
A Proposal and Implementation of a Novel 
Architecture Model for Future IoT 
Applications 

With focus on fog computing 

Viktor Andersson 

Master thesis – Institution of Information Systems and Technology 
Main field of study: Computer engineering 

Credits: 30 

Semester/year: Spring, 2022 

Supervisor: Stefan Forsström, stefan.forsstrom@miun.se 

Examiner: Tingting Zhang, tingting.zhang@miun.se 

Programme: Master of Science in Engineering: Computer Engineering 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

2 
 

Abstract 
The number of IoT devices and their respective data is increasing for each 
day impacting the traditional architecture model of solely using the 
cloud for processing and storage in a negative way. This model may 
therefore need a supporting model to alleviate the different challenges 
for future IoT applications. Several researchers have described and 
presented algorithms and models with focus on distributed architecture 
models. The main issues with these however is that they fall short when 
it comes to the implementation and distribution of tasks. The former 
issue is that they are not implemented on actual hardware but simulated 
in a constrained environment. The latter issue is that they are not 
considering sharing a single task but to distribute a whole task. The 
objective of this thesis is therefore to present the different challenges 
regarding the traditional architecture model, investigate the research gap 
for the IoT and the different computing paradigms. Together with this 
implementing and evaluating a future architecture model capable of 
collaboration for the completion of a generated task on multiple off-the-
shelf hardware. This model is evaluated based on task completion time, 
data size, and scalability. The results show that the different testbeds are 
capable communicating and splitting a single task to be completed on 
multiple devices. They further show that the testbeds containing 
multiple devices are performing better regarding completion time and 
do not suffer from noticeable scalability issues. Lastly, they show that the 
completion time drops remarkably for tasks that are split and distributed. 

Keywords: Internet of Things, Fog computing, Cloud computing, Mist 
computing, Distributed Systems 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

3 
 

Acknowledgements 
I would like to thank my supervisor Stefan Forsström for always being 
available and supportive throughout the process of this thesis. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

4 
 

Table of Contents 
1 Introduction .......................................................................................... 13 
1.1 Background and problem motivation .............................................. 13 
1.2 Overall aim ........................................................................................... 14 
1.3 Problem statement ............................................................................... 14 
1.4 Research questions .............................................................................. 15 
1.5 Scope ...................................................................................................... 15 
1.6 Outline ................................................................................................... 15 
2 Theory ................................................................................................... 17 
2.1 Internet of Things ................................................................................ 17 
2.2 IoT – Cloud, fog, mist .......................................................................... 19 
2.3 Distributed systems ............................................................................. 21 
2.4 Related work ........................................................................................ 22 
2.4.1 Improving Fog Computing Performance via Fog-2-Fog 
Collaboration .................................................................................................. 22 
2.4.2 Hierarchical fog-cloud computing for IoT systems: a computation 
offloading game ............................................................................................. 24 
2.4.3 Computation Offloading with Multiple Agents in Edge-
Computing-Supported IoT ........................................................................... 27 
3 Methodology ........................................................................................ 30 
3.1 Scientific method description ............................................................ 30 
3.2 Project method description ................................................................ 31 
3.3 Evaluation method .............................................................................. 32 
4 Approach ............................................................................................... 34 
4.1 Identified research gap ....................................................................... 34 
4.2 Computational task ............................................................................. 36 
4.3 Communication orchestration ........................................................... 38 
4.4 Testbed configuration ......................................................................... 40 
5 Implementation ................................................................................... 45 
5.1 General implementation ..................................................................... 45 
5.2 Notify coordinator ............................................................................... 46 
5.3 Generation of task ................................................................................ 47 
5.4 Communication ................................................................................... 48 
5.4.1 Send help request ................................................................................. 49 
5.4.2 Receive help request ............................................................................ 50 
5.5 Compute ............................................................................................... 51 
5.6 Measurement setup ............................................................................. 52 
6 Results ................................................................................................... 55 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

5 
 

6.1 Resulting testbeds ................................................................................ 55 
6.2 Measurement results – Completion time ......................................... 57 
6.2.1 Reference testbed ................................................................................. 57 
6.2.2 One node ............................................................................................... 59 
6.2.3 Two nodes ............................................................................................. 62 
6.2.4 Three nodes ........................................................................................... 68 
6.3 Measurement results – Data size ....................................................... 74 
6.3.1 Reference ............................................................................................... 74 
6.3.2 One node ............................................................................................... 75 
6.3.3 Two nodes ............................................................................................. 76 
6.3.4 Three nodes ........................................................................................... 77 
6.4 Measurement results – Scalability ..................................................... 79 
7 Discussion ............................................................................................ 80 
7.1 Analysis and discussion of results .................................................... 80 
7.2 Project method discussion .................................................................. 82 
7.3 Scientific discussion ............................................................................ 83 
7.4 Ethical and societal discussion .......................................................... 84 
8 Conclusions .......................................................................................... 85 
8.1 Future Work ......................................................................................... 86 
8.1.1 Connection and communication ........................................................ 86 
8.1.2 Cloud testbed ........................................................................................ 86 
8.1.3 Kubernetes ............................................................................................ 87 

 
  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

6 
 

Table of Figures 
Figure 1: Traditional IoT and Cloud architecture ..................................... 13 

Figure 2: IoT architecture model [9] ............................................................ 19 

Figure 3: Novel architecture model ............................................................ 21 

Figure 4: Result of perfomance for multiple algorithms .......................... 23 

Figure 5: Structure of fog-cloud computing .............................................. 24 

Figure 6: Results of QoE ............................................................................... 25 

Figure 7: Result of average delay ................................................................ 26 

Figure 8: Result for number of beneficial users ......................................... 26 

Figure 9: Result of relationship between task generation and a stable 
system .............................................................................................................. 28 

Figure 10: Result of task execution delay ................................................... 28 

Figure 11: Simplified DSRM Process Model .............................................. 30 

Figure 12: Solution to a N-queen (N=4) problem ...................................... 36 

Figure 13: Image convolution [26] ............................................................... 37 

Figure 14: First option of communication orchestration ......................... 39 

Figure 15: Second option of communication orchestration ..................... 40 

Figure 16: Fog testbed ................................................................................... 45 

Figure 17: Testbed components ................................................................... 46 

Figure 18: JSON-object of the list of connected nodes .............................. 47 

Figure 19: A task object and its attributes .................................................. 48 

Figure 20: JSON-object of a data message ................................................... 50 

Figure 21: JSON-object of an ifixed message .............................................. 51 

Figure 22: Pseudo-code for reading fragments of a message .................. 51 

Figure 23: Flow of the compute component .............................................. 52 

Figure 24: Example of the CSV file .............................................................. 52 

Figure 25: Reference testbed ........................................................................ 55 

Figure 26: One-node testbed ........................................................................ 56 

Figure 27: Two-node testbed ........................................................................ 56 

Figure 28: Three-node testbed ..................................................................... 57 

Figure 29: Reference testbed including outliers ........................................ 58 

Figure 30: Reference testbed excluding outliers ....................................... 58 

Figure 31: One-node testbed including outliers ........................................ 60 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

7 
 

Figure 32: One-node testbed excluding outliers ....................................... 60 

Figure 33: Comparison of the one-node and reference testbeds ............ 61 

Figure 34: Two-node testbed with threshold zero including outliers ... 63 

Figure 35: Two-node testbed with threshold zero excluding outliers ... 63 

Figure 36: Two-node testbed with threshold one including outliers ..... 64 

Figure 37: Two-node testbed with threshold one excluding outliers .... 64 

Figure 38: Two-node testbed with threshold two including outliers .... 65 

Figure 39: Two-node testbed with threshold two excluding outliers .... 65 

Figure 40: Two-node testbed with threshold four including outliers .... 66 

Figure 41: Two-node testbed with threshold four excluding outliers ... 66 

Figure 42: Comparison of the two-node and reference testbeds ............ 67 

Figure 43: Three-node testbed with threshold zero including outliers . 69 

Figure 44: Three-node testbed with threshold one excluding outliers .. 69 

Figure 45: Three-node testbed with threshold one including outliers .. 70 

Figure 46: Three-node testbed with threshold one excluding outliers .. 70 

Figure 47: Three-node testbed with threshold four including outliers . 72 

Figure 48: Three-node testbed with threshold four excluding outliers . 72 

Figure 49: Comparison of the three-node and reference testbeds .......... 73 

 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

8 
 

Table of Tables 
Table 1: Summary of IoT domains their corresponding areas ................ 18 

Table 2: Properties of two sorting algorithms ........................................... 37 

Table 3: Variable configurations .................................................................. 41 

Table 4: Top and middle tier node specifications ..................................... 42 

Table 5: Middle and bottom tier node specifications ............................... 42 

Table 6: Chosen configuration variables .................................................... 43 

Table 7: Reference testbed summary including outliers .......................... 59 

Table 8: Reference testbed summary excluding outliers ......................... 59 

Table 9: Summary of the one-node and reference testbeds including 
outliers ............................................................................................................. 62 

Table 10: Summary of the one-node and reference testbeds excluding 
outliers ............................................................................................................. 62 

Table 11: Summary of the two-node and reference testbeds including 
outliers ............................................................................................................. 67 

Table 12: Summary of the two-node and reference testbeds excluding 
outliers ............................................................................................................. 68 

Table 13: Summary of the three-node and reference testbeds including 
outliers ............................................................................................................. 73 

Table 14: Summary of the three-node and reference testbeds excluding 
outliers ............................................................................................................. 74 

Table 15: Summary reference testbed including outliers ........................ 75 

Table 16: Summary reference testbed excluding outliers ........................ 75 

Table 17: Summary of the one-node and reference testbeds including 
outliers ............................................................................................................. 75 

Table 18: Summary of the one-node and reference testbeds excluding 
outliers ............................................................................................................. 76 

Table 19: Summary of the two-node and reference testbeds including 
outliers ............................................................................................................. 76 

Table 20: Summary of the two-node and reference testbeds excluding 
outliers ............................................................................................................. 77 

Table 21: Summary of the three-node and reference testbeds including 
outliers ............................................................................................................. 78 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

9 
 

Table 22: Summary of the three-node and reference testbeds excluding 
outliers ............................................................................................................. 78 

Table 23: Permutations of the list of connected nodes ............................. 79 

Table 24: Testbed differences in completion time ..................................... 80 

 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

10 
 

Terminology 
Acronyms/Abbreviations 

IoT Internet of Things 

IIoT Industrial Internet of Things 

RPi Raspberry Pi 

AI Artificial Intelligence 

ML Machine Learning 

DRL Deep Reinforcement Learning 

FL Federated Learning 

AR Augmented Reality 

GIL Global Interpreter Lock 

STDEV Standard Deviation 

GPS  Global Positioning System 

TCP/IP  Internet Protocol Suite  

TCP  Transmission Control Protocol  

IP  Internet Protocol 

UDP  User Datagram Protocol  

ARP  Address Resolution Protocol  

ICMP  Internet Control Message Protocol  

RFID  Radio-Frequency Identification  

NFC  Near Field Communications  

WSAN  Wireless Sensor and Actuator Networks  

RWA  Random Walk Algorithm 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

11 
 

NFA  Neighboring Fogs Algorithm 

NOA  No Offloading Algorithm 

OFA  Optimal Fog Algorithm 

QoE  Quality of Experience  

NE  Nash Equilibrium  

DSRM  Design Science Research Methodology  

FIFO  First-In-First-Out  

CSV  Comma-Separated file  

IQR  Interquartile Range method  

LF  Lower Fence  

UF  Upper Fence  

Mathematical notation 

𝑁  Number of nodes 

𝐶!  Number of simultaneous connections 

𝑡"  Total completion time  

𝑡#$%&  Time for requesting and receiving list of connected nodes 

𝑁(𝑡'(#))  Time to ask for help from 𝑁 nodes 

𝑡*+&+  Time to send the message containing one half of the task 

𝑡%,-&  Time it takes to sort the task 

𝑡-(%.#&  Time for the result to be sent back to the source node 

𝑡/$0$%'(*  Timestamp when a task is completed 

𝑡1(0(-+&(*  Timestamp when a task is generated 

𝑄2  Upper Quartile  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

12 
 

𝑄3  Lower Quartile  

𝑛  Total number of data points 

𝑥  Data point 

𝑥̅ Average completion time or data size. 

𝑠	 Standard deviation 

𝑃#$%&  Number of permutations of the list of connected nodes 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

13 
 

1 Introduction 
This chapter describes background and objectives regarding the area of 
Internet of Things (IoT) and its architecture model. 

1.1 Background and problem motivation 
IoT applications has so far made a great impact on connecting the 
physical world with the digital world using embedded devices, sensors, 
and electronics. When combined with cloud computing and its 
computational power, the capabilities, and possibilities for IoT 
applications extends even further. This combination of IoT devices and 
cloud is today often the traditional architecture model for these types of 
applications. The architecture could be described as a many-to-one 
relationship, where multiple IoT devices are connected to a cloud server 
for processing and storage. This type of architecture can be seen in figure 
1. 

 

Figure 1: Traditional IoT and Cloud architecture 

Even though this type of architecture provided an almost revolutionary 
effect in its early stages, we are now encountering its challenges more 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

14 
 

and more. Both IoT device-related but also the sole use of the cloud for 
computational power and storage. The former presented by Yaqoob et al. 
[1] being interoperability, scalability, flexibility, energy efficiency, 
mobility management, and security. A selection of the latter presented 
by Sadeeq et al. [2] being security, reliability, and storage. 

We can however see several new potential applications on the horizon, 
given that the supporting functions inside the systems become better. For 
example, better utilization of resources, and specialized adaptations 
based on different scenarios. This provides possibilities to utilize 
resources more locally situated instead of the traditional solution with 
external cloud computing solutions for IoT and Industrial Internet of 
Things (IIoT).  Many of the technologies and functions embedded in IoT 
and IIoT are powerful in their own domain and in specific applications, 
unfortunately there are few efforts into combining them all into a larger 
testbed that enables distributed pooling of resources. A testbed that can 
show a potential future architecture model and back-end system for the 
next generation of IoT applications. 

Because of this, the ambition of this work is to set up a novel architecture 
model. Together with this, investigate the limits and possibilities as well 
as show proof-of-concept applications on the system, and find future 
research directions. 

1.2 Overall aim 
The overall aim of this work is to give insight and enlighten the potential 
issues with the traditional architecture model for existing and future IoT 
applications. A complementary resource will therefore be offered to 
support these applications, mitigating challenges, and making the flow 
and operations in the systems more effective. 

1.3 Problem statement 
The investigated and researched problem in this thesis is the potential 
issues of solely using the traditional cloud-based solutions for future IoT 
applications. Together with this providing an optional solution in the 
form of a fog computing focused internet architecture testbed, which 
should be capable of IoT intercommunication and collaboration in a 
distributed manor. Such a system needs to be evaluated in terms of 
energy consumption, response times, cost, scheduling, reliability, 
scalability, security, throughput, availability, and privacy. Hence, we 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

15 
 

need to evaluate and compare the different aspects of this problem, as 
well as perform physical measurements in a real-world testbed. 

1.4 Research questions 
From this problem statement there emerges four research questions 
which will be answered in this thesis. These research questions are the 
following:  

RQ1: Why and to what extent is distributed pooling of resources needed 
for future IoT applications? 

RQ2: How can multiple IoT-devices collaboratively work towards 
completing tasks? 

RQ3: How effective is the proposed novel architecture model in terms of 
task completion time, data size, and scalability? 

RQ4: What are the benefits and drawbacks of the proposed novel 
architecture model? 

Hence, the contribution of this work will be to design, implement, run, 
and evaluate a novel design for a future internet architecture model for 
the IoT. Doing so exploring an often challenge-remarked area of IoT 
namely the collaboration of fog devices or nodes. 

1.5 Scope 
The focus of this thesis lies on presenting the different gaps of research 
in the area of IoT and fog computing, designing and implementing a 
novel architecture model, and lastly showing the benefits of this model 
as an option to the traditional architecture. Because of this, the 
development of a traditional architecture model using a cloud service 
will be out of scope, but a server-like computer will be used as a reference 
model. The implementation of the novel architecture model will have a 
maximum of three nodes working simultaneously in a network with an 
external coordinator. 

1.6 Outline 
Chapter 2 describes the theory for the main areas of this thesis namely 
IoT, Mist/Fog/Cloud-computing, and related work. Chapter 3 presents 
the method chosen to accomplish the goals of the thesis. Chapter 4 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

16 
 

describes the different approaches that can be taken. Chapter 5 describes 
the implementation of the multiple testbeds. Chapter 6 presents the 
results of evaluation of the testbeds. In Chapter 7 the results, method, 
and ethical and societal aspects are analyzed. Chapter 8 concludes the 
work of the thesis where research questions are answered, and potential 
future work is presented. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

17 
 

2 Theory 
This chapter will cover the main technological areas of this thesis and 
lastly related works. The first technological area to be presented is the 
IoT with the different computing paradigms surrounding it, namely, 
mist, fog, and cloud computing. The second technological area is 
distributed systems and its different branches. 

2.1 Internet of Things 
The main reasons for the success and continuous development of IoT are 
presented by Corcoran [3] to be because of cloud computing together 
with the technological advancements of mobile devices and data 
networks. The former explained as dating back to the 1960’s but has up 
until around 10 years ago boomed into what is now seen as necessary 
and something that is almost taken for granted. Enabling photos, videos, 
account information, and all sorts of files to not occupy space on each 
device related to the user, but to store it in a remote accessible place for 
later use on any internet-enabled device. The latter with the introduction 
of the smart phone enabling people to walk around with a powerful 
handheld device small enough to fit in a pocket in a pair of pants. With 
this not only acting a regular telephone, but combining technologies such 
as calculators, video cameras, computers, Global Positioning System 
(GPS), and much more. 

The connection between the cloud and the devices has as explained by 
Corcoran [3] been since its early stages been done mainly using the 
Internet Protocol Suite (TCP/IP). TCP/IP as described by Kale and 
Socolofsky [4] is generic term that symbolizes everything related to the 
more specific protocols Transmission Control Protocol (TCP) and 
Internet Protocol (IP). Multiple protocols and technologies have been 
layered on top of TCP/IP, such as User Datagram Protocol (UDP), 
Address Resolution Protocol (ARP), and Internet Control Message 
Protocol (ICMP). More regarding TCP is that it provides a connection-
oriented byte stream which guarantees delivery of packets between 
devices. 

The most prominent and enabling technology for the IoT is described by 
Atzori et al. [5] as Radio-Frequency Identification (RFID) where they also 
mention Near Field Communications (NFC), and Wireless Sensor and 
Actuator Networks (WSAN). Liu and Lu [6] presents these technologies 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

18 
 

and mentions more such as infrared sensors, GPS, internet and mobile 
networks, network services and industry applications. However, they 
proceed to explain that RFID and WSAN are the two most important and 
foundation building technologies for the IoT. 

The global expansion and progress of IoT and its connected devices are 
estimated by [7] to be 14.4 billion globally. With this said it has become 
apparent that the IoT is here to stay and will continue to grow emerging 
into more and more applications. Kaur and Singh [8] present five present 
and future application domains to be the following: Transportation and 
Logistics; Healthcare; Smart Environments; Personal and Social; 
Futuristic Applications. The domains and corresponding areas are 
presented in table 1. 

Table 1: Summary of IoT domains and their corresponding areas [8] 

Domain Application area 

Transportation and logistics 
domain 

Logistics 
Assisted driving 
Mobile ticketing 
Monitoring environmental 
parameters 
Augmented maps 

Healthcare domain Tracking 
Identification and authentication 
Data collection 
Sensing 

Smart environments domain Comfortable homes and offices 
Industrial plants 
Smart museum and gym 

Personal and social domain Social networking 
Historical queries 
Losses 
Thefts 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

19 
 

Futuristic applications domain Robot taxi 
City information model 
Enhanced game room 

 

2.2 IoT – Cloud, fog, mist 
In the survey done by Nord et al. [9] it is stated that there is no consensus 
of a standard definition of IoT, however they do present a general idea 
of what the IoT is, “a network of networks of uniquely identifiable end 
points or “things” that capture and share data”. Continuing they also 
describe multiple different architecture models proposed by different 
sources with the common pattern of consisting of at least three layers. 
The objective of each layer in the sources they investigate differs slightly, 
but they all have the common structure of having three layers. The layers 
are namely a sensing layer, a network layer, and an application layer. The 
sensing layer being responsible of sensing surroundings and generating 
data, the network layer transforming and processing the generated data, 
and lastly the application layer that finalizes the processing and presents 
it in context relevant for the wanted system or solution. The architecture 
model is presented in figure 2. 

 

Figure 2: IoT architecture model [9] 

The breakthrough for IoT as described by Bellavista et al. [10] was a 
combination of the smart phone together with the cloud computing. The 
former connecting every owner of a smart phone to the internet and the 
latter enabling heavy workloads generated in the smartphone to be 
processed on a powerful, often non-local server, popularly called the 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

20 
 

cloud. Due to this the network layer has been cloud focused, much 
because of the ability to store and process data remotely without putting 
a large stress on the IoT device. This was until recent years since the 
processing power of IoT devices has increased rapidly and different 
drawbacks and challenges has started to appear with the traditional 
focus of the cloud. 

Pan and McElhannon [11] investigate and discusses the future for IoT 
applications in relation to cloud computing. They present three benefits 
and three challenges with the traditional cloud computing model. The 
benefits being the on-demand payment method, flexible and scalable 
resources, and lastly provides great processing capabilities that for 
example supports Machine Learning (ML). The challenges they describe 
are the following: the increase of IoT devices which impacts the volume 
and velocity of data that these devices send up to the cloud; latency 
caused by the potential large distance from the IoT devices to the 
datacenters; a monopoly on the infrastructure that cloud computing 
possess since only giant companies can afford those resources, causing 
others to be dependent on these types of services. They propose the 
concept of open edge cloud infrastructure which moves the cloud closer 
to the IoT devices where they investigate multiple state-of-the-art 
research efforts and technologies in this area. The summary of related 
efforts that they provide can be seen viewed in appendix A. 

From this, emerged two other computing paradigm, fog computing and 
mist computing which have been included into the IoT network layer. 

Bellavista et al. [10] describes fog computing as a distributed computing 
paradigm with focus on moving previous cloud responsibilities closer to 
the IoT devices, negating the possible issues with cloud computing such 
as delay, and network overload. The idea behind fog computing however 
is not to replace another computing paradigm but to function as a 
middle-tier resource for work that previously had only been done in the 
top-tier, the cloud. Fog computing can therefore function as a gateway 
where data can be processed and/or be passed on to the cloud. 

There are multiple present and future application areas where fog 
computing could be useful, three of these are described by Yi et al. [12] as 
being the following: Augmented Reality (AR) where virtual objects can 
be presented in real world settings with a quicker response, increasing 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

21 
 

user experience; Content Delivery and Caching by optimizing and 
utilizing user experience based on near proximity data; lastly Mobile Big 
Data Analytics where latency issues of the cloud could be negated by 
distributing workload previously only sent to the cloud. 

Regarding mist computing, the bottom-tier, Vasconcelos et al. [13] and 
Galambos [14] both differentiates fog and mist computing partly by the 
devices involved. To further understand the difference of the two 
paradigms, Galambos [14] also produces the definition of mist 
computing covering components such as sensors and actuators with the 
capabilities of small preprocessing capabilities. 

A novel architecture model with focus on the IoT network layer and the 
distribution of work contained inside, can from the definitions be 
presented as the figure 3. 

 

Figure 3: Novel architecture model 

2.3 Distributed systems 
According to Van Steen and Tanenbaum [15], there are multiple 
descriptions and definitions of what distributed systems are where they 
conclude that none of these are grasping the essence of distributed 
systems. They then provide the loose characterization of describing it 
as ”a collection of autonomous computing elements that appears to its 
users as a single coherent system”. They proceed to break down their 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

22 
 

characterization in two features. Feature one being that components of a 
distributed system needs to be able to independently operate, where each 
component is referred to as a node. Feature two being that the viewer or 
user perceives the system as a single entity. 

Van Steen and Tanenbaum [15] also presents the different types of 
distributed systems, namely distributed computing systems, distributed 
information systems, and pervasive systems. The proceeding theory of 
this subchapter will focus on distributed computing systems more 
specifically high-performance distributed computing. For this type there 
are two subtypes, cluster computing and grid computing, where cluster 
computing will be the focus of this thesis. Cluster computing refers to the 
usage of multiple closely connected nodes operating with homogeneous 
properties. While grid computing on the other hand separates the 
properties of each node creating heterogeneous nodes. 

2.4 Related work 
The subchapters that follow will present a total of three related works 
with focus on offloading strategies for fog and cloud computing. 

2.4.1 Improving Fog Computing Performance via Fog-2-Fog 
Collaboration 

Al-Khafajiy et al. [16] proposes a fog-to-fog collaboration scheme that 
manages offloading of incoming tasks to the fog network. By doing so 
formulating a mathematical model for the offloading scheme, 
performing experiments, and lastly evaluating their model in 
comparison to other offloading schemes. 

Their proposed load balancing scheme is described to have two 
approaches. A centralized approach which relies on a master node for 
the distribution of workload, and a distributed model where each node 
in the fog network will periodically update all nodes about their 
workload. Even though they mention two approaches they adopt the 
distributed model with the motivation of being more suitable for 
applications where devices might be in a moving state e.g., mobile 
phones. The offloading occurs when a fog node that receives a request or 
workload is too busy with other requests. The decision for the offloading 
is based on the expected time for the new request to be finished. While 
the fog node is trying to calculate the expected time for the task to be 
computed on itself, the fog node sends a request to all other fog nodes 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

23 
 

for their potential collaboration of the task. In short, the task is sent or not 
sent to another fog node based on the expected time for it to be completed 
and if no fog node has a reasonable expected time for finishing the task 
it is sent to the cloud. 

Based on latency of different packets and their different sizes, they state 
that the collaboration scheme is simulated and evaluated against two 
other schemes, Random Walk (RWA), and Neighboring Fogs (NFA). The 
results showed that the proposed scheme outperforms the two others 
when measuring the average latency up until 7 fog nodes. When 
increasing the number of fog nodes above 7 however, the results show 
that the proposed model performs worse than the two others. Figure 4 
shows the results from the study, where they refer to another algorithm 
called No Offloading (NOA), and their proposed scheme as Optimal Fog 
(OFA).  

 

Figure 4: Result of performance for multiple algorithms [16] 

They conclude that offloading models affect the latency in a significant 
positive manor and that they are obligatory for the potential success of 
fog computing. 

There are mainly three differences regarding the paper in comparison to 
this thesis, the focus on mobile fog nodes, decentralized and distributed 
ways of communication, and scalability. This thesis focuses on non-
mobile fog nodes. The decentralized and distributed way of 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

24 
 

communication goes hand in hand with the scalability aspects which the 
paper does not bring up. The way the paper describes the 
communication of fog nodes is by broadcasting requests to all fog nodes 
in the same network asking for collaboration. While in this thesis a fog 
node asks for collaboration to one node at a time, not risking scalability 
issues that are prone to emerge when the number of fog nodes increases. 
The broadcasting is not explained as a one-way communication but 
rather a two-way communication where the broadcaster expects an 
answer back from every fog node it has broadcasted a message to. 

2.4.2 Hierarchical fog-cloud computing for IoT systems: a 
computation offloading game 

Shah-Mansouri and Wong [17] studies fog computing resource 
management with the viewpoint of the user. They propose an offloading 
scheme based on the idea of gamification trying to maximize the quality 
of experience for users by allocating processes on fog nodes in an efficient 
way. 

Since the system is of hierarchical structure it is made up of cloud servers, 
fog nodes, and what they call IoT users which generates tasks of a 
predetermined load. The devices in their system are made up of virtual 
machines acting as fog nodes and cloud servers each having a dedicated 
set processing power. The structure they propose can be seen in figure 5. 

 

Figure 5: Structure of fog-cloud computing [17] 

The IoT users have the ability to either process data by themselves or by 
offloading a generated task to a fog node or worst case, a remote cloud 
server. The decision of offloading is based on a problem they name as 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

25 
 

Quality of Experience (QoE). This problem computes the energy and 
delay for the scenarios of not offloading and offloading, where the 
variables are then compared based on each scenario. The gamification 
idea stems from having all users trying to optimize the utilization of 
resources not by selfishly exploiting the resources for its own benefits but 
for the collective quality of experience of all users. They refer to this as 
pure Nash Equilibrium (NE), which described by Maskin [18] as ”a 
stationary point of an iterative adjustment process”. 

The results from the study are divided into three areas, average QoE, 
average delay, computation time, and number of beneficial users. The 
results for the QoE shows that it increases drastically when increasing 
the number of fog nodes from 0 to 20, and then continues to increase but 
in a slower rate. Figure 6 shows this relationship. 

 

Figure 6: Results of QoE [17] 

The result for the average delay shows that the computation time lowers 
when the number of fog nodes increases. However, the communication 
time increases as a consequence of this but the total average delay for the 
network seems to decrease regardless. Figure 7 presents this result. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

26 
 

 

Figure 7: Result of average delay [17] 

The result from the final evaluation area, number of beneficial users, 
show that it has an increasing effect parallel with the increase of fog 
nodes but has a relatively small increase for the interval 40-80 number of 
fog nodes. Figure 8 visualizes these results. 

 

Figure 8: Result for number of beneficial users [17] 

The authors conclude that the fog nodes help in providing effective 
computing services for users together with increasing users experience 
when using the proposed scheme in comparison to other related works. 

In contrast to this thesis, the paper does not split up the generated task 
to multiple fog nodes but sends it as a complete task to one available fog 
node. This thesis also does not focus on a quality of experience as a 
collective but as every node seeing to their own needs. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

27 
 

2.4.3 Computation Offloading with Multiple Agents in Edge-
Computing-Supported IoT 

Shen et al. [19] studies computation offloading optimization for the IoT 
and from this proposes a novel offloading algorithm based on Deep 
Reinforcement Learning (DRL) and Federated Learning (FL). The paper 
uses the term edge computing when in this thesis that term is split into 
fog and mist computing. For the section of the paper, the term edge 
computing will be used instead. DRL is described as positively boosting 
multiple outcomes such as energy consumption and latency. They do 
however conclude that today’s IoT devices are not powerful enough to 
train a large neural network. To alleviate this issue, they propose FL as a 
way of bypassing the training burden of each node. They divide their 
contribution into three aspects. The first being the issues of optimization 
for computation offloading, the second being design of a novel 
offloading algorithm with focus on federated learning, and lastly 
evaluating the two previous aspects by simulating the proposed 
algorithm. 

The optimization of the offloading is done by selecting random nodes to 
perform training where different weights are updated accordingly. After 
each training session the weights are updated for every node in the 
network.  From this optimization the network can make its decision of 
offloading a task or not to a node based on the previous training done by 
other nodes. Tasks generated for every node have a set data size but with 
a set probability of being generated, namely 0.1, 0.5, and 0.9. 

The results from their simulation show that when the probability of a 
task being generated is set to 0.9 the network will have a hard time 
managing the task. When set to 0.5 the workload is heavy but not 
unmanageable, and when set to 0.1 the network is well manageable and 
stable. These results are shown in figure 9. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

28 
 

 

Figure 9: Result of relationship between task generation and a stable 
system [19] 

For the completion of a task which they call task execution delay, they 
show that when comparing the FL-based training to two other training 
methods, namely centralized and greedy, the FL-based training is not 
performing as well. Figure 10 shows these results.  

 

Figure 10: Result of task execution delay [19] 

They conclude that FL-based DRL is an applicable and enabling 
technique for optimizing offloading for IoT devices. Giving the IoT 
devices the ability to make their own decisions. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

29 
 

The paper differs from this thesis by applying machine learning on IoT 
devices, together with embracing a maximum queue size for each node 
and when reached throws newly created tasks. The paper does not 
introduce the property of splitting a task but keeps them as one entity 
and offloading them in a case when its needed. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

30 
 

3 Methodology 
This chapter will provide information regarding methods that will be 
used to answer the research questions. Followed by that will be the 
project method describing in more detail how the overall work will be 
conducted throughout the timeline of this thesis. Lastly the method 
chosen for evaluation of the thesis will be explained. 

3.1 Scientific method description 
The method chosen for the overall work of the thesis is the process model 
Design Science Research Methodology (DSRM) proposed by Peffers et al. 
[20]. This method is defined as a framework consisting of six phases, 
Identify Problem and Motivate (Phase one), Define Objectives of a 
Solution (Phase two), Design and Development (Phase three), 
Demonstration (Phase four), Evaluation (Phase five), Communication 
(Phase six). These steps are to be appropriately used for the project and 
function as supporting guidelines in the process of acquiring knowledge 
of a problem, working towards a solution and in the end having 
proposed a solution for the problem. Because of this, the method will be 
conducted in a quantitative manor. The extent of each phase is varied 
depending on where the focus lies on the specified research problem. A 
more in-depth description of the different phases will be described in 
subchapter 3.2 Project method description. An overview of DSRM is 
presented in figure 11. 

 

Figure 11: Simplified DSRM Process Model 

The first research question (RQ1) regarding why and to what extent 
distributed pooling of resources is needed for the future IoT applications 
will be explored and answered in phase one and two of DSRM. This is 
done by investigating the timeline of IoT applications through literature 
studies exploring past, present, and possible future applications. These 
studies include both challenges and advantages of today’s traditional 
architecture model. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

31 
 

The second research question (RQ2) exploring how multiple IoT devices 
collaboratively can work towards completing a task will be answered in 
phase three and four of DSRM. This network architecture will contain of-
the-shelf hardware acting as fog nodes where each node will generate 
tasks and compute it or distribute parts of the task to other fog nodes in 
the network. The novel architecture model will focus on the fog layer. 

The third research question (RQ3) regarding the effectiveness of the 
stated future architecture model compared to the traditional architecture 
model will be answered in phase five of DSRM. The different 
measurements that will be evaluated are completion time for tasks, data 
size, and scalability. 

The fourth research question (RQ4) exploring the benefits and 
drawbacks of the proposed future architecture model will be answered 
in phase five and six of DSRM. This will be done by comparing it with 
different aspects of the traditional architecture model suggesting 
improvement areas for both architectures and discuss where they can 
support each other. 

3.2 Project method description 
Phase one will lay the foundation for the coming work, because of this it 
is of great importance to first conceptualize the problem to then be able 
to provide a solution for it. Therefore, this phase will be broken down 
into four milestones. The first milestone (M1.1) being a literature study 
covering at least five related works covering IoT-applications, Cloud 
computing, Fog computing, Mist computing, and the issues surrounding 
primarily cloud computing. The second milestone (M1.2) is to present at 
least three challenges of the traditional architecture model it potentially 
may encounter in the future. The third milestone (M1.3) of phase one will 
be to define four research questions and the contribution of this thesis. 

Phase two further extends the objectives of phase one. In this phase the 
objectives for the solution will be defined. This is achieved by four 
milestones. The first milestone (M2.1) of this phase is to define the scope 
of the thesis, stating what will be the main focus. The second milestone 
(M2.2) is to define the milestones for each phase, making it clear whether 
that phase has been completed or not in the end. The third milestone 
(M2.3) is to define a specific task for the testbed to compute together with 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

32 
 

defining the evaluation areas such as scalability, task completion time, 
data size. 

Phase three involves the creation of an artifact. The artifact in this context 
is defined as a future architecture model for upcoming IoT applications. 
More specifically, this phase aims to develop the desired functionality 
and design of the future architecture model. The phase is to be divided 
into four milestones, where the first three are aimed at designing and 
developing the Mist layer (M3.1), Fog layer (M3.2), and Cloud (Reference) 
layer (M3.3). The last milestone (M3.4) is to combine the different layers 
into a collaborative intercommunicative network. 

Phase four will be to demonstrate that the developed testbeds from phase 
three works as intended. This will be done by running the testbeds and 
present the findings for the supervisor of this thesis.  

Phase five will be to evaluate the developed solution from M3.4 based on 
the defined evaluation areas from M2.3. Because of this, the evaluation 
method throughout this thesis will be performed in a quantitative manor. 

Phase six is the last phase where the findings of the project will be 
communicated. This will be done through a written technical report 
presenting the following: an introduction to the area of the thesis; theory 
regarding the technology used; method/methods used throughout this 
thesis; different approaches; description of the implementation of the novel 
architecture model; results from the measured evaluation areas; a 
discussion regarding the results and chosen method; conclusions 
explaining if the research questions has been answered and what future 
work can be done to complement the work of this thesis. Together with 
the technical report, a presentation at the end of the period of the thesis 
work will be performed. 

3.3 Evaluation method 
The evaluation method will be divided into the six different parts/phases 
from the project method description. Each specific milestone will not be 
the target for evaluation but each phase as a whole. Each phase will be 
evaluated by answering the following questions: 

• What, if any, were the challenges of the phase? 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

33 
 

• What, if any, decisions could have been made different and how 
would that impact the phase? 

• Could the phase be improved by reiterating the phase? 

The findings of the evaluation and the answers provided for each 
question will be provided in the chapter 7 and 8. 

 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

34 
 

4 Approach 
This chapter will cover four areas which are discussed, presented, and 
finally chosen. The first area being the identified research gap of IoT and 
fog computing. The second one being the option of computational task 
where the N-queen problem, sorting algorithms, and image processing 
are presented. The third one presents the different options of 
communication for the testbed. The fourth area is presenting the testbeds 
different configurations, such as variable values and hardware 
specifications. 

4.1 Identified research gap 
Multiple works have concluded that there is a gap in the research 
regarding IoT, fog computing and their relationship. This gap needs to 
be filled in order to support future applications for when cloud 
computing eventually is not enough. Some of these gaps and different 
challenges are presented in this chapter. 

Varshney and Simmhan [21] states six challenges as their version of gaps 
in the research, that the area of fog computing needs to address in order 
to make it feasible for future applications. These are the following: 
Programmability - making it easy for developers to run applications on the 
fog, defined as; Predicting demand  - predicting users demands and place 
resources where it is needed for these demands; Power and Network 
Consumption – providing enough power and energy for each different 
application accordingly; Where to push the tasks – deciding where the tasks 
are to be computed for the best interest of the application; Security and 
fault tolerance – ensuring the safety for the data and users together with 
reliability and system safety nets; Fog providers and billing – how to 
economically charge users making it beneficial for both users and 
providers. As a complement to these challenges, they also do a reality 
check where they discuss that it is still the early days for fog computing. 
They explain that a threshold for the lack of fog computing has not yet 
been met but that the issues are emerging more and more in specifically 
integrated private scenarios.  

The analysis and survey performed by Mahmud et al. [22] concluded nine 
possible future directions and gaps that needs to be further researched. 
These are the following: Context aware resource/service provisioning – 
which leads to efficient and relevant resource allocation; Sustainable and 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

35 
 

reliable fog computing – optimizes economic and environmental influence; 
Interoperable architecture of fog nodes – aims to utilizing a fog nodes 
capabilities and not only using them as gateways or networking 
components; Distributed application deployment – further extends the 
previous area but aims more at the use of distributed architectures and 
using all resources available; Power management with fog – relates to how 
to properly handle large amounts of requests and how power 
consumption increases by increasing the fog; Multi-tenant support in fog 
resources – relates to how to properly handle multiple users on one single 
fog resource; Pricing, billing in fog computing – how to address the cost of 
fog networks and how it differentiates from cloud computing; Tools for 
fog simulation – real world testbed development or simulators for 
evaluating fog computing architectures and algorithms; Programming 
languages and standards for fog – due to structure differences in 
comparison to cloud computing, standards and programming languages 
need to be extended to support fog applications. 

Mahmud et al. [23] discusses and proposes seven future research 
directions for the area of IoT and fog computing. They present them to 
be the following: Trade-off between energy and accuracy – having a 
reasonable and appropriate relation between energy and accuracy based 
on the application; Artificial intelligence-based application management – 
how to use artificial intelligence (AI) for managing resource allocation 
and potential network failures; Pricing and detailed estimation of Fog 
resources – how to appropriately charge for the use of fog resources; 
Trusted service orchestration in Fog – how to handle security for the fog 
depending on private or public infrastructure; Fog node consolidation and 
scaling – when and how to apply appropriate resources when needed; 
Application-specific management – policy development for specific IoT 
scenarios; Task sharing and re-usability – optimizing computational load 
on fog nodes by sharing tasks.  

What can be concluded from these three works is that they share and 
agree on what research gaps need to be filled for the potential success of 
fog computing. The gaps that this thesis aims to investigate and 
contribute to are those previously presented as Fog node consolidation and 
scaling, Task sharing and re-usability, Interoperable architecture of fog nodes, 
Distributed application deployment. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

36 
 

4.2 Computational task 
There exists three commonly used computational tasks in the area of 
computer science that are of interest for this project. The different 
computation tasks presented here and their corresponding algorithms 
that solve them are categorized as divide and conquer techniques. These 
tasks are the N-queen problem, sorting algorithms, and lastly image 
processing. 

The N-queen problem is a chess related puzzle problem where N number 
of queens are placed on an N-by-N board not being able to be overtaken 
by another queen Kesri et al. [24]. A queen in chess can move in three 
ways, diagonally, by row, or by column, hence requiring the placement 
of a new queen to not be in the line of being overtaken by another queen. 
Figure 12 provides an overview of how a solution can look like for a 4-
queen problem, i.e., the placement of 4 queens on a 4-by-4 board. 

 

Figure 12: Solution to a N-queen (N=4) problem 

A sorting task done by an algorithm comes with multiple different 
choices since there are multiple sorting algorithms, better or worse to 
choose from. The sorting algorithm requires an array of some sort either 
with one or multiple dimensions. The benefits of this task are the relative 
ease of implementing it, combined with being stable and scalable without 
becoming unmanageable when tuning different parameters for the 
computations. Another benefit is that it can be implemented on devices 
with everything from small to large processing capabilities. Several 
sorting algorithms are described and compared by Prajapati et al. [25], 
presenting relevant properties of each algorithm. Due for the need of a 
divide and conquer algorithm together with having an average case of 
good time complexity only two are selected as candidates from their 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

37 
 

research. These two algorithms with their corresponding properties can 
be viewed in table 2. 

Table 2: Properties of two sorting algorithms 

Algorithm 

Time complexity 

Advantage Disadvantage 
Worst case Average 

case Best case 

Merge sort 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁) 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁) 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁) Efficient 
for small 
amount of 
input data 

Requires 
additional 
memory 

Quick sort 𝑂(𝑁!) 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁) 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁) Efficient 
for large 
amounts of 
input data 

Inefficient for 
sorted data 

 

The task of image processing is also a reasonable candidate for the 
systems computation part. More specifically linear neighborhood 
filtering (convolution), where a filter is applied to an image producing a 
distorted image as a result. The practical process of convolution is 
performed by moving pixel by pixel through an image and for every 
pixel applying a matrix of set size to the current pixel and its neighbors. 
Figure 13 shows an example of this process where f(x,y) is the original 
image, h(x,y) is the filter, and g(x,y) is the resulting image. 

 

Figure 13: Image convolution [26] 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

38 
 

 

This task has several beneficial properties similar to a sorting algorithm, 
these being the ease of implementation together with requiring one or 
multiple dimensional arrays. As with the sorting algorithm, there exists 
multiple different filters, but the computational complexity remains 
mainly the same for linear neighborhood filtering. 

The computational task chosen for the testbeds is a sorting algorithm. 
The reason for this is the ability to finely tune different parameters, such 
as the range of numbers and the total size together. In comparison to the 
N-queen problem and image processing where the if the size is 
incremented one step, it will increase exponentially i.e., making it hard 
to finely tune when testing and evaluating. The sorting algorithm chosen 
is the merge sort algorithm, even though it requires additional memory, 
and the quick sort algorithm is more efficient for large amounts of input 
data. The reasoning behind this is a combination of quick sort having a 
time complexity worse than that of merge sort in the worst-case scenario, 
together with merge sort requiring additional memory. Requiring 
additional memory is not considered a disadvantage for the evaluation 
criteria of this thesis. 

4.3 Communication orchestration 
There are mainly two options of communication orchestration that are 
potentially viable for the task of the system. The two different options 
can in turn be divided into the usage of an internal coordinator or an 
external coordinator orchestration. The coordinator has in both options 
the responsibility of distributing information about the other nodes in 
the network making sure a newly connected node has opportunity to 
connect to every other node. 

The first option operates by maintaining all connections to and from a 
node to throughout each node’s existence. This is done by either having 
a partly external coordinator node only managing newly connected 
nodes and the distribution of a list of all connected nodes to that node or 
by assigning one of the nodes with the responsibilities of a coordinator 
node together with being having the workload of a regular node. A 
benefit to this type of connection is that the step of creating a new 
connection is only needed when adding a new node to the. A drawback 
to this type of connection is the possible scalability issues when 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

39 
 

increasing the number of nodes in a network. This is because the total 
number of simultaneous connections CN from one node to the other 
nodes in a network of N nodes will increase greatly as described by the 
formula 1. 

𝐶! = 𝑁 − 1 

( 1 ) 

An overview of these two orchestrations can be seen respectively in 
figure 14. 

 

Figure 14: First option of communication orchestration, Internal versus 
External coordinator 

The second option operates in contrast to option one by only maintaining 
a connection between nodes when help is needed for the computation of 
a task. This option can also use either an internal node with the 
responsibility of coordinator and regular node or an external coordinator. 
The benefit of this solution is the property of scalability since a 
connection between two nodes is broken after a shared task has been 
completed. The difference can be viewed in figure 15.  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

40 
 

 

Figure 15: Second option of communication orchestration, Internal 
versus External coordinator 

The chosen communication orchestration is the second option where an 
external coordinator is used. The motivation for this is the property of 
scalability together with separating a node’s job with the coordinators. 
The separation provides potential greater capabilities for the nodes due 
to one node not needing to do the work of the coordinators. The first 
option provided in this subchapter is from a scalability perspective not 
viable but could in a very small network of nodes be reasonable. 
However, the scalability property is of great importance for the novel 
architecture model proposed in this thesis, making option two the chosen 
communication orchestration. 

4.4 Testbed configuration 
There are multiple variables that can be considered for the configuration 
of the testbeds, together with different settings for these as well. These 
variables partly impact each other which leads to careful consideration 
when tuning these for the system not to be overloaded or underloaded. 
The generation time describes the interval of when data is to be generated 
in seconds. The data size describes the interval of how many elements 
there are to be present in an array which is referred to as a task. The 
threshold for needing help refers to when a fog node needs help with a task, 
where the options for it can be to observe queue size, data size, RAM 
usage, CPU usage, or combinations of these. The threshold for helping 
others refers to when a fog node will be able to help another fog node 
with a task, where the options for this can be to observe queue size, help 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

41 
 

queue size, RAM usage, CPU usage or a combination of these. The 
different variables and their configuration options can be seen in table 3. 

Table 3: Variable configurations 

Configuration variables and their options 

Generation time 
(s) 

Min value 0 to 10 

Max value 0 to 100 

Data size 
(elements in 
array) 

Min value 0 to 103 

Max value 103 to 106 

Threshold for 
needing help 

Queue size 0 to 100 

Data size (elements in 
array) 

Min to max of data size 

RAM (%) 0 to 100 

CPU (%) 0 to 100 

Threshold for 
helping others 

Queue size 0 to 100 

Help queue size 0 to 100 

RAM (%) 0 to 100 

CPU (%) 0 to 100 

 

The situation of an overloaded system is partly affected by the hardware 
which the testbed runs on, this is because different hardware has 
different properties and specifications. Table 4 presents the specifications 
for the top tier nodes that are considered for the system. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

42 
 

Table 4: Top and middle tier node specifications 

Top/middle tier nodes 

Type 
Specifications 

OS CPU RAM 

PC Windows 10 (64-bit) 3.80GHz Intel Core 
i5-7600K 

16 GB 

MacBook 
Pro 

MacOS Monterey Version 
12.3.1 

1,4 GHz Quad-Core 
Intel Core i5 

8 GB 

 

Table 5 presents the specifications for the middle/bottom tier nodes to be 
used, the motivation behind middle/bottom is because the sensor values 
from a potential bottom tier node are to be simulated on the middle tier 
for this work. 

Table 5: Middle and bottom tier node specifications 

Middle/bottom tier nodes 

Generation of 
RPi 

Specifications 

OS CPU RAM 

4th Gen. model B 
[27] 

Raspberry 
Pi (32-bit) 

Quad core 1.5GHz 
Broadcom BCM2711 64-
bit 

4 GB 

 

The motivation behind the final chosen values of the variables comes 
from testing the different options presented in table 3. Keeping the 
generation time at the maximum values for a small data size will keep 
the system stable but will not demand or need the assistance of another 
node, making the communication orchestration redundant, which is not 
desired. On the other hand, generating the maximum sized data within 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

43 
 

the smallest time frame will overload the system potentially making it 
crash due to the hardware limitations. This led to the generation time 
being set to range from 0 to 10 and the data size for a generated task to 
range from 104 to 105. The two thresholds chosen is also based on testing 
different values. The threshold for a node needing help is based on a 
combination of two configurations, queue size and the data size. Where 
the threshold is reached when either the queue size is 5 or more, or when 
the data size for the generated task exceeds the median of the maximum 
and minimum value of the possible data size. The reasoning behind these 
values is that the communication shall not be performed for all tasks, but 
for tasks that are of greater computational load, and also when a fog node 
is getting overwhelmed by tasks generated and added to its queue. The 
values for this threshold will not change for the different testbeds. The 
threshold for helping others is based on the condition that the queue size 
and help queue size will need to be lower than that of a specific value, 
where they will change for the different testbeds. The reasoning behind 
these values is that a fog node should not help others with tasks if it can’t 
manage its own generated tasks or the tasks it has previously offered to 
help others with. This threshold for the different testbeds is therefore set 
to the queue size and help queue size to not exceed 0, 1, 2, and 4 
respectively. The final chosen values are presented in table 6. 

Table 6: Chosen configuration variables 

Configuration variables and their set values 

Generation time 
(s) 

Min value 0 

Max value 10 

Data size 
(elements in 
array) 

Min value 104 

Max value 105 

Threshold for 
needing help 

Queue size >= 5 

Data size (elements in 
array) >

104 + 105

2  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

44 
 

Threshold for 
helping others 

Queue size < (0, 1, 2, 4) 

Help queue size < (0, 1, 2, 4) 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

45 
 

5 Implementation 
This chapter presents the technologies and the steps taken to construct 
the four following testbeds: reference, one-node, two-node, three-node. 
The general concept and overview for a fog testbed can be viewed in 
figure 16. 

 

Figure 16: Fog testbed 

5.1 General implementation 
The implementation is performed by using the programming language 
Python also referred to as CPython [28] which is the traditional or 
standard implementation of what is regularly referred to as Python. 
There are however multiple branches of CPython namely: IronPython – 
which runs on .NET; Jython – which runs on Java Virtual Machine; PyPy 
– which uses a JIT compiler; Stackless Python – Which supports 
microthreads; MicroPython – which runs on micro controllers. 

The use of CPython impacts the implementation of this thesis by having 
the property of the Global Interpreter Lock (GIL). The GIL [29] is a 
mechanism which makes sure that only on thread can execute at a time. 
This has the effect of ensuring the safety of not encountering concurrent 
access to a resource. This does however impact the parallelism negatively 
when regarding efficiency. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

46 
 

Most of the components presented below are operating on separate 
threads, which is done by using the library threading [30]. Due to the use 
of CPython as mentioned previously this library does not have the 
properties of a true multi-threaded program but is stated by [30] to be an 
appropriate model for running multiple I/O-bound tasks simultaneously. 
The components which are not running on a separate thread are Notify 
coordinator, and the sub-component Send help request. The motivation 
behind this for the former is because it is a gateway-requirement for the 
proceeding work of the other components, and for the latter being that it 
runs on the Compute component. 

All connections made in the implementation of the testbeds are made by 
using the library socket which is a low-level networking interface used for 
connecting devices to each other. The standard protocol and the protocol 
used for this thesis are TCP/IP. 

An overview of the different components and their relationship to each 
other can be viewed in figure 17 and will be presented accordingly in the 
subchapters that follow. 

 

Figure 17: Testbed components 

5.2 Notify coordinator 
The first step for a node entering the network is to connect and notify the 
coordinator of the network. The coordinator saves the IP-address of this 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

47 
 

node and adds it to a list of all existing nodes which it later will send to 
a node that requests help. The list is a JSON-object and the structure of it 
is presented in figure 18. 

 

Figure 18: JSON-object of the list of connected nodes 

When the coordinator has added the new node to the list, the connection 
is closed, and the proceeding components can start to operate. 

5.3 Generation of task 
The generation of data is performed by randomly generating unsorted 
arrays of random size at random intervals. This generation of data is 
what is also defined as a task in this thesis.  

The generation of data is performed with the help of a routine from the 
library NumPy called Random Sampling [31]. This routine generates 
random numbers based on the 128-bit implementation of O’Neill’s 
permutation congruential generator [32] which by the library is named 
as PCG64. The random numbers generated are used for the creation of 
the unsorted arrays specifying the content of the arrays, the size of the 
arrays, and the time for how long this thread is should sleep before 
generating the next array. The variables used for generating the random 
values is presented in table 6. 

The data is processed by the same thread after creation by inserting it 
into JSON-objects which is then placed into a queue for further 
processing and computation. Before this, the size of the queue and the 
data is observed to determine if the node needs help or not. The 
thresholds for this are presented in table 6. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

48 
 

The data and relevant attributes of each JSON-object are the following: 
data in the form of a random sized array containing random integers; 
node_address keeps track of the IP-address of the node that has generated 
the data; part_one_sorted helps in keeping track if one part of the data is 
sorted; part_two_sorted helps in keeping track if the second part of the 
data is sorted; alone states if there are no other nodes to help; compute a 
node if it should perform the computation for the data; help_needed 
informs if a node needs help; time_src keeps track of the time for a task 
used for the evaluation; sent helps in the evaluation informing if another 
node has helped with a task. The task and its structure can be seen in 
figure 19. 

 

Figure 19: A task object and its attributes 

The attribute time_src is set by using the library time, which includes 
multiple time-related functions [33]. The function used in this 
implementation is perf_counter(), which returns the float value of a clock 
with the highest available resolution, i.e., it acts as a stopwatch. 

5.4 Communication 
This component can be divided into two sub-components that define the 
communication between the nodes. The first one is where a node needs 
help and sends the request to another node. The second one being where 
a node receives a request from another node wanting help with a task. 
These two sub-components are presented below. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

49 
 

5.4.1 Send help request 
This sub-component operates by connecting to the coordinator to fetch 
the list of connected nodes. The list is randomized with the shuffle-
function from NumPy [34]. This list is then used to connect to every node 
in the list. With each connection, the node needing help sends a byte 
encoded message indicating that it needs help. The node then waits for a 
response on whether it gets help or not. Based on the response and a 
scenario where the node that needs help is alone in the network, the 
component will change three attributes of the task. These are the 
attributes alone, compute, and help_needed. 

If the list only contains the node needing help, it will change the 
attributes in the mentioned order to true, true, and false. 

If help is not granted it closes that connection and continues through the 
list until either help is granted, or the list has been processed. If the list 
has been processed and no other node will help, it will change the 
attributes in the mentioned order to true, true, and false. 

If help is granted, it first changes the attributes of the task in the 
mentioned order to false, true, and false. Secondly it sends the task as a 
JSON-object to that helping node. To minimize overhead of the 
transmitted data, the task is filtered by removing different attributes not 
necessary for the other node to complete the task. This object includes the 
following attributes: the first data is an identifier for the helping node that 
it is data or task that is being received; the task_id is an index for the task 
keeping track of the task; the second data tells the helping node what task 
is to be computed; node_address is the source nodes’ IP-address; 
part_two_sorted is an indicator for if the second part of the task has been 
completed. This JSON-object can be seen in figure 20. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

50 
 

 

Figure 20: JSON-object of a data message  

5.4.2 Receive help request 
This sub-component acts as a server, waiting for connect requests from 
other nodes needing help. This connection then accepts encoded 
messages, decodes them, and checks what type or identity of message it 
is. The message identity can be one of the following: 

• help – indicating that the connecting node needs help, where the 
potential helper responds with a yes or a no. If yes, the helper waits 
for the next message, if no, closes the connection. The answer 
depends on the thresholds presented in chapter 4.4. 

• data – indicating that the message is a JSON-object that contains 
data to be computed by the helper, which the helper adds to a 
separate queue dedicated for data that has come from other nodes. 
This queue is referred to the help queue. An example of this 
message can be seen in figure 20. The connection is closed after 
the task has been added to the computation queue of the helper 
and will be re-opened by the helper when the task has been 
completed according to the ifixed message. 

• ifixed – indicating that the message is a JSON-object that contains 
the result and appropriate attributes from a helping node that has 
finished its part of a task. These attributes excluding ifixed are the 
following: task_id – stating the ID generated for the task at the 
source node; data – which is the result of the computation 
performed by the helping node; part_two_sorted – which states that 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

51 
 

the task has been completed. This JSON-object including the 
message identifier ifixed can be seen in figure 21. 

 

Figure 21: JSON-object of an ifixed message 

• No message – closes the connection. 

Large messages that are sent through the connections are divided into 
multiple messages due to the nature of the socket library and its function 
recv(). The messages received on the helping side needs therefore to be 
read as fragments. The fragments can at the end be concatenated 
producing the original message in full. An example of this can be seen in 
figure 22. 

 

Figure 22: Pseudo-code for reading fragments of a message 

5.5 Compute 
This component performs the computations on the task residing in the 
compute queue and the help queue where tasks are processed according 
in a first-in-first-out (FIFO) order for both queues. The priority is 
however the compute queue. The computation is done by using non-
library merge sort algorithm. The computation depends on the attributes 
previously mentioned in chapter 5.3.1, for if help has been granted or not. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

52 
 

If help is not granted for the task, the complete task is computed by the 
node that generated the task (source node). If help is granted, the source 
node will compute the first half of the task and then set the attribute 
part_one_sorted to true. The node will then try to process the first task 
residing in the help queue if there is any. If a task exists, it will process 
that task accordingly and send the task with relevant attributes back to 
the source node of that task and lastly remove that task from the help 
queue. When finished with the first task or no task exists in the help 
queue, it will check the attribute part_two_sorted of the first task in the 
compute queue again to see if the whole task has been completed and 
can be removed from the compute queue. Figure 23 shows the flow of 
this component. 

 

Figure 23: Flow of the compute component 

5.6 Measurement setup 
In accordance with the evaluation areas the different measurements 
taken are completion time for a task, data size, and scalability. 
Completion time for a task, and data size are together with the id for a 
task, and a variable stating if the task has been split and sent or not are 
sent to a Comma-Separated file (CSV) for further analysis in Excel. A 
simple example of this file can be viewed in figure 24. 

 

Figure 24: Example of the CSV file for the different measurements 

The measurements are performed the same for all testbeds and 
corresponding thresholds. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

53 
 

The completion time for a task is measured for each testbed by calling 
the perf_counter() function creating a timestamp. A new call of 
perf_counter() will be performed when the task has been removed from 
the compute queue which creates a new timestamp for the task. The two 
timestamps are then subtracted to produce the total completion time for 
a task. The formula 2 presents the calculations for the total completion 
time 𝑡" , where 𝑡#$%&  is the time for requesting and receiving the list of 
connected nodes, 𝑁4𝑡'(#)5 the time to ask for help from 𝑁 nodes, 𝑡*+&+ is 
the time to send the message containing one half of the task, 𝑡%,-& is the 
time it takes to sort the task, 𝑡-(%.#& is the time for the result to be sent 
back to the source node, 𝑡/$0$%'(*  is the timestamp when a task is 
completed, 𝑡1(0(-+&(* is the timestamp when a task is generated. 

𝑡" = 𝑡#$%& + 𝑛(𝑡'(#)) + 𝑡*+&+ + 𝑡%,-& + 𝑡-(%.#& 	⇔ 𝑡/$0$%'(* − 𝑡1(0(-+&(* 

( 2 ) 

Outliers based on the completion time are mathematically removed with 
the Tukey Interquartile Range method (IQR) presented in [35]. The 
method determines what data is to be considered an outlier by checking 
if the value being evaluated by the method is below the Lower Fence (LF) 
or above the Upper Fence (UF). The IQR is determined by subtracting the 
upper quartile 𝑄2 by the lower quartile 𝑄3, this is presented in formula 3. 

𝐼𝑄𝑅 = 𝑄2 − 𝑄3 

( 3 ) 

The LF and UF are calculated using the formulas 4 and 5 accordingly. 

𝐿𝐹 = 	𝑄3 − 1.5 ∗ 𝐼𝑄𝑅 

( 4 ) 

𝑈𝐹 = 	𝑄2 + 1.5 ∗ 𝐼𝑄𝑅 

( 5 ) 

The average completion time and data size is calculated using formula 6, 
where 𝑛 is the total number of data points and 𝑥$ represents each data 
point. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

54 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑥̅ =
1
𝑛E𝑥$

0

$63

 

( 6 ) 

The standard deviation (STDEV) for the completion time and data size is 
calculated using the formula 7, where 𝑠  is the STDEV, 𝑛  is the total 
number of data points, 𝑥$ represents each data point, and 𝑥̅ is the average 
completion time or data size. 

𝑆𝑇𝐷𝐸𝑉 = 𝑠 = K
1

𝑛 − 1	E
(𝑥$ − 𝑥̅)7

0

$63

 

( 7 ) 

The maximum and minimum are extracted by selecting the highest and 
lowest value for the completion time and data size respectively. 

The scalability is evaluated and measured by using formula 8, where 𝑃#$%& 
is the number of permutations of the list, and 𝑁 is the total number of 
nodes in the network. 

𝑃#$%& = 𝑁!, 𝑁 ≥ 0 

( 8 ) 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

55 
 

6 Results 
The following sub-chapters describes and presents the results and 
findings for the different testbeds. The measurements performed for each 
configuration are completion time for tasks, data size, and scalability. 

6.1 Resulting testbeds 
Four testbeds have been constructed and implemented for this thesis. 
The specifications of the devices used can be seen in chapter 4.4 in 
tables 4 and 5. 

The first one being a reference testbed where one RPi is connected to a 
server (PC) providing greater computational properties than that of an 
RPi. This testbed can be seen in figure 25. 

  

Figure 25: Reference testbed 

The second testbed consist of one RPi connected to a coordinator 
(Macbook Pro). This testbed can be seen in figure 26. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

56 
 

  

Figure 26: One-node testbed 

The third testbed consist of two RPi’s connected to the coordinator 
(Macbook Pro). This testbed can be seen in figure 27. 

  

Figure 27: Two-node testbed 

The fourth testbed consist of three RPi’s connected to the coordinator 
(Macbook Pro). This testbed can be seen in figure 28. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

57 
 

  

Figure 28: Three-node testbed 

6.2 Measurement results – Completion time 
This subchapter presents the results from the different testbeds and their 
configurations regarding completion time for tasks in correspondence 
with the data size. The threshold referred to for the different testbeds of 
this subchapter describe the threshold for helping another node with a 
task and not the threshold for needing help with a task. 

6.2.1 Reference testbed 
The completion time for all the tasks of the reference testbed including 
outliers is presented in figure 29 and excluding outliers is presented in 
figure 30. What can be seen in figure 29 is that there are significant 
outliers, most visually notable those above the completion time 8000ms. 
When removing outliers from the data, the algorithm determined that 
every data point above ca. 5500ms is an outlier providing the result in 
figure 30. There is no data referring to data not being sent; this is because 
of the testbed’s configuration always sending data to the reference node. 
For this testbed we can observe a pattern, where we have two linear 
formations with a close origin ranging from around 100ms to 400ms and 
also a cluster forming in the middle of these two linear formations 
ranging from around 1200ms to 2800ms. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

58 
 

 

Figure 29: Reference testbed including outliers 

 

 

Figure 30: Reference testbed excluding outliers 

Table 7 and 8, presents a summary of the task completion time for the 
reference testbed including and excluding outliers respectively. There 
are notable differences for the two tables. The exclusion of outliers 
provided the following results: the average time has lowered by ca. 11%; 
the STDEV is lowered by ca. 23%; the maximum value is lowered by ca. 
51%; the minimum value has not changed. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

59 
 

Table 7: Reference testbed summary including outliers 

Summary of completion time for tasks on the reference testbed 
including outliers (ms) 

Testbed Avg STDEV Max Min 

Reference 1960 1580 10920 140 

 

Table 8: Reference testbed summary excluding outliers 

Summary of completion time for tasks on the reference testbed 
excluding outliers (ms) 

Testbed Avg STDEV Max Min 

Reference 1750 1210 5370 140 

 

6.2.2 One node 
The completion time per task including and excluding outliers for when 
one node is present in the network is presented respectively in figures 31 
and 32. For these figures the outliers are not visually too notable. The 
maximum value does not exceed 9000ms when including outliers and 
does not exceed 7500ms. In contrast to the reference testbed, this one-
node testbed does not send anything to another node since it is alone in 
the network, forcing it to compute every task itself. For this testbed we 
can observe the linear relationship between the completion time and the 
data size, with some additional scattered data points. 

 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

60 
 

 

Figure 31: One-node testbed including outliers 

 

 

Figure 32: One-node testbed excluding outliers 

Figure 33 shows the relationship between the inclusion and exclusion of 
outliers for this testbed with zero as the threshold and the reference 
testbed. Multiple thresholds are not present for this testbed since it can’t 
receive help with tasks from other fog nodes. This testbed does not 
change its average completion time value when excluding like the 
reference testbed, but only the STDEV has changed. This testbed also 
performs worse than the reference testbed. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

61 
 

 

 

Figure 33: Comparison of the one-node and reference testbeds 

Table 9 and 10 presents a summary of completion time for tasks 
including and excluding outliers for the one-node testbed in comparison 
to the reference testbed. For the difference of the table presenting the 
inclusion of outliers there is the following differences with focus on the 
one-node testbed: average completion time is around 36% higher; the 
STDEV is around 9% higher; the maximum completion time is around 
20% lower; the minimum value is around 68% higher. When excluding 
outliers, the differences change to the following: the average completion 
time is around 43% higher; the STDEV is around 20% higher; the 
maximum value is around 26% higher; the minimum value is around 78% 
higher. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

62 
 

Table 9: Summary of the one-node and reference testbeds including 
outliers 

Summary of completion time for tasks for 1 RPi including outliers 
(ms) 

Testbed Avg STDEV Max Min 

One-node 3070 1730 8760 440 

Reference 1960 1580 10920 140 

 

Table 10: Summary of the one-node and reference testbeds excluding 
outliers 

Summary of completion time for tasks for 1 RPi excluding outliers 
(ms) 

Testbed Avg STDEV Max Min 

One-node 3070 1520 7280 640 

Reference 1750 1210 5370 140 

 

6.2.3 Two nodes 
The completion time per task including and excluding outliers for when 
two nodes are present in the network with threshold zero is presented 
respectively in figures 34 and 35. What can be seen here is that the 
outliers seem to range from around 6500ms and up to 11000ms when 
comparing the two figures. What is most notable is the difference in the 
completion time for when a task has been sent at the data size around 
110000 and up to 200000. While the data not being sent is forming a linear 
relationship, the data being split and sent is dropping in completion time 
where also the differences of completion time increase with the data size. 
In both two figures the majority of tasks is still processed on the source 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

63 
 

node due to the threshold for helping another node being the lowest 
value of the testbed configurations. 

 

Figure 34: Two-node testbed with threshold zero including outliers 

 

Figure 35: Two-node testbed with threshold zero excluding outliers 

The completion time per task including and excluding outliers for when 
two nodes are present in the network with threshold one is presented 
respectively in figures 36 and 37. What can be seen here is that the 
outliers seem to have the around the same range as the two previous 
figures but with a small increase. As also seen in figures for the previous 
threshold configuration is the decrease of completion time exceeding the 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

64 
 

data size 110000. There also seems to be a linear relationship for this 
threshold as well. In contrast to the previous threshold, this threshold 
increases the number of tasks being split and sent, with a few tasks not 
being sent when exceeding the data size 110000.  

 

Figure 36: Two-node testbed with threshold one including outliers 

 

Figure 37: Two-node testbed with threshold one excluding outliers 

The completion time per task including and excluding outliers for when 
two nodes are present in the network with threshold two is presented 
respectively in figures 38 and 39. This threshold seems to provide the 
same pattern as threshold one with the main difference being the number 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

65 
 

of not sent tasks being even lower when exceeding 110000 for this 
threshold. 

 

 

Figure 38: Two-node testbed with threshold two including outliers 

 

Figure 39: Two-node testbed with threshold two excluding outliers 

The completion time per task including and excluding outliers for when 
two nodes are present in the network with threshold four is presented 
respectively in figures 40 and 41. As the with the previous threshold, this 
threshold provides the same pattern again but with all tasks exceeding a 
data size around 110000 being sent. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

66 
 

 

Figure 40: Two-node testbed with threshold four including outliers 

 

Figure 41: Two-node testbed with threshold four excluding outliers 

Figure 42 shows the relationship between the inclusion and exclusion of 
outliers for the two-node testbed with all the corresponding thresholds 
and the reference testbed. The threshold zero does not provide a 
difference in the average completion time for the inclusion and exclusion 
of outliers. However, for the remaining thresholds the difference of the 
average completion time has decreased when excluding the outliers. 
What is also visualized in this figure is that this testbed performs worse 
than the reference testbed where threshold zero performs the best out of 
these with a small difference. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

67 
 

 

Figure 42: Comparison of the two-node and reference testbeds 

Table 11 and 12 presents a summary of completion time for tasks 
including and excluding outliers for the two-node testbed in comparison 
to the reference testbed. For the difference of the table presenting the 
inclusion of outliers there is the following differences with focus on the 
best performing threshold of the two-node testbed: average completion 
time is around 29% higher; the STDEV is around 4% higher; the 
maximum completion time are the same; the minimum value is around 
60% higher. When excluding outliers, the differences change to the 
following: the average completion time is around 37% higher; the STDEV 
is the same; the maximum value is around 14% higher; the minimum 
value is around 87% higher. 

Table 11: Summary of the two-node and reference testbeds including 
outliers 

Summary of completion time for tasks for 2 RPi’s 
including outliers (ms) 

Threshold Avg STDEV Max  Min 

= 0 2770 1650 10920 340 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

68 
 

<= 1 2880 1930 12510 350 

<= 2 2970 1850 12890 410 

<= 4 3200 2010 12140 410 

Reference 1960 1580 10920 140 

 

Table 12: Summary of the two-node and reference testbeds excluding 
outliers 

Summary of completion time for tasks for 2 RPi’s 
excluding outliers (ms) 

Threshold Avg STDEV Max  Min 

= 0 2770 1210 6270 1100 

<= 1 2690 1170 6340 1070 

<= 2 2750 1190 4130 1150 

<= 4 2860 1210 6020 1100 

Reference 1750 1210 5370 140 

 

6.2.4 Three nodes 
The completion time per task including and excluding outliers for when 
three nodes are present in the network with threshold zero is presented 
respectively in figures 43 and 44. This threshold seems to visually be in 
par with the same threshold for the two-node testbed when observing 
the number of split and sent tasks, and the drop in completion time for 
the split and sent tasks. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

69 
 

 

Figure 43: Three-node testbed with threshold zero including outliers 

 

Figure 44: Three-node testbed with threshold one excluding outliers 

The completion time per task including and excluding outliers for when 
three nodes are present in the network with threshold one is presented 
respectively in figures 45 and 46. For this threshold there is a notable 
difference between the inclusion and exclusion of outliers. What can be 
seen for the inclusion of outliers is that the completion time extends over 
25000ms in the most extreme case which is the highest completion time 
yet. The exclusion of the outliers pulls down the maximum completion 
time to under 7000ms. As with the previous testbeds the number of split 
and sent tasks are the majority of the data points when exceeding 110000 
in size with a few tasks not being split and sent. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

70 
 

 

Figure 45: Three-node testbed with threshold one including outliers 

 

Figure 46: Three-node testbed with threshold one excluding outliers 

The completion time per task including and excluding outliers for when 
three nodes are present in the network with threshold two is presented 
respectively in figures 47 and 48. Once again there appears extreme 
outlier data points but they are not as large in completion time as the 
previous threshold. This threshold follows the pattern of data being split 
and sent which previous thresholds have provided as well. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

71 
 

 

Figure 47: Three-node testbed with threshold two including outliers 

 

Figure 48: Three-node testbed with threshold two excluding outliers 

The completion time per task including and excluding outliers for when 
three nodes are present in the network with threshold four is presented 
respectively in figures 49 and 50. As with threshold one and two the 
outliers are quite extreme but does in this case not exceed 20000ms. The 
same pattern appears here with the number of split and sent tasks with 
the increase of threshold for the testbeds. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

72 
 

 

Figure 47: Three-node testbed with threshold four including outliers 

 

Figure 48: Three-node testbed with threshold four excluding outliers 

Figure 51 shows the relationship between the inclusion and exclusion of 
outliers for the three-node testbed with all the corresponding thresholds 
and the reference testbed. For this testbed the best performing threshold 
is zero with a bigger difference to the other thresholds. This testbed and 
its configurations also perform worse than the reference testbed. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

73 
 

 

Figure 49: Comparison of the three-node and reference testbeds 

Table 13 and 14 presents a summary of completion time for tasks 
including and excluding outliers for the one-node testbed in comparison 
to the reference testbed. For the difference of the table presenting the 
inclusion of outliers there is the following differences with focus on the 
three-node testbed: average completion time is around 29% higher; the 
STDEV is around 4% higher; the maximum completion time is around 3% 
lower; the minimum value is around 63% higher. When excluding 
outliers, the differences change to the following: the average completion 
time is around 37% higher; the STDEV is around 2% higher; the 
maximum value is around 18% higher; the minimum value is around 87% 
higher. 

Table 13: Summary of the three-node and reference testbeds including 
outliers 

Summary of completion time for tasks for 3 RPi’s including outliers 
(ms) 

Threshold Avg STDEV Max Min 

= 0 2780 1650 11200 380 

<= 1 3560 2950 25890 350 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

74 
 

<= 2 3800 2770 20520 380 

<= 4 3590 2840 19230 380 

Reference 1960 1580 10920 140 

 

Table 14: Summary of the three-node and reference testbeds excluding 
outliers 

Summary of completion time for tasks for 3 RPi’s excluding outliers 
(ms) 

Threshold Avg STDEV Max Min 

= 0 2780 1240 6550 1080 

<= 1 3060 1350 6560 1080 

<= 2 3110 1350 4750 1120 

<= 4 2910 1310 6510 1070 

Reference 1750 1210 5370 140 

 

6.3 Measurement results – Data size 
This sub-chapter present the findings and results from the data sizes of 
each configuration. The inclusion and exclusion of outliers for the data 
size is determined by the outlier algorithm being applied on specifically 
the completion time. 

6.3.1 Reference 
Table 15 presents a summary of the data size for the reference testbed 
including and excluding outliers, respectively. The differences here are 
almost non-existing but for the average data size being 0.9% larger and 
the STDEV being 0.2% lower when including outliers. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

75 
 

Table 15: Summary reference testbed including outliers 

Summary of data size for tasks for the reference testbed including 
outliers (elements in array) 

Avg STDEV Max Min 

110720 51680 199950 20040 

 

Table 16: Summary reference testbed excluding outliers 

Summary of data size for tasks for the reference testbed excluding 
outliers (elements in array) 

Avg STDEV Max Min 

109750 51800 199950 20040 

 

6.3.2 One node 
Table 17 and 18 presents a summary of the data size for tasks when one 
node is operating in the network in comparison to the reference testbed. 
Here it can also be seen that the differences of values are barely any, with 
the exception of the STDEV when excluding outliers, is around 9% lower 
for the one-node testbed.  

Table 17: Summary of the one-node and reference testbeds including 
outliers 

Summary of data size for tasks including outliers for 1 RPi (elements 
in array) 

Testbed Avg STDEV Max Min 

One-node 109970 49650 199700 21610 

Reference 110720 51680 199950 20040 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

76 
 

 

Table 18: Summary of the one-node and reference testbeds excluding 
outliers 

Summary of data size for tasks excluding outliers for 1 RPi (elements 
in array) 

Testbed Avg STDEV Max Min 

One-node 112450 47270 199700 20040 

Reference 109750 51800 199950 20040 

 

6.3.3 Two nodes 
Table 19 and 20 presents a summary of the data size for tasks when two 
nodes are operating in the network with their corresponding threshold 
in comparison to the reference testbed. Here there is a significant 
difference when including and excluding the outliers of the data set. The 
average, maximum and minimum values of the data size remain around 
the same, but the STDEV changes drastically for the exclusion of outliers. 
The STDEV becomes: 30% lower for threshold zero; 42% lower for 
threshold one; 50% lower for threshold two; 51% lower for threshold four. 

Table 19: Summary of the two-node and reference testbeds including 
outliers 

Summary of data size for tasks including outliers for 2 
RPi’s (elements in array) 

Threshold Avg STDEV Max Min 

= 0 110320 51930 199910 20290 

<= 1 109730 52270 199900 20270 

<= 2 110250 51930 198960 20510 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

77 
 

<= 4 108070 51300 199580 20200 

Reference 110720 51680 199950 20040 

 

Table 20: Summary of the two-node and reference testbeds excluding 
outliers 

Summary of data size for tasks excluding outliers for 2 
RPi’s (elements in array) 

Threshold Avg STDEV Max Min 

= 0 126090 36290 199910 20340 

<= 1 115830 30080 199900 20270 

<= 2 111180 25970 198960 20610 

<= 4 109700 25660 199580 20200 

Reference 109750 51800 199950 20040 

 

6.3.4 Three nodes 
Table 21 and 22 presents a summary of the data size for tasks when three 
nodes are operating in the network with their corresponding threshold 
in comparison to the reference testbed. For this testbed the result is 
similar to the two-node testbed and its corresponding thresholds where 
the STDEV provides the greatest differences. The STDEV becomes for 
this testbed: 32% lower for threshold zero; 49% lower for threshold one; 
52% lower for threshold two; 53% lower for threshold four. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

78 
 

Table 21: Summary of the three-node and reference testbeds including 
outliers 

Summary of data size for tasks including outliers for 3 RPi’s 
(elements in array) 

Threshold Avg STDEV Max Min 

= 0 108590 50180 199950 20040 

<= 1 110600 52090 199990 20100 

<= 2 112060 50510 199640 20150 

<= 4 111000 51220 199960 20590 

Reference 110720 51680 199950 20040 

 

Table 22: Summary of the three-node and reference testbeds excluding 
outliers 

Summary of data size for tasks excluding outliers for 3 RPi’s 
(elements in array) 

Threshold Avg STDEV Max Min 

= 0 121650 35000 199950 20210 

<= 1 114640 26590 199990 20410 

<= 2 112350 25110 199520 20160 

<= 4 113470 24460 199960 20590 

Reference 109750 51800 199950 20040 

 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

79 
 

6.4 Measurement results – Scalability 
The scalability is dependent on the threshold for helping other nodes as 
well as the list of connected nodes that each node receives from the 
coordinator when needing help. Every time a node gets asked by another 
node to help with a task, that node will be accepted as a new connection. 
Depending on the threshold for helping other nodes set for the testbed 
the connection will either be closed due to the threshold having been 
reached previously or kept open until the task has been completed by the 
helping node. The number of simultaneous connections on a single node 
where help is granted will not exceed the threshold. However, the 
number of connections on a single node where help is not granted can in 
contrast be more than that of the threshold. What acts as a counter to this 
is that each connection will disconnect the moment after a decline has 
been sent from the potentially helping node, negating the potential 
scenario where a large number of nodes is connected to a single node. 

The order of all connected nodes in the list received from the coordinator 
is randomly sorted for each new connection made to the coordinator. 
This provides the network with further scalable properties since a single 
node will not be overwhelmed by new connections due to the 
randomization of the list. The testbeds and their configurations 
evaluated and measured in sub-chapters 6.2 and 6.3 provides the results 
of the permutations presented in table 22 when using formula 8 provided 
in chapter 5.5. The reference testbed and all the corresponding thresholds 
are not included since they do not impact the number of permutations of 
the list. 

Table 23: Permutations of the list of connected nodes 

1 RPi 2 RPi’s 3 RPi’s n RPi’s 

𝑃#$%& = 1 𝑃#$%& = 2 𝑃#$%& = 6 𝑃#$%& = 𝑛! 

 

Due to the properties of the threshold for helping other nodes, the fast 
disconnects and number of permutations increasing with the increase of 
nodes in the network, a single node will not be overwhelmed by different 
connections. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

80 
 

7 Discussion 
This chapter presents an analysis and discussion of the results, the project 
method, the scientific aspects, and lastly ethical and societal 
considerations. 

7.1 Analysis and discussion of results 
As presented in sub-chapter 6.3 the results for the completion of tasks for 
the two-node and three-node testbeds with threshold zero for when 
helping other nodes are almost the same. The difference is 10ms in favor 
of the two-node testbed when including and excluding outliers, i.e., a 0.4% 
difference. On the other hand, the three-node testbed is performing 
290ms better than the one-node testbed, i.e., a 9.5% difference. These 
differences are presented in table 24. 

Table 24: Testbed differences in completion time 

Outliers 1 RPi (ms) 2 RPi’s (ms) 3 RPi’s (ms) 

Including 3070 2770 2780 

Excluding  3070 2770 2780 

 

The similarity of results regarding the threshold zero might be because 
of the choices made on the threshold for needing help and the threshold 
for helping others. As mentioned in chapter 4.4 the threshold for needing 
help is not changed for the different testbeds but the threshold for 
helping others is. The performance of the different testbeds could 
possibly have been different if the threshold for needing help is changed 
instead or choosing to observe CPU or RAM usage or both. If the 
threshold for needing help is changed the drop would appear before or 
after the data size 110000 which could have resulted in either a positive 
effect on the average completion time for tasks or a negative effect. 
However, if the choice of CPU or RAM usage had been made an issue 
still arises. The issue is that the reading of the CPU and RAM usage will 
not be performed constantly, which does not lead to accurate decisions 
to be made for when nodes need or giving help. This issue is especially 
true since the testbeds are not being run on true multithreading as 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

81 
 

mentioned in chapter 5. Further expanding on the non-true 
multithreading property of the implementations, the outliers that are 
present in the results could be an effect of this property. This could have 
been countered by using another Python implementation than CPython, 
as mentioned in chapter 5.1 or by using the multiprocessing library [36] 
which side-steppes the GIL which uses subprocesses instead of threads. 
The use of this library has a requirement however, which is that it can 
only take advantage of the multiprocessing properties on a 
multiprocessor device. Even though the GIL is side-stepped, it has 
functions to create locks for shared resources. When locks are not used 
there needs to be great care when working with shared resources since 
readers-writers’ problems can occur if caution is not taken. 

The most notable results for the completion time of tasks are the drastic 
drops of completion time for tasks that are split and shared. This 
property is a good indicator that the splitting and distribution of a task 
is desirable. When comparing two data points, one not sent and one sent, 
with the data sizes 78354 and 110742 respectively, they perform basically 
the same in regard to completion time, 1493ms and 1496ms respectively, 
even though the tasks have a 30% difference in data size. The pattern of 
this performance can be recognized for both the two-node and three-
node testbeds on all the different threshold configurations. It would be 
interesting to see how the completion time differs in a larger testbed and 
how changing the threshold for when help is needed would affect it 
instead of changing the threshold for when helping another node. 

Since the communication is done through TCP, a general partly non-
controllable factor that impacts the results is the WiFi which the testbeds 
were set up on. This might provide an inconsistency for the completion 
time for the tasks. In regard to the communication and transfer of data 
and its size through the connections of the network, the results do not 
indicate that the differences of data sizes impact the transfer time a large 
amount. If the size of the data would have been larger, the impact of it 
could have made a bigger difference but in the testbeds implemented for 
this thesis there is no indication of it. 

The scalability of the testbeds seems to not be an issue for the two and 
three-node testbeds with the threshold for helping others is zero. When 
increasing the threshold for helping others the three-node testbed does 
seem to have an impact on the average completion time for tasks which 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

82 
 

could be scalability related. However, to verify this, more nodes need to 
be implemented before a more definitive result could be provided. The 
theoretical aspects do indicate that the scalability regarding the 
randomized list of connected nodes is impacted positively. 

7.2 Project method discussion 
The method was in retrospect an appropriate way to conduct the work 
of this thesis. The phases of the method made it possible to structure the 
work to be performed into milestones which made it easy to determine 
if the research questions are being answered. 

Phase one of the project method with its four milestones have been 
completed. More than five related works have been studied, which are 
incorporated mainly to chapters 1-4. Five challenges of the traditional 
cloud computing architecture have been provided namely, security, 
reliability, storage, latency, and monopoly, covered in chapter 1 and 2. 
Four research questions and the scientific contribution of this thesis have 
been stated in chapter 1. This phase had no direct challenges due to there 
being a lot of research having been done in the area of mist, fog, and 
cloud computing by other people. 

Phase two of the project method and its three milestones have been 
completed. The definition of the scope of the thesis has been provided in 
chapter 1 where it is stated the main focus will lie on designing and 
implementing a novel architecture model for future IoT applications. The 
definitions of each milestone can be seen in chapter 3. The task defined 
for the testbed was explained and defined in chapter 4 to be a sorting task, 
using the sorting algorithm merge sort. The evaluation areas were 
defined to be completion time for tasks, data size, and scalability. The 
challenge of this phase was to choose and define the different evaluation 
areas, completion time, data size, and scalability. The choice of 
evaluation areas could have been made different by choosing other 
properties such as measuring the transfer time of data, actual 
computation time for the tasks and not the time it takes for a task to be 
completed. This would then require the implementation of the testbeds 
to be changed accordingly. A reiteration of the phase could have possibly 
improved it but only after the implementation had been done. 

Phase three and its four milestones were achieved and described in detail 
in chapter 5. The mist layer became a simulation of a sensor generating 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

83 
 

data in the form of arrays on the RPi/RPi’s incorporated into the fog layer 
operating on the devices. The cloud layer was implemented as a 
standalone reference testbed where one RPi was connected to a server 
computer in the form of a PC which significantly larger processing 
capabilities than that of the fog nodes. The challenges of this phase were 
designing and implementing the fog layer. An issue here was the lack of 
technical knowledge for this type of network. A decision that could have 
been made differently is the programming language, namely using Java 
instead of Python, where the multithreading properties of Java could 
have been taken advantage of. This does however come with the 
drawback of requiring more installations to be made on the RPi’s for it to 
be able to be run. This phase could have been improved by reiterating it 
since the technical knowledge has grown since the phase ended. 

Phase four did not consist of multiple different milestones but had only 
the goal of demonstrating the developed testbeds for the supervisor. This 
phase was completed as well. 

Like the previous phase, phase five did not have multiple different 
milestones either and was fulfilled by the quantitively measurements of 
completion time for tasks, data size, and scalability where the results of 
these are provided in chapter 6. The challenge for this phase was the large 
amount of different data that was to be extracted and analyzed. This is 
because there are four different testbeds, where two of them have three 
different configurations regarding the threshold. 

Phase six and its goal is fulfilled by this report and the presentation that 
follows. 

7.3 Scientific discussion 
The DSRM proved to be great method for this thesis. It provided relevant 
and supporting steps in order to thoroughly investigate, implement, and 
evaluate the overall work. The possibility of further breaking down the 
different steps or phases into smaller milestones extends the viability of 
the DSRM in this type of research. 

As generally gained knowledge from this thesis is that fog computing is 
a concept on the rise and could provide useful in future IoT applications. 
More specified gained knowledge is the potential fog computing has for 
when tasks can be split and distributed for computation or processing on 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

84 
 

other nodes. The splitting of tasks was not present in the three related 
works presented in chapter 2. In those works, the whole tasks were 
distributed to other nodes. Another thing all the related works have in 
common that differentiates them from the implementation performed in 
this thesis is simulating their proposed models or algorithms. The related 
works do provide algorithms for offloading which also plays a large role 
in the collaboration of nodes and could be tested or used in this thesis. 
This is especially true for Hierarchical fog-cloud computing for IoT systems: 
a computation offloading game since their work clearly performs better with 
the increase of fog nodes. The requirement for adopting their work into 
this thesis would be the amount of fog nodes present in the testbeds. 

7.4 Ethical and societal discussion 
The data managed in this thesis is randomly generated and is not 
personal or in need of being encrypted by any means. However, in the 
larger perspective where personal or sensitive data is processed and 
overseen by fog nodes the care for security and privacy needs to be a 
priority. This is especially true for big data applications such as those 
presented by Al Nuaimi et al. [37]. 

The price of fog services could potentially be lower than that of cloud 
services, much because the companies that offer cloud services have a 
monopoly on this technology due to the cost of running and 
administrating these. This could be the case if future fog services can be 
proven to become an open-source technology that smaller companies 
could adopt and manage. 

This thesis emphasizes the use of of-the-shelf-hardware as its processing 
power which could lead to a potential gateway into reusing hardware 
alleviating negative environmental effects. Even though the 
technological advancements are progressing in a fast pace the use for 
“old” hardware acting as fog nodes as explored by Corotinschi and 
Găitan [38]. 

 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

85 
 

8 Conclusions  
The first research question Why and to what extent is distributed pooling of 
resources needed for future IoT applications? was fulfilled through milestone 
M1.4 from phase one which was the literature study. The literature study 
covered multiple challenges with the traditional cloud computing model. 
These are presented in chapter 1 and 2 as security, reliability, storage, 
latency, and monopoly.  

The second research question How can multiple IoT-devices collaboratively 
work towards completing tasks? was answered in chapter 4 and 5. This was 
done by splitting a task when reaching a specific threshold and then 
asking other nodes in the network to help compute the generated task. 

The answer to the third research question How effective is the proposed 
novel architecture model in terms of task completion time, data size, and 
scalability? was covered in chapter 6. The results concluded for the 
completion time for a task that the one-node testbed performed worse 
than the two and three-node testbeds. While the two and three-node 
testbeds performed likewise for when the threshold for helping others 
was set to zero. The three-node testbed did however perform overall 
worse for the other threshold configurations in comparison to the two-
node testbed. The data size did not seem to have a major impact on the 
results. The scalability did not have a large impact on the result for the 
zero threshold for helping others but could potentially have been 
impacted on the other threshold configurations, especially for the three-
node testbed. 

The answers to the fourth research question What are the benefits and 
drawbacks of the proposed novel architecture model? were provided in 
chapters 4, 6, and 7. The benefits of the novel architecture model are the 
proven possibility of splitting tasks and the collaborative aspects that 
comes with it. The drawbacks however are the limitation to the size of 
data that can be transferred in the network which is partly an effect of 
the hardware which runs the model as well as the internet connection 
that the testbed runs on. 

The work of this thesis contributes to the exploration of fog computing 
as an option to cloud computing and how it can be used for future IoT 
applications. The exploration was done by a literature study together 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

86 
 

with designing, implementing, and evaluating a novel architecture 
model. The results show that a testbed built with RPi’s is capable of 
collaborating and communicating to complete a task that has been 
distributed among multiple devices. The fog testbeds for one, two, and 
three devices do not computationally perform better than the reference 
testbed. However, increasing the number of fog devices and changing 
the threshold for when a device needs help with a task and keeping the 
threshold for helping others at zero could possibly provide better 
computational power and by doing so could potentially reach the power 
of the reference model or the cloud. 

8.1 Future Work 
There are many possibilities regarding future work expanding the work 
of this thesis. Three of these are presented below.  

8.1.1 Connection and communication 
There are a few changes that could be made for the implementation in 
future work. One is either running the testbeds on a more isolated 
network or by using ethernet-cables for the internet connection. A further 
development area is to split the generated tasks more dynamically for 
when help is needed based on the current workloads of fog nodes. This 
would however require the fog node that needs help to gather 
information about other nodes in the network to then distribute the task 
accordingly. This could require the number of fog nodes operating in a 
network to be relatively small due to scalability aspects since multiple 
simultaneous connection might need to be maintained throughout the 
lifespan of the network for it to properly work. 

A careful evaluation of the scalability would need to be performed for 
this type of solution since multiple maintained connections might 
overwhelm the nodes in the network. Another evaluation area that 
would be interesting to investigate for this could be utilization factor of 
the network. 

8.1.2 Cloud testbed 
Implementation of a cloud testbed instead of the reference testbed 
implemented in this thesis could provide more insight to different 
aspects of using the cloud. This would require an investigation of 
different cloud service providers, most interesting is the prominent ones 
such as Microsoft, Google, or Amazon. There are two surveys that have 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

87 
 

investigated different cloud service providers with focus on IoT and 
summarized different aspects, the first one done by Pflanzner and 
Kertész [39] and the second one done by Ray [40]. These two surveys 
could be a good starting point for this type of future work. 

What would be interesting to evaluate here is the cost or different pricing 
models for this type of test bed in comparison to the fog testbeds. To 
appropriately evaluate performance aspects between the fog and cloud 
testbeds would require the fog testbed to include more nodes. Security is 
also something that could be looked in to for comparison reasons.   

8.1.3 Kubernetes 
A further research possibility that would be interesting to investigate is 
Kubernetes cluster-technology. Kubernetes is an orchestration software 
that helps run containerized applications containing multiple different 
components [41]. Each fog node would then be represented by a 
container. If the workload of the cluster of containers would become 
overwhelmed with tasks, Kubernetes would then be able to add another 
fog node to help with the tasks. 

As an introduction to this type of technology and how to apply this in a 
suitable setting, one could investigate the research done by Kristiani et al.  
[42]. They use Kubernetes and OpenStack to implement a cloud-edge 
testbed for monitoring air quality. 

  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

88 
 

References 
 

[1]  I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. 
Imran and M. Guizani, "Internet of Things Architecture: Recent 
Advances, Taxonomy, Requirements, and Open Challenges," IEEE 
Wireless Communications, pp. 10-16, 1 June 2017.  

[2]  M. M. Sadeeq, N. M. Abdulkareem, S. R. M. Zeebaree, D. M. 
Ahmed, A. S. Sami and R. R. Zebari, "IoT and Cloud computing 
issues, challenges and opportunities: A review," Qubahan Academic 
Journal, vol. 1, p. 1–7, 2021.  

[3]  P. Corcoran, "The Internet of Things: Why now, and what's next?," 
IEEE Consumer Electronics Magazine, vol. 5, pp. 63-68, 2016.  

[4]  C. J. Kale and T. J. Socolofsky, TCP/IP tutorial, RFC Editor, 1991.  

[5]  L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A 
survey," Computer Networks, vol. 54, pp. 2787-2805, 2010.  

[6]  T. Liu and D. Lu, "The application and development of IOT," in 
2012 International Symposium on Information Technologies in Medicine 
and Education, 2012.  

[7]  M. Hasan, "IoT Analytics," 18 May 2022. [Online]. Available: 
https://iot-analytics.com/number-connected-iot-devices/. 
[Accessed 18 May 2022]. 

[8]  S. Kaur and I. Singh, "A survey report on Internet of Things 
applications," International Journal of Computer Science Trends and 
Technology, vol. 4, p. 330–335, 2016.  

[9]  J. H. Nord, A. Koohang and J. Paliszkiewicz, "The Internet of 
Things: Review and theoretical framework," Expert Systems with 
Applications, vol. 133, p. 97–108, 2019.  

[10]  P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini and A. 
Zanni, "A survey on fog computing for the Internet of Things," 
Pervasive and Mobile Computing, vol. 52, pp. 71-99, 2019.  

[11]  J. Pan and J. McElhannon, "Future Edge Cloud and Edge 
Computing for Internet of Things Applications," IEEE Internet of 
Things Journal, vol. 5, pp. 439-449, 2018.  



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

89 
 

[12]  S. Yi, C. Li and Q. Li, "A Survey of Fog Computing: Concepts, 
Applications and Issues," in Proceedings of the 2015 Workshop on 
Mobile Big Data, New York, NY, USA, 2015.  

[13]  D. Vasconcelos, R. Andrade, V. Severino, J. De and Souza, "Cloud, 
Fog, or Mist in IoT? That Is the Question," ACM Transactions on 
Internet Technology, vol. 19, p. 25, March 2019.  

[14]  P. Galambos, "Cloud, Fog, and Mist Computing: Advanced Robot 
Applications," IEEE Systems, Man, and Cybernetics Magazine, vol. 6, 
pp. 41-45, 2020.  

[15]  M. Van Steen and A. S. Tanenbaum, Distributed systems, Maarten 
van Steen Leiden, The Netherlands, 2017.  

[16]  M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily 
and Y. Jararweh, "Improving fog computing performance via fog-
2-fog collaboration," Future Generation Computer Systems, vol. 100, 
p. 266–280, 2019.  

[17]  H. Shah-Mansouri and V. W. S. Wong, "Hierarchical fog-cloud 
computing for IoT systems: A computation offloading game," IEEE 
Internet of Things Journal, vol. 5, p. 3246–3257, 2018.  

[18]  E. Maskin, "The theory of implementation in Nash equilibrium: A 
survey," 1983.  

[19]  S. Shen, Y. Han, X. Wang and Y. Wang, "Computation offloading 
with multiple agents in edge-computing–supported IoT," ACM 
Transactions on Sensor Networks (TOSN), vol. 16, p. 1–27, 2019.  

[20]  K. Peffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, "A 
design science research methodology for information systems 
research," Journal of management information systems, vol. 24, p. 45–
77, 2007.  

[21]  P. Varshney and Y. Simmhan, "Demystifying fog computing: 
Characterizing architectures, applications and abstractions," in 
2017 IEEE 1st International Conference on Fog and Edge Computing 
(ICFEC), 2017.  

[22]  R. Mahmud, R. Kotagiri and R. Buyya, "Fog computing: A 
taxonomy, survey and future directions," in Internet of everything, 
Springer, 2018, p. 103–130. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

90 
 

[23]  R. Mahmud, K. Ramamohanarao and R. Buyya, "Application 
management in fog computing environments: A taxonomy, review 
and future directions," ACM Computing Surveys (CSUR), vol. 53, p. 
1–43, 2020.  

[24]  V. Kesri, V. Kesri and P. K. Pattnaik, "An unique solution for N 
queen problem," International Journal of Computer Applications, vol. 
43, p. 1–6, 2012.  

[25]  P. Prajapati, N. Bhatt and N. Bhatt, "Performance comparison of 
different sorting algorithms," vol. VI, no. Vi, p. 39–41, 2017.  

[26]  R. Szeliski, Computer Vision: Algorithms and Applications, 
Springer, 2021.  

[27]  "Raspberry Pi," [Online]. Available: 
https://www.raspberrypi.com/products/raspberry-pi-4-model-
b/specifications/. [Accessed 15 May 2022]. 

[28]  "Alternative Python Implementations," [Online]. Available: 
https://www.python.org/download/alternatives/. [Accessed 20 
May 2022]. 

[29]  "Python Glossary," [Online]. Available: 
https://docs.python.org/3/glossary.html#term-global-interpreter-
lock. [Accessed 21 May 2022]. 

[30]  "Python Threading," [Online]. Available: 
https://docs.python.org/3/library/threading.html. [Accessed 20 
May 2022]. 

[31]  "Numpy Random Sampling," [Online]. Available: 
https://numpy.org/doc/stable/reference/random/index.html. 
[Accessed 22 May 2022]. 

[32]  "Numpy PCG," [Online]. Available: 
https://numpy.org/doc/stable/reference/random/bit_generators/pc
g64.html#numpy.random.PCG64. [Accessed 15 May 2022]. 

[33]  "Python Time access and conversions," [Online]. Available: 
https://docs.python.org/3/library/time.html. [Accessed 11 May 
2022]. 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

91 
 

[34]  "Numpy Random Shuffle," [Online]. Available: 
https://numpy.org/doc/stable/reference/random/generated/nump
y.random.shuffle.html. [Accessed 11 May 2022]. 

[35]  "PennState Eberly College of Science," [Online]. Available: 
https://online.stat.psu.edu/stat200/lesson/3/3.2. [Accessed 10 May 
2022]. 

[36]  "Python Multiprocessing," [Online]. Available: 
https://docs.python.org/3/library/multiprocessing.html. [Accessed 
16 May 2022]. 

[37]  E. Al Nuaimi, H. Al Neyadi, N. Mohamed and J. Al-Jaroodi, 
"Applications of big data to smart cities," Journal of Internet Services 
and Applications, vol. 6, p. 1–15, 2015.  

[38]  G. Corotinschi and V. G. Găitan, "The development of IoT 
applications using old hardware equipment and virtual TEDS," in 
2016 International Conference on Development and Application Systems 
(DAS), 2016.  

[39]  T. Pflanzner and A. Kertész, "A survey of IoT cloud providers," in 
2016 39th International convention on information and communication 
technology, electronics and microelectronics (MIPRO), 2016.  

[40]  P. P. Ray, "A survey of IoT cloud platforms," Future Computing and 
Informatics Journal, vol. 1, p. 35–46, 2016.  

[41]  "Azure Microsoft," [Online]. Available: 
https://azure.microsoft.com/en-us/topic/what-is-
kubernetes/#beyond-kubernetes. [Accessed 14 May 2022]. 

[42]  E. Kristiani, C.-T. Yang, C.-Y. Huang, Y.-T. Wang and P.-C. Ko, 
"The implementation of a cloud-edge computing architecture 
using OpenStack and Kubernetes for air quality monitoring 
application," Mobile Networks and Applications, vol. 26, p. 1070–1092, 
2021.  

 
 



A Proposal and Implementation of a Novel Architecture Model for 
Future IoT Applications 
Viktor Andersson    2022-06-14 

92 
 

Appendix A: Related efforts 

 


