntu 16.04
JDK Version 11.0.11+9 16.0.2+7 16.0.2+7 11.0.14+9
Garbage Collector Shenandoah GC Shenandoah GC Shenandoah GC Shenandoah GC
Linux Kernel 4.4.0 - - 4.4.0

TABLE II: Machine Specifications.

2) Software: To assess the reproducibility of the study
(RQ1), the benchmarks were run with the same, or as close
as possible to, software used by Ponge et al. [2]

We used Machine 3 for this part with Ubuntu installed
[32]. Ubuntu 16.04 was chosen due to its compatibility and
availability with kernel 4.4.0. However, we were unable to
source the same OpenJDK used by Ponge et al. [2] (OpenJDK
11.0.11+9) so instead used OpenJDK 11.0.14+9.

To determine performance differences across hardware and
versions (RQ2) we configured two machines (Machine 1 and
Machine 2) with the same software specifications as presented
in Table II. The benchmarks were run for the following
framework versions:

• RxJava 3.0.13 & RxJava 3.1.4.

• Reactor 3.4.8 & Reactor 3.4.18.

• Mutiny 1.0.0 & Mutiny 1.4.0.

To verify if the results generalised to different hardware we
used the same framework versions as in the previous study. For
this research to be relevant we also tested the latest versions
to see if and where performance increases have been achieved
since the previous research was published.

To gather the data needed for locating bottlenecks (RQ3) we
needed a profiler tool to acquire a performance analysis of each
tested framework. The test suite allowed for a profiler called
Java Flight Recorder to be used with the tests through the
JVM arguments. This generated a JFR-file for each benchmark
which in turn could be examined with a tool called VisualVM.
Hence, the following additional software was required for
RQ3:

• Java Flight Recorder - A JVM integrated profiler with
low overhead [33].

• VisualVM - A visual interface for viewing profile files,
such as those gathered by JFR [34].

Finally, we needed a tool to be able to calculate the cyclomatic
complexity of any given code base. Many tools are available
to gather this metric such as Cyclo [35] and JArchitect [36]
but we opted to use Sloc, Cloc and Code [22] as it is free to
use and claims fast and accurate calculations.

Software limitations - RQ1
• OpenJDK 11.0.14+9 as opposed to OpenJDK 11.0.11+9

in the study reproduced.

B. Data Collection

To collect data, the same test suite as Ponge et al. [2] was
used. However, different JVM arguments and measurement
iterations were used to collect the data needed to answer
each research question. A short explanation of all benchmarks
follows below:

1) Uni individual operators: A comparison of the perfor-
mance of transforming an event value (map) and chaining this
value with another operation (chain) on the single operation
types Single for RxJava, Mono for Reactor and Uni for Mutiny
[2].

2) Single direct transformations: Compares performance
for stream publishers i.e Single, Mono and Uni, with multi-
operator pipelines. This is done by randomizing a number
from a publisher, converting it to an absolute value using
Math::abs and then converting it to a hexadecimal string by
using Long::toHexString. These results are then concatenated
to enclose the string in brackets [2].

3) Multi individual operators: Comparing performance of
transforming values (map), and then selecting values on the
basis of a predicate (filter), chaining with a single-valued
operation (mapToOne) and finally chaining with a stream-
returning operation (mapToMany) on backpressured stream
pipelines ( Multi for Mutiny, Flux for Reactor and Flowable
for RxJava. [2].

4) Stream direct transformations: Compares performance
for stream publishers i.e Flowable for RxJava, Multi for
Reactor and Flux for Mutiny [2], with multi-operator pipelines.
Each pipeline starts with a random number which is then
transformed into an absolute value with Math::abs. For each
item a stream of strings is produced with the corresponding
hexadecimal number using Long::toHexString followed by
concatenating the ”!”-character three times [2].

5) Text Processing: The publisher reads lines from the book
Les Misérables by Victor Hugo. First, the operator immedi-
ately after the publisher discards all blank lines followed by an

5



operator that calculates the number of characters in the line.
After that these numbers are written to a file on a dispatched
worker thread pool. Finally, the last operator transforms the
character count to a string prefixed with an arrow [2].

6) Network Requests: The publisher issues six concurrent
HTTP requests to collect the content of the same book as in
the text processing benchmark, but collected from an HTTP
server. When all responses have been triggered and collected
they become a stream of all six HTTP responses. For each
item the book text is extracted and finally all characters in
the collected book are calculated.

RQ1: Can the study “Analysing the performance and costs
of reactive programming libraries in Java” be successfully
reproduced?

For the first part, we simply used the test suite without any
extra arguments on Machine 3 with the following command:
java -XX:+UseShenandoahGC -jar target/benchmarks.jar. Out
of the box, the tests are run with 5 forks, 5 warm-up iterations
and 5 measurement iterations, with each benchmark being
tested for 10 seconds per iteration. An average score is
presented at the end of the tests.

When collecting data for Network Requests and Text Pro-
cessing, Ponge et al. [2] claim to have used 1000 samples,
however when analysing the histogram showing the results
(see Fig. 2 (b)) it becomes clear that this number is incorrect.
Therefore we opted to run the tests to acquire 5000 samples.
This was done by adding the following arguments to the
line above: java -XX:+UseShenandoahGC -jar target/bench-
marks.jar -f 5 -wi 10 -i 1000 .*TextProcessing.* and java -
XX:+UseShenandoahGC -jar target/benchmarks.jar -f 5 -wi
10 -i 1000 .*NetworkRequests.*.

Thereby running 5 forks, 10 warm-up iterations and
1000 measurement iterations per benchmark. The warm-up
iterations are required for the compiler to reach a stable state.

RQ2: Do the findings in “Analysing the performance and
costs of reactive programming libraries in Java” generalise to
different hardware and framework versions?

The same procedure was followed to collect data for
RQ2 but done twice on each machine. First the tests were
conducted with the same framework versions used by Ponge
et al. [2], followed by the latest stable version of each
framework. The reasoning for doing the benchmarks both
with the same framework as well as the latest was to conclude
if any differences found was due to hardware or different
versions.

RQ3: Identify bottlenecks in each framework and suggest
adjustments/recommendations

The test suite was run multiple times on Machine 1 and
Machine 2 to eliminate any outlier runs caused by the garbage
collector. The command used for this collection included
a profiler argument: java -XX:+UseShenandoahGC-jar tar-
get/benchmarks.jar -f 5 -wi 5 -i 100 -prof jfr.

This generated a JFR (Java Flight Recorder) file for each
benchmark that could be viewed and analysed with the help
of VisualVM. This allows the user to order the method calls
according to execution time and filter them according to
library for easier identification of potential trouble spots in
the framework.

RQ4: How does cyclomatic complexity and performance
correlate in the evaluated frameworks?

We gathered code metrics of the latest versions of the
reactive frameworks by using Sloc, Cloc and Code [22]. The
core java code was analysed by ignoring tests and other
miscellaneous modules for all frameworks.

C. Analysis

The results gathered from the test suite were sufficient to
answer RQ1 and RQ2. By running the Java Flight Recorder
together with the test suite sufficient data was collected and
used to investigate potential bottlenecks in each framework to
address RQ3 and finally, the cyclomatic complexity gathered
for each framework was used to find any correlation between
CC and performance.

1) RQ1 - Analysis: To determine if the results from the
benchmark runs conducted for this study were consistent
with the results gathered by Ponge et al. [2] we created
diagrams that could be compared to the diagrams in the
original study. If these diagrams correlated we could safely
assume that the particular benchmark was indeed reproducible.

2) RQ2 - Analysis: For RQ2 it was important to run all
tests with two different framework versions so we could
see if any potential differences were due to hardware or if
these potential differences were due to newer versions. Our
reasoning when analysing the data was as follows:

Old framework version

• If the results from the benchmarking tests were the same
on all machines the results indeed generalise to different
hardware for that particular version.

• If the results would differ on one or both of Machine
1 or Machine 2 the results indicate that it does not
generalise to different hardware.

New framework version

• If the results from the benchmarking tests were the
same on all machines and these correlated to the results
gathered by the original study we can assume that the
results indeed generalise to different hardware and the
newer versions as well.

• If the results would differ on Machine 1 or Machine 2 but
not the other this would indicate that it is due to different
hardware.
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• If the results would differ on both Machine 1 and
Machine 2 and these two correlate that would indicate
that this is due to the newer version.

3) RQ3 - Analysis: To identify the bottlenecks Java Flight
Recorder [33] was used to generate profile files of the executed
benchmarks. VisualVM [34], a tool that provides the ability
to view the generated profile file as a list of executed methods
and their subsequent execution times, was used to analyse
these files. By using Java Flight Recorder and VisualVM we
could identify the hotspots in the reactive frameworks while
running the benchmark suite. The methods identified were
then further investigated to identify the causes as to why they
appeared as hotspots to establish whether or not they might
be causing a bottleneck. The method in question might take
up a lot of CPU time, but this does not in itself indicate a
bottleneck. If the method is repeatedly called, such as onNext()
which is called for every regular event, it makes sense that
this method will be highlighted by the profiler. For example,
in the Mutiny benchmark (multi mapToOne in MultiIndividi-
ualOperators) the MultiFlatMapOp.onItem() method, which is
called by MultiSubsciber.onNext() and thereby called for each
item published takes up a near quarter of the total CPU-time.
The self-time of this method, i.e. the time spent executing,
excluding the time taken for calls to other methods, was 23.4%
of the total execution time of the benchmark for Machine 1 and
23.5% for Machine 2, but this does not indicate a bottleneck.

However, as the benchmark suite tests equivalent operators
and operator chains amongst the different frameworks, we
can compare the CPU time of equivalent methods across the
frameworks in the hope of isolating methods that are taking
an undue amount of processing time. These methods can
then be investigated further to identify the code snippets that
might be causing the performance drag. We can further limit
the search scope by identifying those methods that have the
most severe performance differences.

4) RQ4 - Analysis: For RQ4 we ran Sloc, Cloc and Code
[22] to verify the changes in the results obtained by Ponge
et al. [2]. This data was then compared to the performance
of each framework to see if there is any correlation between
code complexity and stated performance.

VI. RESULTS

This section presents the results with answers to the research
questions in section II.

A. RQ1 - Can the study “Analysing the performance and costs
of reactive programming libraries in Java” be successfully
reproduced?

For most benchmarks, yes. After configuring Machine 3 and
running the tests our results showed that each CPU-bound
benchmark1 conducted on Machine 3 corresponds almost

1Worth noticing is that the mapToOne results for RxJava in the Multi
individual operators benchmark has been excluded, both in this paper and
in the study conducted by Ponge et al. [2]. This is due to a bug with the
flatMapSingle operator causing a memory exhaustion.

(a) Text processing - Machine 3.

(b) Text processing - Ponge et al. [2].

Fig. 2: Comparison of text processing between reproduced
data (a) and data from the original study (b).

exactly to the results gathered by Ponge et al. [2].
However, the results for the Text processing benchmark

gave unexpected results. Fig. 2 shows a comparison of the
reproduced results from the text processing benchmarks and
the results acquired in the original study by Ponge et al. [2].
The reproduced results shows that all reactive frameworks out-
performed the imperative code baseline which is the opposite
of the results in the original study. What should be noted
is the apparent overloading sub-distributions evident in each
of the frameworks for Machine 3 as compared to the single
distribution present in the original study, however this does
not affect the conclusions. The results for network requests
showed negligible performance differences compared to the
results obtained by Ponge et al. [2].
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(a) Uni individual operators - Machine 3.

(b) Uni individual operators - Machine 2.

Fig. 3: Comparison of uni individual operators - (a) shows
the successfully reproduced results and (b) is the results from
Machine 2.

B. RQ2 - Do the findings in “Analysing the performance and
costs of reactive programming libraries in Java” generalise to
different hardware and framework versions?

When running the benchmarks on Machine 1 and Machine
2 all benchmarks produced the expected results when running
on Machine 1, both with the early and the latest version2

of frameworks. However, for Machine 2 things were a bit
different in two cases: Uni Individual Operators and Single
Direct Transformations.

1) Uni Individual Operators: In the original study, as
well as for Machine 1 and Machine 3, Reactor performed
worse than its counterparts when running the uni individual
operators benchmark. In Fig. 3, which shows a comparison
between the successfully reproduced results and the results
from Machine 2, we can see both RxJava and Mutiny

2When the data was collected for the latest frameworks we investigated if
the mapToOne bug in RxJava was fixed in the latest version. However, the
bug is still present in RxJava 3.1.4 since it still causes memory exhaustion.

ahead in (a) whilst this is not the case in (b). This is
especially true when comparing Reactor chain with the
corresponding benchmarks RxJava chain and Mutiny chain
where Reactor is the best performing framework from being
the worst when running on Machine 2. This applies to both
the early versions of the frameworks as well as the latest ones.

2) Single Direct Transformations: The same pattern
appears when running the single direct transformation
benchmark. Again Reactor is catching up to the other
frameworks on Machine 2 whilst falling behind on Machine
1 and Machine 3.

By using the analysis method mentioned in Section V-C2
we came to the conclusion that not all findings generalise to
different hardware and when comparing the results between
versions the correlation between all frameworks stay the
same. Some performance gains have been achieved by all
frameworks in the later versions which can be expected from
later releases.

C. RQ3 Identify bottlenecks in each framework and suggest
adjustments/recommendations

The Mutiny mapToOne benchmark in the test suite for multi
individual operators was found to perform significantly worse
than its Reactor counterpart in every test conducted across all
machines and all framework versions. As can be seen in Fig. 4
Reactor actually performs 264% better on Machine 1 and thus
is the biggest difference across all benchmarks. This can of
course be due to the optimization implemented in Reactor that
is not present in the Mutiny framework but is still a red flag
for potential bottlenecks. As stated in the footnote, RxJava’s
equivalent to mapToOne is currently causing a bug and thus
could not be included.

Fig. 4: mapToOne comparison between Reactor and Mutiny.

A potential performance bottleneck was exposed when
analysing the multi individual operators results. This was the
FlatMapManager.remove() method which took up 1% of the
total execution time. The entire method can be seen in Fig. 5.
As the entire method is wrapped in a synchronization block,
meaning a lock is held that stops the execution of other threads
to that particular code, it might be causing a bottleneck as
synchronized regions of code may introduce software hangs
[37].

8



final void remove(int index) {
synchronized (this) {

T[] a = inners.get();
if (a != terminated()) {

a[index] = null;
offerFree(index);
size.decrementAndGet();

}
}

}

Fig. 5: Potential bottleneck in Mutiny.

Refactoring this method to avoid synchronizing the whole
code block could possibly increase performance.

D. RQ4 How does cyclomatic complexity and performance
correlate in the evaluated frameworks?

For the CPU-bound benchmark results one can observe
that the Mutiny framework is, although lagging in a few
benchmarks, performing on a similar level to the other
frameworks. According to our measurements displayed in
Table I these have considerably greater cyclomatic complexity
than Mutiny. It can therefore be determined that in this case,
cyclomatic complexity and performance have no correlation
with each other for CPU-bound operations.

For I/O-bound operations Mutiny performs just as well as
its counterparts, no correlation can therefore be determined
to exist between performance and cyclomatic complexity for
these benchmarks either.

VII. DISCUSSION

The results of the reproducibility aspect of the paper in-
dicate that the results of Ponge et al. [2] could indeed be
reproduced with Machine 3, both for the CPU- and I/O-bound
benchmarks, excluding text processing. However, the same
conclusions can be drawn from the results of text processing
as was made in the original study; no reactive framework
outperforms another in I/O-bound benchmarks.

Looking at the results from the tests on different hardware
we can conclude that the results actually differ depending
on the machine. Our results show that Reactor performs
better with fewer cores, however this result would have to
be substantiated with more machines before any conclusion
can be made, and a further investigation would have to
be conducted to narrow down the reasons for why this is.
The CPU-bound benchmark diagrams from Machine 2 can
be found on https://github.com/anjohcer/benchmark/Diagrams
and can be compared to the diagrams found in the study
conducted by Ponge et al. [2]. What can be concluded from
our findings is that hardware seems to impact the performance
of Reactor the most.

These results are interesting because Reactor had the
worst performance of all frameworks on both uni individual

operators and single direct transformations but performed
better and even outperformed both RxJava and Mutiny in
some benchmarks.

A lack of documentation in open source projects prevents
developers from contributing and helping projects grow, when
the time came to correct the potential bottlenecks discovered
in Mutiny we were faced with poor documentation and an
abundance of single-letter variable names. Research shows that
professional developers with years of experience have trouble
understanding methods with poor variable naming [38] and for
us the experience was no different. Furthermore, having words
as variable names as opposed to letters or abbreviations leads
to faster comprehension of the code [39], this is something
that we believe should be implemented in the Mutiny code
base to encourage more contributions.

Including comments for methods has been proven to in-
crease the change ratios and bug fixes for open source
projects [40], and including documentation of the code greatly
increases program comprehension [41]. What needs to be
mentioned here is that not all single-letter variables are bad,
and that sometimes documentation might be superfluous. In
a study conducted by Beniamini et al. [42] a conclusion was
made that some single-letter variables are common and okay,
for example i as a loop index.

However, when looking in the class where our exposed bot-
tleneck resides, namely MultiFlatMapOp.java, we were met
by only single-letter variable names, and no documentation.
We spent a lot of effort trying to decipher the code but to no
avail and had to abort our goal of correcting the bottleneck.
There are of course many reasons as to why one might opt to
not include any documentation and if you are single-handedly
taking care of a project, descriptive variable naming might
not be necessary. However, this might scare away potential
contributors looking for a project to work on.

Fig. 6: Amount of unique contributors to each framework and
the amount of contributors with 10 or more contributions.

Looking at both RxJava and Reactor we found descriptive
and comprehensive documentation as well as method
comments together with informative variable names.
We could also see that said frameworks have far more
contributors than Mutiny as can be seen in Fig. 63 which
shows the amount of unique contributors of each framework
as well as contributors that have contributed 10 times or

3Mutiny has 6 contributors with 10 commits or more. However, 3 of these
are bots and thus are not included in the diagram.
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more. Since we have stated that bugs have a higher fix
ratio when documented one can understand why far fewer
hotspots where discovered in RxJava and Reactor as opposed
to the hotspots found in Mutiny as these are likely found and
accounted for in a faster pace.

To understand possible reasons as to why cyclomatic com-
plexity does not show a correlation with performance in this
instance we need to consider what cyclomatic complexity is
actually telling us about an application. Two algorithms that
perform the same task can have different CC, this could be due
to the fact that the developer did not design the most optimal
algorithm, or the algorithm contains optimizations that may
or may not create more overhead than the performance gains
make up for. Therefore we can not make any assumptions
about performance by only considering cyclomatic complexity.

Cyclomatic complexity, as previously stated, expresses the
number of linearly independent paths a program can make,
but this does not tell us anything about the time complex-
ity. Consider two sorting algorithms, selection sort4 with an
average time complexity of O(n2) and CC of 5 and merge
sort5 O(nlog(n)) with CC of 9. The execution time of selection
sort increases exponentially whilst merge sort has a close to
linear increase. However, selection sort performs better than
merge sort for smaller data sets, and thus makes it impossible
to make any assumptions about performance without first
determining the input. Therefore, knowing the CC score does
not help us make an informed assumption about the algorithms
performance.

A. Limitations

We acknowledge some limitations in our work. The test
suite developed in the previous study could be updated to
give greater code coverage. We were unable to source a
tool for cyclomatic complexity calculations that measures CC
on a method level. Instead, the cyclomatic complexity score
applies to the entirety of the framework. We were unable to
comprehend the code where the potential bottleneck resided
due to the lack of any documentation and meaningful variable
names, which is a barrier for developers to contribute in
open source software [40], thus we were unable to make any
successful corrective adjustments.

B. Ethical/Societal Considerations

There are some possible conflicts of interests that should
be stated. Julien Ponge and Clement Escoffier, two of the
authors of ”Analysing the Performance and Costs of Reactive
Programming Libraries in Java” which is the study being
reproduced, are the main contributors to Mutiny with 402 and
651 contributions respectively6 [16]. Since Mutiny is one out
of three frameworks being investigated this should be known.
However, the benchmarks used are publicly available and we
found no evidence of bias in our research.

4https://gist.github.com/codelance/4186240
5https://gist.github.com/codelance/4186238
6as of 2022-06-05.

VIII. CONCLUSIONS

We can conclude that the results of “Analysing the perfor-
mance and costs of reactive programming libraries in Java”
[2] were indeed reproducible with the sole exception of one
benchmark, the I/O-bound Text processing benchmark, which
showed different results. Instead of all reactive frameworks
being outperformed by the imperative baseline our findings
showed the opposite. However, no reactive framework had
any performance advantage in these tests which is the same
conclusion made by Ponge et al. [2].

Furthermore, our results from RQ2 indicate that these results
may differ between hardware. Machine 1 and Machine 3 had
similar specifications - as can be seen in Table II with the
major difference being the amount of cores where Machine 1
had 8 and Machine 3 had 4 - and also had very similar results.
However, Machine 2 showed different correlation between
frameworks in two out of six benchmarks: uni individual
operators and single direct transformations where Reactor
went from the worst performing framework in the original
study to being equal or better in the results from Machine 2.

From the generated JFR-files it could be determined that
bottlenecks seem to be present in Mutiny but not as obvious
in RxJava or Reactor. One of the reasons for this could be the
lack of documentation in Mutiny which potentially hinders
contributors from getting involved, thus less resources are
available to tackle bugs and performance issues. We were
unable to correct the potential bottleneck we discovered due as
we were unable to comprehend the code due to poor variable-
naming and documentation.

Finally, we could find no correlation between cyclomatic
complexity and performance. Mutiny, which has the lowest
cyclomatic complexity score of all frameworks investigated,
outperformed the other frameworks for some benchmarks
whilst performing worse for others, without a pattern it is not
possible to deduce a correlation.

A. Future work

For future research a new test suite that covers more of
the frameworks could be developed. Furthermore, an attempt
to reproduce the text processing benchmarks to conclude if
they indeed are outperforming the imperative baseline as well
as a more thorough investigation into Reactor’s performance
on machines with fewer cores. A more in-depth investigation
into potential bottlenecks would also be beneficial, but would
require more experience with reactive frameworks.

As stated in the limitations of our work no cyclomatic
complexity tool that measure on a method level exists as far as
we know. A different approach for investigating the correlation
between cyclomatic complexity and performance could be to
acquire the CC score for each and every method used in each
benchmark. That way a comparison could be made based on
the CC score for each benchmark instead of the CC score for
the entire framework.
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APPENDIX 1: TIME PLAN

B. Planned timeplan

Week 11: Find research question and read up on subject.
Week 12 - 14: Continue getting familiar with the subject.
Start writing introductory sections; abstract, introduction,
background, purpose & contributions, related works.
Week 15: Setting up testing environments, developing and
writing methodology and running benchmarks.
Week 16 - 17: Running benchmarks with profiler, analysing
results.
Week 18 - 19: Analysing results for reproducibility and
identifying bottlenecks.
Week 20: Write results, discussion, and conclusions.
Week 21: Prepare for presentation, edit text.
Week 22: Final adjustments.

C. Actual timeplan

Week 11-12: Find research question and read up on subject.
Week 13-15: Continue getting familiar with the subject. Start
writing introductory sections; abstract, introduction,
background, purpose & contributions, related works.
Week 16: Setting up testing environments, developing and
writing methodology and running benchmarks.
Week 17-18: Running benchmarks with profiler, analysing
results.
Week 19-20: Analysing results for reproducibility and
identifying bottlenecks. Writing results, discussion, and
conclusions.
Week 21: Prepare for presentation, edit text.
Week 22: Final adjustments.

APPENDIX 2: CONTRIBUTIONS

Most work was done in close collaboration, and so divvying
the contributions of each team member is a difficult exercise,
but for these areas however we had roughly the following
division of contributions.

• Setting up testing environments: Christian 80% Anton
20%.

• Analysing results of benchmarks, RQ1-2: Christian 60%
Anton 40%.

• Diagrams/Tables: Christian 100%.

• Analysing profiler files RQ3: Christian 20% Anton 80%.
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