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ABSTRACT:
Directional sensors, if collocated but perpendicularly oriented among themselves, would facilitate signal processing

to uncouple the azimuth-polar direction from the time-frequency dimension—in addition to the physical advantage

of spatial compactness. One such acoustical sensing unit is the well-known “tri-axial velocity sensor” (also known as

the “gradient sensor,” the “velocity-sensor triad,” the “acoustic vector sensor,” and the “vector hydrophone”), which

comprises three identical figure-8 sensors of the first directivity-order, collocated spatially but oriented perpendicu-

larly of each other. The directivity of the figure-8 sensors is hypothetically raised to a higher order in this analytical

investigation with an innocent hope to sharpen the overall triad’s directionality and steerability. Against this wishful

aspiration, this paper rigorously analyzes how the directivity-order would affect the triad’s “spatial-matched-filter”

beam’s directional steering capability, revealing which directivity-order(s) would allow the beam-pattern of full

maneuverability toward any azimuthal direction and which directivity-order(s) cannot.
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I. INTRODUCTION

A. “Figure-8” directional microphones/hydrophones

One common directional microphone/hydrophone is the

figure-8 sensor, which has a dipole-like directional response

of coskðcÞ, where k 2 f1; 2;…g symbolizes the sensor’s

directivity-order, and c 2 ½0; 2pÞ denotes the incident sour-

ce’s incident angle with respect to the sensor axis.

This coskðcÞ gain response graphically resembles the

digit “8,” hence, the figure-8 label. As the directivity-order

k increases, the figure-8 sensor’s gain pattern narrows, pro-

viding greater sensitivity toward an incident direction that

is more parallel to the sensor’s axis. Please refer to Fig. 1.

Concerning the higher-order directional microphones/

hydrophones, their directivity and beam-patterns have been

investigated in Refs. 1–12, whereas azimuth-elevation direc-

tion-of-arrival formulas are devised for them in Ref. 13.

For further discussions of higher-order figure-8 sensors,

please consult Chap. 8.3 and 8.5 of Ref. 14 and Chap. 2 of

Ref. 15.13,16

B. A triad of figure-8 sensors in orthogonal
orientation and spatial collocation

Place three figure-8 sensors at the origin of the

Cartesian coordinates and orient one each along the x, y, and

z axes. Such a collocated perpendicular triad has a 3� 1

array manifold17–19 of

akðh;/Þ ¼
sin ðhÞ cos ð/Þ
� �k

sin ðhÞ sin ð/Þ
� �k

cos ðhÞ
� �k

2
6664

3
7775 (1)

� akðh;/Þ ¼
ukðh;/Þ
vkðh;/Þ
wkðhÞ

2
64

3
75; (2)

where h 2 ½0; p� symbolizes the incident acoustic wave’s

polar direction-of-arrival (also known as the zenith

angle), / 2 ½0; 2pÞ signifies the associated azimuth

direction-of-arrival, whereas uðh;/Þ¼def
sinðhÞcosð/Þ, vðh;/Þ

¼def
sinðhÞ sinð/Þ, and wðhÞ¼def

cosðhÞ, respectively, denote the

Cartesian direction cosines along the x, y, and z axes. The sub-

sequent analysis will abbreviate uðh;/Þ as u, vðh;/Þ as v, and

wðhÞ as w.20

The above array manifold in Eqs. (1) and (2) at any nat-

ural number k is bivariate in terms of the polar-azimuthal

bivariate coordinates of ðh;/Þ, although the triad is point-

like compact in spatial geometry.

Also important is the above array manifold’s indepen-

dence of the frequency and emitter/sensor distance (regardlessa)Electronic mail: ktwong@ieee.org, ORCID: 0000-0002-1583-6682.
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of k). That is, the three component-sensors’ spatial collocation

intrinsically decouples the data’s time-frequency dimensions

from the data’s azimuth-elevation-radial spatial dimensions.

C. The triad’s spatial-matched-filter beam-pattern

The “spatial-matched-filter” (SMF) beamformer21 (also

known as “fixed beamforming” or “conventional

beamforming”) is a data-independent but steerable beam-

former. For a “look direction” of interest ðhlook;/lookÞ, the

SMF beamformer’s weight-vector w (by definition) is preset

to match that desired direction’s nominal steering vector

w ¼ aðhlook;/lookÞ. This beamformer is “fixed” as its beam-

forming weights in w are pre-established prior to any empir-

ical measurement and, hence, independent of any data

received. This beamforming method is “conventional” in

that it predates more complicated beamforming algorithms

that adapt to the signal/interference/noise information

embedded in the received data. In the case in which the

interference and additive noise may, together, be modeled

statistically as (1) zero-mean, (2) spatially uncorrelated, and

(3) uncorrelated with the desired signal, the SMF output’s

signal-to-noise ratio (SNR) is maximum relative to any

other beamformer’s output.

Consider the figure-8 sensor triad of Eqs. (1) and (2).

This triad’s SMF beamformer, preset to a look direction of

ðh;/Þ ¼ ðhlook;/lookÞ, would have an amplitude beam-

pattern of

B
ðhlook;/lookÞ
k ðh;/Þ ¼def

akðhlook;/lookÞ½ �Takðh;/Þ; (3)

or in terms of the Cartesian direction cosines as

B
ðulook;vlook;wlookÞ
k ðu;v;wÞ¼ uk

lookukþ vk
lookv

kþwk
lookwk: (4)

In Eq. (3), the superscript T denotes transposition.

Furthermore, ulook ¼def
uðhlook;/lookÞ, vlook ¼def

vðhlook;/lookÞ,
and wlook ¼def

wðhlookÞ.
The above beam-pattern for the first-order case of k¼ 1

has been analyzed previously in Refs. 22–26, but those

references are unconcerned with the higher-order figure-8 sen-

sors (where k � 2, as in this present work). For higher-order

figure-8 sensors collocated in orthogonality, their SMF beam-

pattern has been investigated: in Ref. 27, which concerns the

triad’s beam-pattern’s general features but not about the

pointing bias, and Ref. 28 for a pair but not for a triad as in

this work.

This paper will be first in the open literature to investi-

gate the beam steering capability of a tri-axial collocated

unit of perpendicular higher-order figure-8 sensors. That is,

given

(i) the sensor hardware’s directivity-order of k, and

(ii) the beamforming software’s algorithmic setting of

the desired look direction of ðhlook;/lookÞ,

can the beam-pattern magnitude’s actual peak direction,

hact;/actð Þ ¼def 8ðh;/Þ
arg max

jBðhlook;/lookÞ
k ðh;/Þj; (5)

be electronically steered to any polar-azimuthal direction in

hlook 2 ½0; p�
� �

[ /look 2 ½0; 2pÞ
� �

? Here, the SMF beam-

former’s actual peak ðhact;/actÞ, by definition, is the direc-

tion where the beam output’s magnitude jBðhlook;/lookÞ
k ðh;/Þj is

largest. If the answer is “yes” to the above question, will

FIG. 1. (Color online) The figure-8 sensor’s gain response at various directivity-orders of k.
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ðhact;/actÞ ¼ ðhlook;/lookÞ? That is, will no steering bias

exist? These questions’ answers will be uncovered in this

paper as “yes,” but, unexpectedly, if and only if k¼ 1.

Although this beamformer output B
ðhlook;/lookÞ
k ðh;/Þ

equals the inner product of the two vectors of akðhlook;/lookÞ
and akðh;/Þ, setting ðh;/Þ ¼ ðhlook;/lookÞ will render the

two vectors parallel but will not necessarily maximize

jBðhlook;/lookÞ
k ðh;/Þj. This is because the array manifold

akðh;/Þ of Eq. (1) has a second norm (i.e., a vectorial

length), which varies with ðh;/Þ; 8k � 2. The right side of

(4) equals the cosine of the angle between ðulook; vlook;wlookÞ
and (u, v, w) regardless of ðulook; vlook;wlookÞ and (u, v, w)

only if k¼ 1. Indeed, this variable-norm complication,

intrinsic in the array manifold akðh;/Þ of Eq. (1), requires

this paper’s meticulous derivation to determine the beam-

pointing error.

D. The organization of this paper

The beam-pattern in Eq. (4) looks compact, but its

peak-direction analysis is complicated due to the directional

periodicity in its several trigonometric functions, which are

further obscured by being raised to a power of k.

The beam-pattern’s following symmetry properties will

nonetheless simplify the subsequent analysis:

(a) For any odd k � 1,

jB ulook;vlook;wlookð Þ
k ðu; v;wÞj ¼ jB ulook;vlook;wlookð Þ

k ð�u;�v;�wÞj:
(6)

(b) For any even k � 2,

jB ulook;vlook;wlookð Þ
k ðu; v;wÞj ¼ jB ulook;vlook;wlookð Þ

k ð6u;6v;6wÞj:
(7)

The directivity-order’s oddness-versus-evenness would

significantly affect the subsequent derivation of the beam-

pattern’s global maximum: For any odd k, B
ðhlook;/lookÞ
k ðh;/Þ

could become negative (thereby a locally minimum ampli-

tude represents a locally maximum magnitude), implying a

necessity to consider both the maxima and minima of

Eqs. (3) and (4) to identify the beam magnitude’s peak

direction. In contrast, for any even k, 0 � B
ðhlook;/lookÞ
k ðh;/Þ

¼ jBðhlook;/lookÞ
k ðh;/Þj. Therefore, the subsequent analysis will

investigate different directivity-orders in separate sections.

Figure 2 summarizes how these various cases of directivity-

orders are dealt with subsequently in the rest of this paper.

All of the sub-sub-cases in Fig. 2 admittedly make arduous

reading, but that multiplicity reflects the present problem’s

intrinsic complexity—a complexity exhaustively and

detailedly tackled in the various sections to follow.

The beam-pattern B
ðhlook;/lookÞ
k ðh;/Þ is a bivariate func-

tion of ðh;/Þ for any hardware-implemented k and algorith-

mically tuned ðhlook;/lookÞ. To locate this bivariate

function’s peak on the ðh;/Þ support region, the standard

analytical procedural steps are

(1) locate (e.g., through the method of Lagrange multiplier)

the beam’s critical points ðhc;/cÞ;
(2) among all critical points in (1), check which are local

maxima; and

(3) among all local maxima, identify the global maximum

(e.g., by comparing all local maxima’s beam heights).

This derivation can sometimes be easier using the

parameterization in Eq. (4) in terms of the three Cartesian

direction cosines (u,v,w) instead of the parameterization in

Eq. (3) in terms of the spherical coordinates ðh;/Þ. The rea-

son is twofold:

(a) The ðh;/Þ domain would involve powers of products

of the trigonometric functions, of which the first par-

tial derivatives and the second partial derivatives need

be taken, to locate the beam output’s critical points

and local maxima. Instead, the (u,v,w) domain

involves only the polynomials in u, v, and w but no

trigonometric functions, thereby simplifying the subse-

quent analysis despite having one more parameter.

(b) The (u,v,w) parameterization reflects the spatial symme-

try of the orthogonal triad, which is that the triad remains

the same regardless of any permutation of x, y, and z in

the Cartesian coordinates of (x,y,z), thereby collapsing

several sub-cases of ðh;/Þ into one representative case.

Figure 2 highlights how the analysis for each

directivity-order progresses through the above listed (1)–(3),

sometimes skipping over certain immediate steps for rea-

sons to be detailed in the subsequent sections. The second

column in Fig. 2 is elaborated in Fig. 3.

Section II will focus on the first-order figure-8 sensors

(i.e., k¼ 1), whose mathematical simplicity allows a direct

application of differentiation to locate the peak directions.

Section III will concentrate on the second-order figure-8 sen-

sors (i.e., k¼ 2), using the method of Lagrange multiplier to

locate the beam-pattern’s critical points, which turn out to

be only six in number, plus possibly a circular rim where the

whole rim is coetaneous. These six critical points’ respec-

tive beam magnitudes will be derived for comparison with

each other to flag the tallest as the peak direction. Sections

IV–VI will analyze every higher order (i.e., 8k � 3). Their

critical points will be analytically shown in Sec. IV to

include all six in Sec. III for k¼ 2, plus the additional criti-

cal points (which will subsequently be proved in Sec. V as

not local minima). Section VI will then identify the actual

peak direction(s). Section VII will conclude the entire inves-

tigation. Please see Fig. 2 for the logical flow of Secs. II–VI.

II. THE FIRST-ORDER TRIAD’S PEAK DIRECTION

This section will analytically prove that at k¼ 1, the

triad beam-pattern’s actual peak direction ðhact;/actÞ,
defined in Eq. (5), always corresponds to the nominal look

direction ðhlook;/lookÞ.
To prove the above, first, all of the critical points

ðhc;/cÞ
� �

are to be located by applying the “first-order

partial derivative test” to Eq. (3):

1160 J. Acoust. Soc. Am. 151 (2), February 2022 Du et al.

https://doi.org/10.1121/10.0009312

https://doi.org/10.1121/10.0009312


(1) Set to zero:

@

@/
B
ðhlook;/lookÞ
1 ðh;/Þ

¼ �sin ðhlookÞ cos ð/lookÞ sin ðhÞ sin ð/Þ
þ sin ðhlookÞ sin ð/lookÞ sin ðhÞ cos ð/Þ;

thereby obtaining tan ð/cÞ ¼ tan ð/lookÞ, which is math-

ematically equivalent to

/c 2 f/look þ np; for n ¼ 0; 1g: (8)

(2) Set to zero:

@

@h
B
ðhlook;/lookÞ
1 ðh;/Þ¼sinðhlookÞcosð/lookÞcosð/ÞcosðhÞ

þsinðhlookÞsinð/lookÞsinð/ÞcosðhÞ
� cosðhlookÞsinðhÞ: (9)

Substitute Eq. (8) in Eq. (9) and then simplify to yield

0 ¼ sin hlook � ð�1Þnhc

� �
$ hc 2 ð�1Þnhlook; ð�1Þn hlook � p½ �

� �
: (10)

The value of n in Eq. (10) is the same as the n in Eq. (8).

The first-order partial derivative test appears to give four

critical points ðhc;/cÞ: ðhlook;/lookÞ; ðhlook � p;/lookÞ;
ð�hlook; pþ /lookÞ, and ðp� hlook; pþ /lookÞ. However, the

second point is invalid as hlook � p 62 ½0; p�, and the third

point is also invalid as �hlook 62 ½0; p�. Therefore, exactly

only two critical points exist,

ðhc1
;/c1
Þ ¼ ðhlook;/lookÞ;

ðhc2
;/c2
Þ ¼ ðp� hlook; pþ /lookÞ:

(11)

These two directions are diametrically opposite of each

other but both give a unity peak height, i.e., B
ðhlook;/lookÞ
1 ðhc1

;
/c1
Þ ¼ 1 and B

ðhlook;/lookÞ
1 ðhc1

;/c1
Þ ¼ �1; 8ðhlook;/lookÞ. So,

both must be global maxima, i.e., the actual peak directions.

Consequentially, the first-order triad’s beam-pattern has

exactly two peaks at equal height with one peak pointing

toward the nominal look direction ðhact;/actÞ ¼ ðhlook;/lookÞ
and the other peak pointing toward its diametrically opposite

direction as specified in Eq. (11); therefore, the first-order

triad’s beam-pattern is bidirectional, yet, suffers no pointing

error in the sense that the beam does peak at the nominal

look direction. This conclusion concurs with

(a) the third line below Eq. (8) of Ref. 22,

(b) point (iii) in Sec. III A of Ref. 23,

(c) Eq. (10) at a¼ 0 and Sec. III E of Ref. 24,

(d) Eqs. (17) and (18) in Ref. 25 with /x ¼ /y ¼ hx ¼ hy

¼ 0 therein,

(e) Eqs. (8) and (9) of Ref. 29, and

(f) Eqs. (17) and (18) in Ref. 26 with /mis ¼ hmis ¼ 0

therein.

III. THE SECOND-ORDER FIGURE-8 TRIAD’S
PEAK DIRECTION

For the directivity-order k¼ 2, this section will analyti-

cally prove that the beam peak cannot be steered over any
contiguous directional sector but only to a few isolated

directions.

First, locate the critical points in fBðulook;vlook;wlookÞ
k ðu; v;wÞ;

8ðu; v;wÞg for any algorithmically tuned ðulook; vlook;wlookÞ
and any hardware-implemented k, subject to the constraint of

u2ðh;/Þ þ v2ðh;/Þ þ w2ðhÞ ¼ 1; 8h; 8/: (12)

FIG. 2. (Color online) An overview of the entire paper’s logical structure and logical flow. The second column here is elaborated on in the subsequent

Fig. 3, where the same color is used.
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This can be achieved via the method of Lagrange multiplier
by defining

Lðu;v;wÞ ¼def
B
ðulook;vlook;wlookÞ
2 ðu;v;wÞþk u2þ v2þw2�1½ �:

(13)

Next, set

0 ¼ @

@u
Lðu; v;w; kÞjðu;v;wÞ¼ uc;vc;wcð Þ

¼ 2u2
lookuc þ 2kuc;

which can be satisfied only by

(i-u) ðuc; kÞ ¼ ð0; kÞ for all k 2 ð�1;1Þ, and/or

(ii-u) ðuc; kÞ ¼ ðuc;�u2
lookÞ for all uc 2 ½�1; 1�.

Similarly, 0 ¼ ð@=@vÞLðu; v;w;kÞjðu;v;wÞ¼ðuc;vc;wcÞ implies

that

(i-v) ðvc; kÞ ¼ ð0; kÞ for all k 2 ð�1;1Þ, and/or

(ii-v) ðvc; kÞ ¼ ðvc;�v2
lookÞ for all vc 2 ½�1; 1�.

Likewise, 0¼ð@=@wÞLðu;v;w;kÞjðu;v;wÞ¼ðuc;vc;wcÞ implies

that

FIG. 3. (Color online) The logi-

cal flow of the analysis for the

k � 3 directivity-order cases in

Secs. IV–VI.
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(i-w) ðwc; kÞ ¼ ð0; kÞ for all k 2 ð�1;1Þ, and/or

(ii-w) ðwc; kÞ ¼ ðwc;�w2
lookÞ for all wc 2 ½�1; 1�.

The beam-pattern’s any local/global maximum must

simultaneously satisfy all three sets: (i-u) and/or (ii-u), (i-v)

and/or (ii-v), (i-w) and/or (ii-w). These six conditions vary

with the look direction’s Cartesian direction cosines,

ulook; vlook;wlookf g. Depending on how many in

ulook; vlook;wlookf g have the same absolute magnitude—

various disjoint sub-cases need be analyzed separately below.

A. If julookj5= jvlookj5= jwlookj

The above six conditions [i.e., (i-u)–(ii-u), (i-v)–(ii-v),

(i-w)–(ii-w)] on fuc; vc;wc; kg would require at least two

zeros in fuc; vc;wcg. This is proved by contradiction: con-

sider two nonzeros in fuc; vc;wcg, say, uc 6¼ 0 and vc 6¼ 0.

Then, k ¼ �u2
look and k ¼ �v2

look must simultaneously hold,

but these two k expressions would contradict each other for

julookj 6¼ jvlookj.
Furthermore, recall that the constraint (12) precludes

uc; vc;wc from being all zeros.

The two preceding paragraphs mean that fuc; vc;wcg
must contain exactly two zeros, thereby implying only the

six critical points of

ðuc; vc;wcÞ ¼ ð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þ:

[The 61 is due to the unity-constraint in Eq. (12).] These

are the only candidates for the peak direction; no contiguous
directional sector exists as a candidate peak direction.

To identify the peak direction from among these six

candidates noted above, compare their heights:

jBðulook;vlook;wlookÞ
2 ð61; 0; 0Þj ¼ u2

look; (14)

jBðulook;vlook;wlookÞ
2 ð0;61; 0Þj ¼ v2

look; (15)

jBðulook;vlook;wlookÞ
2 ð0; 0;61Þj ¼ w2

look: (16)

Hence,

upeak;wpeak; vpeakð Þ

¼
61; 0; 0ð Þ if julookj > jvlookj; jwlookj;
0;61; 0ð Þ if jvlookj > jwlookj; jwlookj;
0; 0;61ð Þ if jwlookj > julookj; jvlookj:

8><
>: (17)

Equation (17) is graphically represented in Fig. 4 in the

polar-azimuthal bivariate coordinates.

In summary, when ulook 6¼ vlook 6¼ wlook, the k¼ 2 triad

cannot be beam steered incrementally over any contiguous
directional sector, but the beam peak can only hop among 6

discrete directions, which generally differ from the nominal

look direction.

B. If julookj5jvlookj5= jwlookj

Here, the six conditions noted above [i.e., (i-u)–(ii-u),

(i-v)–(ii-v), (i-w)–(ii-w)] require at least one zero in

fuc; vc;wcg. If furthermore there are two zeros in

fuc; vc;wcg, the corresponding critical points are ð61; 0; 0Þ;
ð0;61; 0Þ; ð0; 0;61Þ. If there is exactly one zero in

fuc; vc;wcg, the corresponding critical points become a

circle passing ð61; 0; 0Þ and ð0;61; 0Þ. The preceding three

sentences are proved in the following two sentences by con-

tradiction: Suppose the simultaneous existence of three non-

zeros in fuc; vc;wcg. Then, k ¼ �u2
look ¼ �v2

look and k
¼ �w2

look must simultaneously hold, but these two k expres-

sions contradict each other for julookj ¼ jvlookj 6¼ jwlookj.
This contradiction implies either

(i) uc ¼ vc ¼ 0, or

(ii) wc ¼ 0.

The former implies that ð0; 0;61Þ are two critical points.

The latter implies that u2
c þ v2

c ¼ 1 and wc ¼ 0, hence,

B
ðulook;vlook;wlookÞ
2 ðuc; vc;wc ¼ 0Þ ¼ u2

look ¼ v2
look:

If julookj ¼ jvlookj > jwlookj, then the set of simultaneous

maxima would constitute the circle of u2
peak þ v2

peak ¼ 1 on

the horizontal x-y plane.

If julookj ¼ jvlookj < jwlookj, then the local maxima must

be ð0; 0;61Þ.

C. If julookj5jwlookj5= jvlookj

This case is analogous to that in Sec. III B with the y- and

z-Cartesian direction cosines interchanged. This implies that

the local maxima must be either the points ð0;61; 0Þ or the

circle u2
peak þ w2

peak ¼ 1 on the vertical x-z plane (but not

both).

D. If jvlookj5jwlookj5= julookj

This case is similar to that in Sec. III B with the x- and

z-Cartesian direction cosines interchanged. That is, the local

maxima must be either the points ð61; 0; 0Þ or the circle

v2
peak þ w2

peak ¼ 1 on the vertical y-z plane (but not both).

FIG. 4. (Color online) How the same peak direction results from an entire

subsector of “look directions” for k¼ 2 and k � 3.
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E. If julookj5jvlookj5jwlookj

Here, the beam-pattern amplitude B
ðulook;vlook;wlookÞ
2 ðu;

v;wÞ ¼ u2
look ¼ v2

look ¼ w2
look, which is a constant for all

(u,v,w). This means that the triad’s beam-pattern has a uni-

form height 8ðh;/Þ without any peak or null.

F. Conclusion for directivity-order k 5 2

Sections III A–III E are summarized in Fig. 2 for a triad

populated by the component-sensors with a directivity-order

of k¼ 2.

(i) The triad’s SMF beam peak has three disjoint sub-

cases: peaking at ð61; 0; 0Þ for any look direction in

the horizontally striped directional subsector (see

Secs. III A and III D), peaking at ð0;61; 0Þ for the

vertically striped subsector (see Secs. III A and III C),

or peaking instead at ð0; 0;61Þ for any look direction

in the blank subsector.

(ii) If the look direction lies on any thick dark curve, the

peak direction constitutes a circle; please see Secs.

III B–III D.

(iii) If the look direction is any of the eight hollow-circle

points, the beam-pattern is a sphere with no peak;

please see Sec. III E.

That is, the triad is incapable of steering its SMF beam

peak over any contiguous directional subsector. The beam

peak must be among the six detached directions of

ðupeak; vpeak;wpeakÞ 2 ð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þ
� �

. As

to which of these six directions—that depends on the nomi-

nal look direction ðulook; vlook;wlookÞ.

IV. DIRECTIVITY-ORDER k ‡ 3: THE BEAM-
PATTERN’S STATIONARY POINTS

Now, consider any hardware-implemented k � 3, which

is algorithmically tuned at ðulook; vlook;wlookÞ. To locate

where B
ðulook;vlook;wlookÞ
k ðu; v;wÞ has extrema in the support

region of f8ðu; v;wÞg: use the method of Lagrange multi-
plier while recalling the constraint of Eq. (12),

Lðu;v;wÞ¼def
B
ðulook;vlook;wlookÞ
k ðu;v;wÞþk u2þv2þw2�1½ �; (18)

whose partial derivatives are

@

@u
Lðu; v;w;kÞjðu;v;wÞ¼ uc;vc;wcð Þ ¼ kuk

lookuk�1
c þ 2kuc ¼ 0;

(19)

@

@v
Lðu; v;w; kÞjðu;v;wÞ¼ uc;vc;wcð Þ ¼ kvk

lookvc
k�1 þ 2kvc ¼ 0;

(20)

@

@w
Lðu;v;w;kÞjðu;v;wÞ¼ uc;vc;wcð Þ ¼ kwk

lookwc
k�1þ2kwc¼ 0:

(21)

The above would simplify to Eq. (13) for the k¼ 2 case of

Sec. III. However, with k � 3 here, the next steps will involve

many sub-cases and sub-sub-cases; please see Figs. 3 and 5.

Therefore, the analysis here is more complicated than the k¼ 2

directivity-order analysis in Sec. III.

Suppose that ulook ¼ 0 and uc 6¼ 0 in Eq. (19), then

k¼ 0.

(1) If furthermore vlook 6¼ 0 and wlook 6¼ 0, Eqs. (20) and

(21) would give vc ¼ wc ¼ 0 and, thus,

B
ðulook¼0;vlook 6¼0;wlook 6¼0Þ
k ðuc; vc ¼ 0;wc ¼ 0Þ ¼ 0.

(2) If furthermore vlook ¼ 0 and wlook 6¼ 0, Eq. (21) gives

wc ¼ 0, which implies that B
ðulook¼0;vlook¼0;wlook 6¼0Þ
k ðuc; vc;

wc ¼ 0Þ ¼ 0.

Together, (1) and (2) mean that when ulook ¼ 0, no critical

point with uc 6¼ 0 can be a local/global maximum; thus,

only uc ¼ 0 needs further consideration below. Similar argu-

ments hold for vlook ¼ 0 or wlook ¼ 0.

As uc; vc, and wc could each be positive or negative,

whether they are raised to an odd-k power or an even-k
power—that would affect the subsequent analysis founda-

tionally. Hence, the odd-k case and even-k case will be sepa-

rately analyzed below.

For any odd k � 3, Eqs. (19)–(21) would lead to

uc
2 0;

�2k
kulook

k

� �1=ðk�2Þ
( )

if ulook 6¼ 0;

¼ 0 if ulook ¼ 0;

8>><
>>: (22)

vc
2 0;

�2k
kvlook

k

� �1=ðk�2Þ
( )

if vlook 6¼ 0;

¼ 0 if vlook ¼ 0;

8>><
>>: (23)

wc
2 0;

�2k
kwlook

k

� �1=ðk�2Þ
( )

if wlook 6¼ 0;

¼ 0 if wlook ¼ 0:

8>><
>>: (24)

Any critical point must simultaneously satisfy Eqs. (12) and

(22)–(24), if k is odd and exceeds two. Furthermore, whether

any entry in ulook; vlook;wlookf g equals zero—that would rad-

ically change the critical points’ set of values.

For any even k � 4, Eqs. (19)–(21) would lead instead

to

uc
2 0;6

�2k
kulook

k

� �1=ðk�2Þ
( )

if ulook 6¼ 0;

¼ 0 if ulook¼ 0;

8>><
>>: (25)

vc
2 0;6

�2k
kvlook

k

� �1=ðk�2Þ
( )

if vlook 6¼ 0;

¼ 0 if vlook ¼ 0;

8>><
>>: (26)

wc
2 0;6

�2k
kwlook

k

� �1=ðk�2Þ
( )

if wlook 6¼ 0;

¼ 0 if wlook¼ 0:

8>><
>>: (27)
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Note the 61 in Eqs. (25)–(27) but there is no 61 in

Eqs. (22)–(24). Any critical point must simultaneously sat-

isfy Eqs. (12) and (25)–(27), if k is even and exceeds two.

Moreover, whether any entry in ulook; vlook;wlookf g equals

zero—that would essentially alter the critical points’ set of

values.

In light of all of the above, the ðuc; vc;wcÞ scenario here

(for k � 3) is more complicated than in Sec. III for k¼ 2.

Here, for k � 3, the subsequent analysis will be considered

through many sub-cases, which are differentiated by

(a) whether k is odd or even,

(b) the number of zero entries in fulook; vlook;wlookg, and

(c) the number of zero entries in fuc; vc;wcg.

The above leads to very different mathematical forms,

each of which needs separate handling.

These sub-cases have been summarized in Figs. 3 and

5. Each sub-case’s conclusion is summarized on a separate

row in Fig. 5. The far-left column in Fig. 5 indicates the sec-

tion in which the detailed derivation may be found; and û, v̂,

FIG. 5. (Color online) The critical points for all possible sub-cases in Sec. IV, where k � 3.
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and ŵ are defined as u
�k=ðk�2Þ
look , v�k=ðk�2Þ

look , and w
�k=ðk�2Þ
look ,

respectively. Only those sub-cases in the striped cells can

lead to actual peak directions.

A. If exactly two in {ulook;vlook;wlook} are zero

Consider first the special case of ulook ¼ vlook ¼ 0; the

other special cases of ulook ¼ wlook ¼ 0 or vlook ¼ wlook ¼ 0

are analogous and will be analyzed later.

If ulook ¼ vlook ¼ 0, then implicitly wlook ¼ 61 due to

the constraint in Eq. (12). With the beamformer set toward

the look directions of ð0; 0;61Þ, the beam-pattern’s magni-

tude equals

jBð0;0;61Þ
k ðu; v;wÞj ¼ jwkj; (28)

which attains its maximum of

max
ðu;v;wÞ

jBð0;0;61Þ
k ðu; v;wÞj ¼ max

8w2 �1;1½ �
jwkj ¼ 1 (29)

at w ¼ wpeak ¼ 61. That is, the beam must peak at

ðupeak; vpeak;wpeakÞ ¼ ð0; 0;61Þ, thus, exactly matching the

preset look direction of ðulook; vlook;wlookÞ ¼ ð0; 0;61Þ. This

holds 8k � 1.

Similarly, the special case of vlook ¼ wlook ¼ 0 gives a

peak direction of ðupeak; vpeak;wpeakÞ ¼ ð61; 0; 0Þ, which

precisely matches the preset look direction of

ðulook; vlook;wlookÞ ¼ ð61; 0; 0Þ.
Likewise, the special case of ulook ¼ wlook ¼ 0 yields a

peak direction of ðupeak; vpeak;wpeakÞ ¼ ð0;61; 0Þ, exactly

matching the preset look direction of ðulook; vlook;
wlookÞ ¼ ð0;61; 0Þ.

In summary, ðupeak; vpeak;wpeakÞ ¼ 6ðulook; vlook;wlookÞ
if ðulook; vlook;wlookÞ 2 fð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þg.

B. If exactly one zero in {ulook;vlook;wlook}

From Eqs. (22)–(24) for any odd k � 3, and from Eqs.

(25)–(27) for any even k � 4: ulook ¼ 0 implies uc ¼ 0, and

similarly with vlook and wlook.

Due to the interaxial permutational analogies among

the x, y, and z axes, the following analysis will focus on the

case of ðulook; vlook;wlookÞ ¼ ð0; 6¼ 0; 6¼ 0Þ, for example. The

other cases of ðulook; vlook;wlookÞ ¼ ð6¼ 0; 0; 6¼ 0Þ or

ðulook; vlook;wlookÞ ¼ ð6¼ 0; 6¼ 0; 0Þ would be likewise.

The odd-k sub-case will be analyzed in Sec. IV B 1 with

the even-k sub-case analyzed in Sec. IV B 2.

1. Odd k ‡ 1

Although ulook ¼ 0 in Eq. (22) restricts uc to zero,

Eq. (23) allows vc to be either zero or nonzero, and Eq. (24),

likewise, permits wc to be either zero or nonzero. The sub-

case of both vc and wc being nonzero will be considered in

Sec. IV B 1 a, whereas the other sub-case of exactly one of

vc and wc being zero will be considered in Sec. IV B 1 b.

[Constraint (12) precludes both vc and wc from being zero,

in addition to precluding uc from being zero.]

a. Both vc and wc are nonzero. With k � 1 and odd,

jB ulook;vlook;wlookð Þ
k ðu; v;wÞj ¼ jB ulook;vlook;wlookð Þ

k ð�u;�v;�wÞj:
(30)

This implies that either both 6ðuc; vc;wcÞ are local maxima

of jBðulook;vlook;wlookÞ
k ðu; v;wÞj or neither is.

The substitution of ulook ¼ 0 into Eqs. (22)–(24) gives

uc ¼ 0; (31)

vc ¼
�2k

kvlook
k

� �1=ðk�2Þ
; (32)

wc ¼
�2k

kwlook
k

� �1=ðk�2Þ
: (33)

Substitution of the above three equalities into Eq. (12)

yields

�2k
k

� �1=ðk�2Þ

¼ 61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2k=ðk�2Þ

look þ w
�2k=ðk�2Þ
look

q : (34)

Last, substitute Eq. (34) into Eqs. (31)–(33) to produce

ðuc; vc;wcÞ ¼ 6
0; v�k=ðk�2Þ

look ; w
�k=ðk�2Þ
look

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p : (35)

b. Exactly one of vc and wc is zero. Suppose vc is zero

in addition to uc ¼ 0, but wc remains nonzero. Then

ðuc; vc;wcÞ ¼ ð0; 0;61Þ due to the constraint in Eq. (12).

If, instead, wc ¼ 0 in addition to uc ¼ 0, but vc is non-

zero, then ðuc; vc;wcÞ ¼ ð0;61; 0Þ is also due to the con-

straint in Eq. (12).

2. Even k ‡ 4

a. Both vc and wc are nonzero. The substitution of

ulook ¼ 0 into Eqs. (25)–(27) gives

uc ¼ 0; (36)

vc ¼ 6
�2k

kvlook
k

� �1=ðk�2Þ
; (37)

wc ¼ 6
�2k

kwlook
k

� �1=ðk�2Þ
: (38)

The k expression Eq. (34) holds whether k � 3 is odd

or even. Substitute that Eq. (34) into Eqs. (36)–(38) to give

ðuc; vc;wcÞ ¼
0;6v�k=ðk�2Þ

look ;6w
�k=ðk�2Þ
look

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p : (39)

As expected, Eq. (39) is the same as Eq. (35).
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Either all four directions in ð0;6vc;6wcÞ are local

maxima or none is. This is because 6 makes no difference

in jBðulook;vlook;wlookÞ
k ð6u;6v;6wÞj.

b. Exactly one of vc and wc is zero. Suppose vc is zero in

addition to uc¼0 but wc remains nonzero. Then, ðuc;vc;wcÞ
¼ð0;0;61Þ due to the constraint in Eq. (2). If wc, instead, is

zero in addition to uc¼0 but vc remains nonzero, then ðuc;vc;
wcÞ¼ð0;60;1Þ, which is due also to the constraint in Eq. (12).

Either all four directions in ð0;6vc;6wcÞ are all local

maxima or none is. This is because 6 makes no difference

in jBðulook;vlook;wlookÞ
k ð6u;6v;6wÞj.

C. If no zero in {ulook;vlook;wlook}

From Eqs. (22)–(24) for any odd k � 3 and from Eqs.

(25)–(27) for any even k � 4, a nonzero ulook would not pre-

clude uc from being zero or nonzero.

The odd-k sub-case will be analyzed in Sec. IV C 1,

whereas the even-k sub-case will be analyzed in Sec.

IV C 2.

To facilitate the subsequent analysis: Substitute the

ðuc; vc;wcÞ of either the odd-k’s Eqs. (22)–(24) or the

even-k’s Eqs. (25)–(27) for ðuðh;/Þ; vðh;/Þ;wðh;/ÞÞ in

the constraint of Eq. (12). Either case would give

�2k
k

� �1=ðk�2Þ

¼

61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ulook

�2k=ðk�2Þ þ vlook
�2k=ðk�2Þ þ wlook

�2k=ðk�2Þ
p if uc; vc;wc 6¼ 0;

61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p if uc ¼ 0; vc;wc 6¼ 0:

8>>><
>>>:

(40)

The numerator’s signs give two candidate directions [for the

actual peak(s)] at diametrically opposite directions.

1. Odd k

Three sub-cases exist as to how many zeros in

uc; vc;wcf g—no zero, one zero, or two zeros. These three

sub-cases are discussed one by one below. [Recall that the

all-zeros case is disallowed by the constraint in Eq. (12).]

a. If uc, vc, and wc are all nonzero in Eqs.

(22)–(24). Substitute Eq. (40) into Eqs. (22)–(24) to yield

ðuc;vc;wcÞ¼
6 u

�k=ðk�2Þ
look ;v�k=ðk�2Þ

look ;w
�k=ðk�2Þ
look

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ulook

�2k=ðk�2Þ þ vlook
�2k=ðk�2Þ þwlook

�2k=ðk�2Þ
p :

(41)

The directions specified in Eq. (41) are only a subset of all

of the peak-candidates.

Recall the beam-pattern magnitude’s diametric symme-

try described in Eq. (6). Either both 6ðuc; vc;wcÞ are a local

maximum of the magnitude beam-pattern or neither is.

b. Exactly one of uc; vc;wcf g is zero. Due to the mathe-

matical similarity of u, v, and w, take uc ¼ 0 such that

ðuc; vc;wcÞ ¼ 6
0; v�k=ðk�2Þ

look ; w
�k=ðk�2Þ
look

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p : (42)

As expected, Eq. (42) is the same as Eqs. (35) and (39).

Recall the beam-pattern magnitude’s diametric symme-

try described in Eq. (6). Either both 6ðuc; vc;wcÞ are local

maximum of the magnitude beam-pattern or neither is.

Four other peak-candidates exist, corresponding to

vc ¼ 0 or wc ¼ 0.

c. Exactly two of uc; vc;wcf g are zero. Three sub-cases

exist such that

(1) if vc ¼ wc ¼ 0 but uc 6¼ 0: ðuc; vc;wcÞ ¼ ð61; 0; 0Þ;
(2) if uc ¼ wc ¼ 0 but vc 6¼ 0: ðuc; vc;wcÞ ¼ ð0;61; 0Þ; or

(3) if vc ¼ uc ¼ 0 but wc 6¼ 0: ðuc; vc;wcÞ ¼ ð0; 0;61Þ.

2. Even k

Recalling Eqs. (25)–(27), three sub-cases exist and will

be separately analyzed below.

a. If uc, vc, and wc are all nonzero in Eqs.

(22)–(24). Substitute Eq. (40) into Eqs. (25)–(27) to yield

ðuc;vc;wcÞ¼
6u
�k=ðk�2Þ
look ;6v�k=ðk�2Þ

look ;6w
�k=ðk�2Þ
look

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ulook

�2k=ðk�2Þ þ vlook
�2k=ðk�2Þ þwlook

�2k=ðk�2Þ
p :

(43)

Here, Eq. (43) points toward the peak-candidates.

Recall the eightfold symmetry in Eq. (7) for any even

k � 4. Hence, either all eight of ð6uc;6vc;6wcÞ are local

maxima of the magnitude beam-pattern or none is.

b. Exactly one of uc; vc;wcf g is zero. Due to the mathe-

matical similarity of u, v, and w, take uc ¼ 0:

uc ¼ 0; (44)

vc ¼ 6
vlook

�k=ðk�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p ; (45)

wc ¼ 6
wlook

�k=ðk�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vlook

�2k=ðk�2Þ þ wlook
�2k=ðk�2Þ

p : (46)
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For uc ¼ 0, there are ð0;6vc;6wcÞ. And there are eight

other points for vc ¼ 0 and wc ¼ 0.

For even k � 4, the following symmetry holds:

jB ulook;vlook;wlookð Þ
k ðu; v;wÞj ¼ jB ulook;vlook;wlookð Þ

k ð6u;6v;6wÞj:
(47)

Thus, if ðuc; vc;wcÞ is not a local maximum of

jBðulook;vlook;wlookÞ
k ðu; v;wÞj; 8k � 4, then neither are the follow-

ing seven points: ð�uc;vc;wcÞ; ð�uc;�vc;wcÞ; ð�uc;vc;�wcÞ;
ð�uc;�vc;�wcÞ; ðuc;�vc;wcÞ; ðuc;�vc;�wcÞ; ðuc;vc;�wcÞ.

c. Exactly two of uc; vc;wcf g are zero. If vc ¼ wc ¼ 0

but uc is nonzero, then ðuc; vc;wcÞ ¼ ð61; 0; 0Þ; if uc ¼ wc

¼ 0 but vc is nonzero, then ðuc; vc;wcÞ ¼ ð0;61; 0Þ; if vc

¼ uc ¼ 0 but wc is nonzero, then ðuc; vc;wcÞ ¼ ð0; 0;61Þ.

V. DIRECTIVITY-ORDER k ‡ 3: THE BEAM-PATTERN’S
LOCAL MAXIMA

The beam-pattern’s peak direction (i.e., global maximum)

must necessarily be a local maximum, which, in turn, must be

a critical point. All critical points have already been identified

in Sec. IV for any directivity-order of k � 3. This section will

determine which of these critical points are local maxima and

which are not. Please refer back to Fig. 3 for a macroscopic

overview of the logical flow among Secs. IV–VI.

The many sub-cases in Sec. IV fall into only three

groups for the present purpose of testing which critical point

is a local maximum:

(1) uc; vc;wcf g contains no zero: These sub-cases are the

earlier Eq. (41) in Sec. IV C 1 a and Eq. (43) in Sec.

IV C 2 a. Section V A will deal with this group of cases.

(2) uc; vc;wcf g contains exactly one zero: These sub-cases

are the earlier Eq. (35) in Sec. IV B 1 a, Eq. (39) in Sec.

IV B 2 a, Eq. (42) in Sec. IV C 1 b, and Eqs. (44)–(46) in

Sec. IV C 2 b. Section V B will deal with this group of

cases.

(3) uc; vc;wcf g contains exactly one zero: These sub-cases

are the earlier Secs. IV A, IV B 1 b, IV B 2 b, IV C 1 c

and IV C 2 c. Section V C will deal with this group of

cases.

The “second partial derivative test” will be used below

but in a not-so-straightforward manner. This indirectness is

because the second partial derivative test is for uncon-

strained optimization, whereas the beam-pattern’s three

Cartesian direction cosines of u, v, and w are constrained

through Eq. (12).

A. If no zero in uc; vc;wcf g

Section V A will mathematically prove that all of the

critical points with no zero in uc; vc;wcf g must be a local

minimum and, hence, not a global maximum. The proof is

given in the rest of Sec. V A.

The beam-pattern’s three Cartesian direction cosines of

u, v, and w are functionally dependent, inter-related through

the constraint in Eq. (12). Thus, the second partial derivative

test cannot be applied straightforwardly here by regarding u,

v, and w as three degrees-of-freedom. Nonetheless, any local

minimum of the unconstrained jBðulook;vlook;wlookÞ
k ðu; v;wÞj can-

not possibly be a local maximum of the constrained

jBðulook;vlook;wlookÞ
k ðu; v;wÞj. The following will first prove that

all of the critical points here are local minima when without

constraint and, therefore, cannot be a local maximum when

with constraint.

According to the second partial derivative test: If a mul-

tivariate function’s Hessian matrix is invertible and positive

definite at a critical point, that critical point must be a local

minimum. For the trivariate function of B
ðulook;vlook;wlookÞ
k ðu;

v;wÞ: among its nine second-order partial derivatives, six

are zero and only three are nonzero. Those three are

@2=@u@u, @2=@v@v, and @2=@w@w. Hence, the beam-

pattern’s Hessian matrix is diagonal, and the 3� 3 Hessian

matrix’s eigenvalues are its diagonal entries,

@2

@n@n
B

ulook;vlook;wlookð Þ
k ðu; v;wÞ ¼ kðk � 1Þnk

lookn
k�2; (48)

for all n 2 fu; v;wg. At the critical point of

ðuc; vc;wcÞ ¼
u
�k=ðk�2Þ
look ; v�k=ðk�2Þ

look ; w
�k=ðk�2Þ
look

	 

u
�2k=ðk�2Þ
look þ v�2k=ðk�2Þ

look þ w
�2k=ðk�2Þ
look

	 
1=2
;

(49)

the aforementioned eigenvalues in Eq. (48) become

@2

@n@n
B

ulook;vlook;wlookð Þ
k ðuc;vc;wcÞ

¼ kðk�1Þ

u
�2k=ðk�2Þ
look þ v�2k=ðk�2Þ

look þw
�2k=ðk�2Þ
look

	 
ðk�2Þ=2
> 0: (50)

Hence, the Hessian matrix is positive definite; all of the crit-

ical points of the form in Eq. (49) [on account of the sym-

metry properties in Eqs. (6) and (7)] must each be a local

minimum in the unconstrained case.

The aforementioned analyzes the amplitude pattern

B
ðulook;vlook;wlookÞ
k ðu; v;wÞ. The following will show that the crit-

ical points in either Eq. (41) or Eq. (43) are local minima of

the magnitude pattern jBðulook;vlook;wlookÞ
k ðuc; vc;wcÞj. At these

critical points,

B
ðulook;vlook;wlookÞ
k ðuc; vc;wcÞ

¼ u
�2k=ðk�2Þ
look þ v�2k=ðk�2Þ

look þ w
�2k=ðk�2Þ
look

u
�2k=ðk�2Þ
look þ v�2k=ðk�2Þ

look þ w
�2k=ðk�2Þ
look

	 
k=2
> 0 (51)

because the numerator’s every term has been raised to an

even power.

The above has analytically proved that all of the critical

points of the form Eq. (49) are a local minimum in the

unconstrained case and, therefore, not a local maximum
under constraint (12).
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B. If exactly one zero in {uc;vc;wc}

Section V B (in its entirety) will mathematically prove

that all of the critical points with exactly one zero in

uc; vc;wcf g must be a local minimum and, hence, not a

global maximum. The rest of Sec. V B will prove this.

As in Sec. V A, the second partial derivative test cannot be

applied straightforwardly here by regarding u, v, and w as three

degrees-of-freedom because only two degrees-of-freedom exist

among these three. So, the second partial derivative test will

also be applied indirectly here but in a way that is different

from that in Sec. V A. The present approach is as follows:

(i) Consider two constraints:

(A) u2 þ v2 þ w2 ¼ 1; and

(B) u¼ 0 and v2 þ w2 ¼ 1. This constraint is met by

all of the critical points considered in Sec. V B.

Constraint (B) is obviously a restricted case of con-

straint (A). Suppose the beam-pattern magnitude,

jBðulook;vlook;wlookÞ
k ðuc; vc;wcÞj, has a critical point

ðuc; vc;wcÞ that satisfies (B). That ðuc; vc;wcÞ must

also satisfy (A).

(ii) Prove ðuc; vc;wcÞ to be a local minimum of the beam-

pattern magnitude under constraint (B). Then, that

ðuc; vc;wcÞ must not be a local maximum within the

larger set defined by constraint (A).

Under constraint (B),

B
ðulook;vlook;wlookÞ
k ðuc ¼ 0; vc;wcÞ ¼ vk

lookv
k
c þwk

lookwk
c: (52)

Its 2� 2 Hessian matrix (when without constraint) would be

diagonal because the off diagonal entries for @2=@v@w and

@2=@w@v both equal zero. The Hessian matrix’s two eigen-

values are, thus, its diagonal entries as in Eq. (48) but for

only n ¼ v;w.

At the critical point of

ðuc; vc;wcÞ ¼
0; v�k=ðk�2Þ

look ; w
�k=ðk�2Þ
look

	 

v�2k=ðk�2Þ

look þ w
�2k=ðk�2Þ
look

	 
1=2
; (53)

the aforementioned eigenvalues in Eq. (48) become

@2

@n@n
B

ulook;vlook;wlookð Þ
k ðuc ¼ 0; vc;wcÞ

¼ kðk � 1Þ

v�2k=ðk�2Þ
look þ w

�2k=ðk�2Þ
look

	 
ðk�2Þ=2
> 0: (54)

Hence, the Hessian matrix is positive definite, and all of the

critical points of the form Eq. (53) [on account of the sym-

metry properties in Eqs. (6) and (7)] must each be a local

minimum of the beam-pattern amplitude when under con-

straint: u¼ 0 (v, w unconstrained), hence, a local minimum
of the beam-pattern amplitude when under constraint (B)

where u¼ 0 and v and w are constrained.

The preceding analyzes the amplitude pattern

B
ðulook;vlook;wlookÞ
k ðu; v;wÞ. The following will show that the

critical points are not any local maximum of the magnitude

pattern jBðulook;vlook;wlookÞ
k ðuc; vc;wcÞj. At these critical points,

B
ðulook;vlook;wlookÞ
k ðuc ¼ 0; vc;wcÞ

¼ v�2k=ðk�2Þ
look þ w

�2k=ðk�2Þ
look

v�2k=ðk�2Þ
look þ w

�2k=ðk�2Þ
look

	 
k=2
> 0 (55)

because the numerator’s every term has been raised to an

even power.

The above has analytically proved that all of the critical

points of the form of Eq. (53) must be a local minimum
when under a more restricted constraint (B) and, therefore,

cannot be a local maximum when under constraint (A).

C. If exactly two zeros in {uc;vc;wc}

Sections V A and V B have each shown that all of their

sub-cases are not producing any local maximum. Therefore,

any local/global maxima must be in the only remaining

group (3), mentioned at the start of the Sec. V.

VI. DIRECTIVITY-ORDER k ‡ 3: THE BEAM-
PATTERN’S ACTUAL PEAK DIRECTIONS

This section will prove that for any k � 3, the triad can-

not be steered incrementally over any contiguous directional

sector but can only hop among six discrete directions.

Recall that for directivity-orders k � 3, Sec. IV has ana-

lytically derived the set of critical points for each possible

setting of k, ulook; vlook;wlookf g, and uc; vc;wcf g. Among

these critical points, Sec. V has proved that the local max-

ima could only be among fð61;0;0Þ;ð0;61;0Þ;ð0;0;61Þg.
Please refer back to Fig. 3.

Which of these are global maxima? This can be deter-

mined by comparing their beam heights,

jBðulook;vlook;wlookÞ
k ð61; 0; 0Þj ¼ julookjk; (56)

jBðulook;vlook;wlookÞ
k ð0;61; 0Þj ¼ jvlookjk; (57)

jBðulook;vlook;wlookÞ
k ð0; 0;61Þj ¼ jwlookjk: (58)

Hence,

upeak;wpeak; vpeakð Þ

¼
61; 0; 0ð Þ if julookj > jvlookj; jwlookj;
0;61; 0ð Þ if jvlookj > julookj; jwlookj;
0; 0;61ð Þ if jwlookj > julookj; jvlookj:

8><
>: (59)

The conclusion above for k � 3 is identical to that in Eq. (17)

for k¼ 2. This is summarized in Fig. 4.

(i) For any k � 2: The triad’s SMF beam peak has three

disjoint cases: peaking at ð61; 0; 0Þ for any look

direction in the horizontally striped directional sector

(see Secs. III A, III D, and VI), or peaking at

ð0;61; 0Þ for the vertically striped sector (see Secs.
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III A, III C, and VI), or peaking instead at ð0; 0;61Þ
for any look direction in the blank sector.

(ii) For k � 3: If the look direction is on any thick dark

curve, four peaks exist simultaneously; please see

Eqs. (56)–(58). If the look direction is any of the

eight hollow-circle points, six peaks exist simulta-

neously; please see Eqs.(56)–(58).

VII. CONCLUSION

Given the practical beamforming successes realized by

the triad comprising orthogonally collocated first-order

figure-8 microphones/hydrophones, a simple-minded expec-

tation is that the second-order and higher-order figure-8 sen-

sors (being sharper in their individual gain pattern) would

make the triad’s SMF beam acute while retaining the first-

order case’s steerability. Instead, this paper analytically

exposes one critical shortcoming of these higher-order

cases: their triad’s SMF beam peak has limited maneuver-

ability. Whereas the first directivity-order of k¼ 1 facilitates

the triad to steer toward any polar-azimuthal direction (and

to do so without any pointing bias), any higher directivity-

order of k � 2 would permit the beam peak only to hop

among the six discrete directions of ðupeak;wpeak; vpeakÞ 2
fð61; 0; 0Þ; ð0;61; 0Þ; ð0; 0;61Þg. In this sense, the k¼ 1

case is preferable over all of the k � 2 cases.

This finding echoes a complementary discovery in Ref. 28

for a pair of identical, collocated but orthogonally oriented

figure-8 sensors of any equal directivity-order that (i) only the

k¼ 1 directivity-order facilitates full steerability of the SMF

beam to any look direction, and (ii) at any k � 2, the beam

peak can only hop to ðupeak;wpeak; vpeakÞ 2 fð61; 0; 0Þ;
ð0;61; 0Þg. Therefore, relative to the pair in Ref. 28 at k � 2,

the present triad at k � 2, here, only adds two potential peaks at

ð0; 0;61Þ.
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