Higher-order figure-8 microphones/hydrophones collocated as a perpendicular triad—Their “spatial-matched-filter” beam steering

Shiyu Sandy Du,1 Kainam Thomas Wong,1,a) Yang Song,2 Chibuzo Joseph Nnonyelu,3 and Yue Ivan Wu4
1School of General Engineering, Beihang University, Beijing, 100191, China
2School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
3Sensible Things that Communicate Research Centre, Mid Sweden University, Sundsvall, Sweden
4College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China

ABSTRACT:
Directional sensors, if collocated but perpendicularly oriented among themselves, would facilitate signal processing to uncouple the azimuth-polar direction from the time-frequency dimension—in addition to the physical advantage of spatial compactness. One such acoustical sensing unit is the well-known “tri-axial velocity sensor” (also known as the “gradient sensor,” the “velocity-sensor triad,” the “acoustic vector sensor,” and the “vector hydrophone”), which comprises three identical figure-8 sensors of the first directivity-order, collocated spatially but oriented perpendicularly of each other. The directivity of the figure-8 sensors is hypothetically raised to a higher order in this analytical investigation with an innocent hope to sharpen the overall triad’s directivity and steerability. Against this wishful aspiration, this paper rigorously analyzes how the directivity-order would affect the triad’s “spatial-matched-filter” beam’s directivity steering capability, revealing which directed-(order(s) would allow the beam-pattern of full maneuverability toward any azimuthal direction and which directivity-order(s) cannot.

I. INTRODUCTION

A. “Figure-8” directional microphones/hydrophones

One common directional microphone/hydrophone is the figure-8 sensor, which has a dipole-like directional response of

\[\cos^k(\gamma) \],

where \(k \in \{1, 2, \ldots\} \) symbolizes the sensor’s directivity-order, and \(\gamma \in [0, 2\pi] \) denotes the incident source’s incident angle with respect to the sensor axis.

This \(\cos^k(\gamma) \) gain response graphically resembles the digit “8,” hence, the figure-8 label. As the directivity-order \(k \) increases, the figure-8 sensor’s gain pattern narrows, providing greater sensitivity toward an incident direction that is more parallel to the sensor’s axis. Please refer to Fig. 1.

Concerning the higher-order directional microphones/hydrophones, their directivity and beam-patterns have been investigated in Refs. 1–12, whereas azimuth-elevation direction-of-arrival formulas are devised for them in Ref. 13.

For further discussions of higher-order figure-8 sensors, please consult Chap. 8.3 and 8.5 of Ref. 14 and Chap. 2 of Ref. 15,13,16

B. A triad of figure-8 sensors in orthogonal orientation and spatial collocation

Place three figure-8 sensors at the origin of the Cartesian coordinates and orient one each along the \(x, y, \) and \(z \) axes. Such a collocated perpendicular triad has a 3 \(\times \) 1 array manifold of

\[
\mathbf{a}_k(\theta, \phi) = \begin{bmatrix}
\sin(\theta) \cos(\phi) \\
\sin(\theta) \sin(\phi) \\
\cos(\theta)
\end{bmatrix}^k
\]

\[= \mathbf{a}_k(\theta, \phi) = \begin{bmatrix}
u^k(\theta, \phi) \\
v^k(\theta, \phi) \\
w^k(\theta)
\end{bmatrix},
\]

where \(\theta \in [0, \pi] \) symbolizes the incident acoustic wave’s polar direction-of-arrival (also known as the zenith angle), \(\phi \in [0, 2\pi] \) signifies the associated azimuth direction-of-arrival, whereas \(u(\theta, \phi) \triangleq \sin(\theta) \cos(\phi), v(\theta, \phi) \triangleq \sin(\theta) \sin(\phi), \) and \(w(\theta) \triangleq \cos(\theta) \) respectively, denote the Cartesian direction cosines along the \(x, y, \) and \(z \) axes. The subsequent analysis will abbreviate \(u(\theta, \phi) \) as \(u, v(\theta, \phi) \) as \(v, \) and \(w(\theta) \) as \(w.\)

The above array manifold in Eqs. (1) and (2) at any natural number \(k \) is bivariate in terms of the polar-azimuthal bivariate coordinates of \((\theta, \phi) \), although the triad is point-like compact in spatial geometry.

Also important is the above array manifold’s independence of the frequency and emitter/sensor distance (regardless...
of k). That is, the three component-sensors’ spatial collocation intrinsically decouples the data’s time-frequency dimensions from the data’s azimuth-elevation-radial spatial dimensions.

C. The triad’s spatial-matched-filter beam-pattern

The "spatial-matched-filter" (SMF) beamformer\(^\text{21}\) (also known as "fixed beamforming" or "conventional beamforming") is a data-independent but steerable beamformer. For a "look direction" of interest (by definition) is preset to the desired direction’s nominal steering vector $\mathbf{w} = a(\theta_{\text{look}}, \phi_{\text{look}})$. This beamformer is "fixed" as its beamforming weights in \mathbf{w} are pre-established prior to any empirical measurement and, hence, independent of any data received. This beamforming method is "conventional" in that it predates more complicated beamforming algorithms that adapt to the signal/interference/noise information embedded in the received data. In the case in which the interference and additive noise may, together, be modeled statistically as (1) zero-mean, (2) spatially uncorrelated, and (3) uncorrelated with the desired signal, the SMF output’s signal-to-noise ratio (SNR) is maximum relative to any other beamformer’s output.

Consider the figure-8 sensor triad of Eqs. (1) and (2). This triad’s SMF beamformer, preset to a look direction of $(\theta, \phi) = (\theta_{\text{look}}, \phi_{\text{look}})$, would have an amplitude beam-pattern of

$$B_k^{(\theta_{\text{look}}, \phi_{\text{look}})}(\theta, \phi) \equiv |a_k(\theta_{\text{look}}, \phi_{\text{look}})|^T a_k(\theta, \phi),$$

or in terms of the Cartesian direction cosines as

$$B_k^{(\theta_{\text{look}}, \phi_{\text{look}})}(u, v, w) = u_k \hat{u}^k + v_k \hat{v}^k + w_k \hat{w}^k. \tag{4}$$

In Eq. (3), the superscript T denotes transposition. Furthermore, $u_v \equiv u(\theta_{\text{look}}, \phi_{\text{look}}), \ v_v \equiv v(\theta_{\text{look}}, \phi_{\text{look}})$, and $w_v \equiv w(\theta_{\text{look}})$.

The above beam-pattern for the first-order case of $k = 1$ has been analyzed previously in Refs. 22–26, but those references are unconcerned with the higher-order figure-8 sensors (where $k \geq 2$, as in this present work). For higher-order figure-8 sensors collocated in orthogonality, their SMF beam-pattern has been investigated in Ref. 27, which concerns the triad’s beam-pattern’s general features but not about the pointing bias, and Ref. 28 for a pair but not for a triad as in this work.

This paper will be first in the open literature to investigate the beam steering capability of a tri-axial collocated unit of perpendicular higher-order figure-8 sensors. That is, given

(i) the sensor hardware’s directivity-order of k, and

(ii) the beamforming software’s algorithmic setting of the desired look direction of $(\theta_{\text{look}}, \phi_{\text{look}})$,

can the beam-pattern magnitude’s actual peak direction,

$$(\theta_{\text{act}}, \phi_{\text{act}}) \equiv \arg \max \sqrt{u(\theta, \phi)} |B_k^{(\theta_{\text{look}}, \phi_{\text{look}})}(\theta, \phi)|, \tag{5}$$

be electronically steered to any polar-azimuthal direction in $\{\theta_{\text{look}} \in [0, \pi]\} \cup \{\phi_{\text{look}} \in [0, 2\pi]\}$? Here, the SMF beamformer’s actual peak $(\theta_{\text{act}}, \phi_{\text{act}})$, by definition, is the direction where the beam output’s magnitude $|B_k^{(\theta_{\text{look}}, \phi_{\text{look}})}(\theta, \phi)|$ is largest. If the answer is “yes” to the above question, will...
(θ_{act}, φ_{act}) = (θ_{look}, φ_{look})? That is, will no steering bias exist? These questions’ answers will be uncovered in this paper as “yes,” but, unexpectedly, if and only if \(k = 1 \).

Although this beamformer output \(B_k^\phi(\theta, \phi, \Phi_{\text{look}}) \) equals the inner product of the two vectors of \(\mathbf{a}_k(\theta, \phi) \) and \(\mathbf{a}_0(\theta, \phi) \), setting \((\theta, \phi) = (\theta_{\text{look}}, \Phi_{\text{look}}) \) will render the two vectors parallel but will not necessarily maximize \(|B_k^\phi(\theta, \phi, \Phi_{\text{look}})| \). This is because the array manifold \(\mathbf{a}_k(\theta, \phi) \) of Eq. (1) has a second norm (i.e., a vector length), which varies with \((\theta, \phi)\), \(\forall k \geq 2 \). The right side of (4) equals the cosine of the angle between \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}})\) and \((u, v, w)\) regardless of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}})\) and \((u, v, w)\) only if \(k = 1 \). Indeed, this variable-norm complication, intrinsic in the array manifold \(\mathbf{a}_k(\theta, \phi) \) of Eq. (1), requires this paper’s meticulous derivation to determine the beam-pointing error.

D. The organization of this paper

The beam-pattern in Eq. (4) looks compact, but its peak-direction analysis is complicated due to the directional periodicity in its several trigonometric functions, which are further obscured by being raised to a power of \(k \).

The beam-pattern’s following symmetry properties will nonetheless simplify the subsequent analysis:

(a) For any odd \(k \geq 1 \),

\[
|B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(u, v, w)| = |B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(-u, -v, -w)|. \tag{6}
\]

(b) For any even \(k \geq 2 \),

\[
|B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(u, v, w)| = |B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(\pm u, \pm v, \pm w)|. \tag{7}
\]

The directivity-order’s oddness-versus-evenness would significantly affect the subsequent derivation of the beam-pattern’s global maximum: For any odd \(k \), \(B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(\theta, \phi) \) could become negative (thereby a locally minimum amplitude represents a locally maximum magnitude), implying a necessity to consider both the maxima and minima of Eqs. \((3) \) and \((4) \) to identify the beam magnitude’s peak direction. In contrast, for any even \(k \), \(0 \leq B_k^{\phi_{\text{look}}, \Phi_{\text{look}}, \Psi_{\text{look}}}(\theta, \phi) = |B_k^{\phi_{\text{look}}, \Phi_{\text{look}}}(\theta, \phi)| \). Therefore, the subsequent analysis will investigate different directivity-orders in separate sections. Figure 2 summarizes how these various cases of directivity-orders are dealt with subsequently in the rest of this paper. All of the sub-sub-cases in Fig. 2 admittedly make arduous reading, but that multiplicity reflects the present problem’s intrinsic complexity—a complexity exhaustively and detailedly tackled in the various sections to follow.

The beam-pattern \(B_k^{\phi_{\text{look}}, \Phi_{\text{look}}}(\theta, \phi) \) is a bivariate function of \((\theta, \phi)\) for any hardware-implemented \(k \) and algorithmically tuned \((\theta_{\text{look}}, \Phi_{\text{look}})\). To locate this bivariate function’s peak on the \((\theta, \phi)\) support region, the standard analytical procedural steps are

1. locate (e.g., through the method of Lagrange multiplier) the beam’s critical points \((\theta_c, \phi_c)\);
2. among all critical points in (1), check which are local maxima; and
3. among all local maxima, identify the global maximum (e.g., by comparing all local maxima’s beam heights).

This derivation can sometimes be easier using the parameterization in Eq. (4) in terms of the three Cartesian direction cosines \((u,v,w)\) instead of the parameterization in Eq. (3) in terms of the spherical coordinates \((\theta, \phi)\). The reason is twofold:

(a) The \((\theta, \phi)\) domain would involve powers of products of the trigonometric functions, of which the first partial derivatives and the second partial derivatives need be taken, to locate the beam output’s critical points and local maxima. Instead, the \((u,v,w)\) domain involves only the polynomials in \(u, v, \) and \(w \) but no trigonometric functions, thereby simplifying the subsequent analysis despite having one more parameter.

(b) The \((u,v,w)\) parameterization reflects the spatial symmetry of the orthogonal triad, which is that the triad remains the same regardless of any permutation of \(x, y, \) and \(z \) in the Cartesian coordinates of \((x,y,z)\), thereby collapsing several sub-cases of \((\theta, \phi)\) into one representative case.

Figure 2 highlights how the analysis for each directivity-order progresses through the above listed (1)–(3), sometimes skipping over certain immediate steps for reasons to be detailed in the subsequent sections. The second column in Fig. 2 is elaborated in Fig. 3.

Section II will focus on the first-order figure-8 sensors (i.e., \(k = 1 \)), whose mathematical simplicity allows a direct application of differentiation to locate the peak directions. Section III will concentrate on the second-order figure-8 sensors (i.e., \(k = 2 \)), using the method of Lagrange multiplier to locate the beam-pattern’s critical points, which turn out to be only six in number, plus possibly a circular rim where the whole rim is coetaneous. These six critical points’ respective beam magnitudes will be derived for comparison with each other to flag the tallest as the peak direction. Sections IV–VI will analyze every higher order (i.e., \(\forall k \geq 3 \)). Their critical points will be analytically shown in Sec. IV to include all six in Sec. III for \(k = 2 \), plus the additional critical points (which will subsequently be proved in Sec. V as not local minima). Section VI will then identify the actual peak direction(s). Section VII will conclude the entire investigation. Please see Fig. 2 for the logical flow of Secs. II–VI.

II. THE FIRST-ORDER TRIAD’S PEAK DIRECTION

This section will analytically prove that at \(k = 1 \), the triad beam-pattern’s actual peak direction \((\theta_{\text{act}}, \phi_{\text{act}})\), defined in Eq. (5), always corresponds to the nominal look direction \((\theta_{\text{look}}, \Phi_{\text{look}})\).

To prove the above, first, all of the critical points \(\{(\theta_c, \phi_c)\}\) are to be located by applying the “first-order partial derivative test” to Eq. (3):
Directivity Order

<table>
<thead>
<tr>
<th>$k = 1$</th>
<th>Section II</th>
<th>To find all critical points</th>
<th>To check if each critical point is a local maximum</th>
<th>To locate the global maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>Section III</td>
<td>2 zeros in ${u_c, v, w}$</td>
<td>Section V-C</td>
<td>Section VI</td>
</tr>
<tr>
<td>Odd $k \geq 3$</td>
<td>Section IV-A, if 2 zeros in ${u_{look}, v_{look}, w_{look}}$</td>
<td>1 zero in ${u_c, v, w}$</td>
<td>Section V-C</td>
<td>Section VI</td>
</tr>
<tr>
<td></td>
<td>Section IV-B.1, if 1 zero in ${u_{look}, v_{look}, w_{look}}$</td>
<td>no zero in ${u_c, v, w}$</td>
<td>Section V-A</td>
<td>impossible</td>
</tr>
<tr>
<td></td>
<td>Section IV-C.1, if no zero in ${u_{look}, v_{look}, w_{look}}$</td>
<td>2 zeros in ${u_c, v, w}$</td>
<td>Section V-C</td>
<td>Section VI</td>
</tr>
<tr>
<td>Even $k \geq 3$</td>
<td>Section IV-A, if 2 zeros in ${u_{look}, v_{look}, w_{look}}$</td>
<td>1 zero in ${u_c, v, w}$</td>
<td>Section V-B</td>
<td>impossible</td>
</tr>
<tr>
<td></td>
<td>Section IV-B.2, if 1 zero in ${u_{look}, v_{look}, w_{look}}$</td>
<td>no zero in ${u_c, v, w}$</td>
<td>Section V-A</td>
<td>impossible</td>
</tr>
</tbody>
</table>

Analytical steps to locate the beam-pattern’s peak

1. **Set to zero:**

\[
\frac{\partial}{\partial \phi} B_1^{(\theta_{look}, \phi_{look})}(\theta, \phi) = -\sin(\theta_{look}) \cos(\phi_{look}) \sin(\theta) \sin(\phi) + \sin(\theta_{look}) \sin(\phi_{look}) \sin(\theta) \cos(\phi),
\]

thereby obtaining $\tan(\phi_{look}) = \tan(\phi_{look})$, which is mathematically equivalent to

\[
\phi_{c} \in \{\phi_{look} + n\pi, \text{ for } n = 0, 1\}. \tag{8}
\]

2. **Set to zero:**

\[
\frac{\partial}{\partial \phi} B_1^{(\theta_{look}, \phi_{look})}(\theta, \phi) = \sin(\theta_{look}) \cos(\phi_{look}) \cos(\theta) \cos(\phi) + \sin(\theta_{look}) \sin(\phi_{look}) \sin(\theta) \cos(\phi) - \cos(\theta_{look}) \sin(\theta). \tag{9}
\]

Substitute Eq. (8) in Eq. (9) and then simplify to yield

\[
0 = \sin(\theta_{look} - (-1)^n \pi) \iff \theta_{c} \in \{-1\}^n \theta_{look}, (-1)^{n}[\theta_{look} - \pi]. \tag{10}
\]

The value of n in Eq. (10) is the same as the n in Eq. (8). The first-order partial derivative test gives four critical points $(\theta_{c1}, \phi_{c1}) = (\theta_{look}, \phi_{look})$, $(\theta_{look} - \pi, \phi_{look})$, $(\pi - \theta_{look}, \pi + \phi_{look})$, and $(\pi - \theta_{look}, \pi + \phi_{look})$. However, the second point is invalid as $\theta_{look} - \pi \notin [0, \pi]$, and the third point is also invalid as $-\theta_{look} \notin [0, \pi]$. Therefore, exactly only two critical points exist,

\[
(\theta_{c1}, \phi_{c1}) = (\theta_{look}, \phi_{look}),
\]

\[
(\theta_{c2}, \phi_{c2}) = (\pi - \theta_{look}, \pi + \phi_{look}). \tag{11}
\]

These two directions are diametrically opposite of each other but both give a unity peak height, i.e., $B_1^{(\theta_{look}, \phi_{look})}(\theta_{c1}, \phi_{c1}) = 1$ and $B_1^{(\theta_{look}, \phi_{look})}(\theta_{c2}, \phi_{c2}) = -1$, $\forall(\theta_{look}, \phi_{look})$. So, both must be global maxima, i.e., the actual peak directions.

Consequentially, the first-order triad’s beam-pattern has exactly two peaks at equal height with one peak pointing toward the nominal look direction $(\theta_{act}, \phi_{act}) = (\theta_{look}, \phi_{look})$ and the other peak pointing toward its diametrically opposite direction as specified in Eq. (11); therefore, the first-order triad’s beam-pattern is bidirectional, yet, suffers no pointing error in the sense that the beam does peak at the nominal look direction. This conclusion concurs with

(a) the third line below Eq. (8) of Ref. 22,
(b) point (iii) in Sec. III A of Ref. 23,
(c) Eq. (10) at $x = 0$ and Sec. III E of Ref. 24,
(d) Eqs. (17) and (18) in Ref. 25 with $\phi_{c} = \phi_{act} = \theta_{c} = \phi_{act} = 0$ therein,
(e) Eqs. (8) and (9) of Ref. 29, and
(f) Eqs. (17) and (18) in Ref. 26 with $\phi_{mis} = \theta_{mis} = 0$ therein.

III. THE SECOND-ORDER FIGURE-8 TRIAD'S PEAK DIRECTION

For the directivity-order $k = 2$, this section will analytically prove that the beam peak cannot be steered over any contiguous directional sector but only to a few isolated directions.

First, locate the critical points in $B_k^{(\theta_{look}, \phi_{look}, w_{look})}(u, v, w)$, $\forall(u, v, w)$ for any algorithmically tuned $(u_{look}, v_{look}, \phi_{look})$ and any hardware-implemented k, subject to the constraint of

\[
u^2(\theta, \phi) + \nu^2(\theta, \phi) + \nu^2(\theta, \phi) = 1, \forall\theta, \forall\phi. \tag{12}
\]
This can be achieved via the method of Lagrange multiplier by defining

\[
L(u, v, w) = B_2^{(\text{look}, \text{look}, \text{look})} (u, v, w) + \lambda [u^2 + v^2 + w^2 - 1].
\]

Next, set

\[
0 = \frac{\partial}{\partial u} L(u, v, w, \lambda) \big|_{(u, v, w) = (u_c, v_c, w_c)} = 2u_c^2 + 2\lambda u_c,
\]

which can be satisfied only by

(i-\(u\)) \((u_c, \lambda) = (0, \lambda)\) for all \(\lambda \in (-\infty, \infty)\), and/or

(ii-\(u\)) \((u_c, \lambda) = (u_c, -u_c^2)\) for all \(u_c \in [-1, 1]\).

Similarly, \(0 = (\partial/\partial v)L(u, v, w, \lambda)\big|_{(u, v, w) = (u_c, v_c, w_c)}\) implies that

(i-\(v\)) \((v_c, \lambda) = (0, \lambda)\) for all \(\lambda \in (-\infty, \infty)\), and/or

(ii-\(v\)) \((v_c, \lambda) = (v_c, -v_c^2)\) for all \(v_c \in [-1, 1]\).

Likewise, \(0 = (\partial/\partial w)L(u, v, w, \lambda)\big|_{(u, v, w) = (u_c, v_c, w_c)}\) implies that
(i-w) \((w_c, \lambda) = (0, \lambda)\) for all \(\lambda \in (-\infty, \infty)\), and/or
(ii-w) \((w_c, \lambda) = (w_c, -w_{\text{look}}^2)\) for all \(w_c \in [-1, 1]\).

The beam-pattern’s any local/global maximum must simultaneously satisfy all three sets: (i-u) and/or (ii-u), (i-v) and/or (ii-v), (i-w) and/or (ii-w). These six conditions vary with the look direction’s Cartesian direction cosines, \(\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}\). Depending on how many in \(\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}\) have the same absolute magnitude—various disjoint sub-cases need be analyzed separately below.

A. If \(|u_{\text{look}}| \neq |v_{\text{look}}| \neq |w_{\text{look}}|\)

The above six conditions [i.e., (i-u)-(ii-u), (i-v)-(ii-v), (i-w)-(ii-w)] on \(\{u_c, v_c, w_c, \lambda\}\) would require at least two zeros in \(\{u_c, v_c, w_c\}\). This is proved by contradiction: consider two nonzeros in \(\{u_c, v_c, w_c\}\), say, \(u_c \neq 0\) and \(v_c \neq 0\). Then, \(\lambda = -u_{\text{look}}^2\) and \(\lambda = -v_{\text{look}}^2\) must simultaneously hold, but these two \(\lambda\) expressions would contradict each other for \(|u_{\text{look}}| \neq |v_{\text{look}}|\). Furthermore, recall that the constraint (12) precludes \(u_c, v_c, w_c\) from being all zeros.

The two preceding paragraphs mean that \(\{u_c, v_c, w_c\}\) must contain exactly two zeros, thereby implying only the six critical points of
\((u_c, v_c, w_c) = (\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\).

[The \(\pm 1\) is due to the unity-constraint in Eq. (12)] These are the only candidates for the peak direction; no contiguous directional sector exists as a candidate peak direction.

To identify the peak direction from among these six candidates noted above, compare their heights:

\[B_2(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}})(\pm 1, 0, 0) = u_{\text{look}}^2:\] (14)
\[B_2(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}})(0, \pm 1, 0) = v_{\text{look}}^2:\] (15)
\[B_2(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}})(0, 0, \pm 1) = w_{\text{look}}^2:\] (16)

Hence,
\[(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) = \begin{cases} (\pm 1, 0, 0) & \text{if } |u_{\text{look}}| > |v_{\text{look}}|, |w_{\text{look}}|; \\
(0, \pm 1, 0) & \text{if } |u_{\text{look}}| > |w_{\text{look}}|, |v_{\text{look}}|; \\
(0, 0, \pm 1) & \text{if } |v_{\text{look}}| > |w_{\text{look}}|, |u_{\text{look}}|.
\end{cases}\] (17)

Equation (17) is graphically represented in Fig. 4 in the polar-azimuthal bivariate coordinates.

In summary, when \(u_{\text{look}} \neq v_{\text{look}} \neq w_{\text{look}}\), the \(k = 2\) triad cannot be beam steered incrementally over any contiguous directional sector, but the beam peak can only hop among 6 discrete directions, which generally differ from the nominal look direction.

B. If \(|u_{\text{look}}| = |v_{\text{look}}| = |w_{\text{look}}|\)

Here, the six conditions noted above [i.e., (i-u)-(ii-u), (i-v)-(ii-v), (i-w)-(ii-w)] require at least one zero in

FIG. 4. (Color online) How the same peak direction results from an entire subsector of “look directions” for \(k = 2\) and \(k \geq 3\).

\{u_c, v_c, w_c\}. If furthermore there are two zeros in \{u_c, v_c, w_c\}, the corresponding critical points are \((\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\). If there is exactly one zero in \{u_c, v_c, w_c\}, the corresponding critical points become a circle passing \((\pm 1, 0, 0)\) and \((0, \pm 1, 0)\). The preceding three sentences are proved in the following two sentences by contradiction: Suppose the simultaneous existence of three nonzeros in \{u_c, v_c, w_c\}. Then, \(\lambda = -u_{\text{look}}^2 = v_{\text{look}}^2\) and \(\lambda = -w_{\text{look}}^2\) must simultaneously hold, but these two \(\lambda\) expressions contradict each other for \(|u_{\text{look}}| = |v_{\text{look}}| \neq |w_{\text{look}}|\).

This contradiction implies either
(i) \(u_c = v_c = 0\), or
(ii) \(w_c = 0\).

The former implies that \((0, 0, \pm 1)\) are two critical points. The latter implies that \(u_c^2 + v_c^2 = 1\) and \(w_c = 0\), hence,
\[B_2(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}})(u_c, v_c, w_c = 0) = u_{\text{look}}^2 = v_{\text{look}}^2:\]

If \(|u_{\text{look}}| = |v_{\text{look}}| > |w_{\text{look}}|\), then the set of simultaneous maxima would constitute the circle of \(u_{\text{peak}}^2 + v_{\text{peak}}^2 = 1\) on the horizontal \(x-y\) plane.

If \(|u_{\text{look}}| = |v_{\text{look}}| < |w_{\text{look}}|\), then the local maxima must be \((0, 0, \pm 1)\).

C. If \(|u_{\text{look}}| = |w_{\text{look}}| \neq |v_{\text{look}}|\)

This case is analogous to that in Sec. III B with the \(y\)- and \(z\)-Cartesian direction cosines interchanged. This implies that the local maxima must be either the points \((0, \pm 1, 0)\) or the circle \(u_{\text{peak}}^2 + w_{\text{peak}}^2 = 1\) on the vertical \(x-z\) plane (but not both).

D. If \(|v_{\text{look}}| = |w_{\text{look}}| \neq |u_{\text{look}}|\)

This case is similar to that in Sec. III B with the \(x\)- and \(z\)-Cartesian direction cosines interchanged. That is, the local maxima must be either the points \((\pm 1, 0, 0)\) or the circle \(v_{\text{peak}}^2 + w_{\text{peak}}^2 = 1\) on the vertical \(y-z\) plane (but not both).
E. If $|u_{\text{look}}| = |v_{\text{look}}| = |w_{\text{look}}|$

Here, the beam-pattern amplitude $B_2(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})(u, v, w) = u_{\text{look}}^2 = v_{\text{look}}^2 = w_{\text{look}}^2$, which is a constant for all (u, v, w). This means that the triad’s beam-pattern has a uniform height $\nabla(\theta, \phi)$ without any peak or null.

F. Conclusion for directivity-order $k = 2$

Sections III A–III E are summarized in Fig. 2 for a triad populated by the component-sensors with a directivity-order of $k = 2$.

(i) The triad’s SMF beam peak has three disjoint sub-cases: peaking at $(\pm 1, 0, 0)$ for any look direction in the horizontally striped directional subsector (see Secs. III A and III D), peaking at $(0, \pm 1, 0)$ for the vertically striped subsector (see Secs. III A and III C), or peaking instead at $(0, 0, \pm 1)$ for any look direction in the blank subsector.

(ii) If the look direction lies on any thick dark curve, the peak direction constitutes a circle; please see Secs. III B–III D.

(iii) If the look direction is any of the eight hollow-circle points, the beam-pattern is a sphere with no peak; please see Sec. III E.

That is, the triad is incapable of steering its SMF beam peak over any contiguous directional subsector. The beam peak must be among the six detected directions of $(u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) \in \{-1, 0, 1\}$. As to which of these six directions—that depends on the nominal look direction $(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})$.

IV. DIRECTIVITY-ORDER $k \geq 3$: THE BEAM-PATTERN’S STATIONARY POINTS

Now, consider any hardware-implemented $k \geq 3$, which is algorithmically tuned at $(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})$. To locate where $B_k(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})(u, v, w)$ has extrema in the support region of $\{u, v, w\}$: use the method of Lagrange multiplier while recalling the constraint of Eq. (12),

$$L(u, v, w) = B_k(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})(u, v, w) + \lambda(u^2 + v^2 + w^2 - 1),$$

(18)

whose partial derivatives are

$$\frac{\partial}{\partial u} L(u, v, w, \lambda)|_{(u, v, w) = (u_{\text{look}}, v_{\text{look}}, w_{\text{look}})} = ku_{\text{look}}^k u^{k-1} + 2\lambda u = 0,$$

(19)

$$\frac{\partial}{\partial v} L(u, v, w, \lambda)|_{(u, v, w) = (u_{\text{look}}, v_{\text{look}}, w_{\text{look}})} = kv_{\text{look}}^k v^{k-1} + 2\lambda v = 0,$$

(20)

$$\frac{\partial}{\partial w} L(u, v, w, \lambda)|_{(u, v, w) = (u_{\text{look}}, v_{\text{look}}, w_{\text{look}})} = kw_{\text{look}}^k w^{k-1} + 2\lambda w = 0.$$

(21)

The above would simplify to Eq. (13) for the $k = 2$ case of Sec. III. However, with $k \geq 3$ here, the next steps will involve many sub-cases and sub-sub-cases; please see Figs. 3 and 5.

Therefore, the analysis here is more complicated than the $k = 2$ directivity-order analysis in Sec. III.

Suppose that $u_{\text{look}} = 0$ and $u_c \neq 0$ in Eq. (19), then $\lambda = 0$.

(1) If furthermore $v_{\text{look}} \neq 0$ and $w_{\text{look}} \neq 0$, Eqs. (20) and (21) would give $u_c = w_c = 0$ and, thus,

$$B_k(u_{\text{look}} = 0, v_{\text{look}} \neq 0, w_{\text{look}} \neq 0)(u, v, w) = 0.$$

(2) If furthermore $v_{\text{look}} = 0$ and $w_{\text{look}} \neq 0$, Eq. (21) gives $w_c = 0$, which implies that $B_k(u_{\text{look}} = 0, v_{\text{look}} = 0, w_{\text{look}} \neq 0)(u, v, w) = 0$.

Together, (1) and (2) mean that when $u_{\text{look}} = 0$, no critical point with $u_c \neq 0$ can be a local/global maximum; thus, only $u_c = 0$ needs further consideration below. Similar arguments hold for $v_{\text{look}} = 0$ or $w_{\text{look}} = 0$.

As u_c, v_c, and w_c could each be positive or negative, whether they are raised to an odd-k power or an even-k power—that would affect the subsequent analysis foundationally. Hence, the odd-k case and even-k case will be separately analyzed below.

For any odd $k \geq 3$, Eqs. (19)–(21) would lead to

$$u_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{ku_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } u_{\text{look}} \neq 0; \\ 0 & \text{if } u_{\text{look}} = 0; \end{cases}$$

(22)

$$v_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{kv_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } v_{\text{look}} \neq 0; \\ 0 & \text{if } v_{\text{look}} = 0; \end{cases}$$

(23)

$$w_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{kw_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } w_{\text{look}} \neq 0; \\ 0 & \text{if } w_{\text{look}} = 0. \end{cases}$$

(24)

Any critical point must simultaneously satisfy Eqs. (12) and (22)–(24), if k is odd and exceeds two. Furthermore, whether any entry in $\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}$ equals zero—that would radically change the critical points’ set of values.

For any even $k \geq 4$, Eqs. (19)–(21) would lead instead to

$$u_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{ku_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } u_{\text{look}} \neq 0; \\ 0 & \text{if } u_{\text{look}} = 0; \end{cases}$$

(25)

$$v_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{kv_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } v_{\text{look}} \neq 0; \\ 0 & \text{if } v_{\text{look}} = 0; \end{cases}$$

(26)

$$w_c \begin{cases} 0, \pm \left(\frac{-2\lambda}{kw_{\text{look}}^k}\right)^{1/(k-2)} & \text{if } w_{\text{look}} \neq 0; \\ 0 & \text{if } w_{\text{look}} = 0. \end{cases}$$

(27)
Note the ± 1 in Eqs. (25)–(27) but there is no ± 1 in Eqs. (22)–(24). Any critical point must simultaneously satisfy Eqs. (12) and (25)–(27), if k is even and exceeds two. Moreover, whether any entry in $\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}$ equals zero—that would essentially alter the critical points’ set of values.

In light of all of the above, the (u_c, v_c, w_c) scenario here (for $k \geq 3$) is more complicated than in Sec. III for $k = 2$. Here, for $k \geq 3$, the subsequent analysis will be considered through many sub-cases, which are differentiated by (a) whether k is odd or even, (b) the number of zero entries in $\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}$, and (c) the number of zero entries in $\{u_c, v_c, w_c\}$.

The above leads to very different mathematical forms, each of which needs separate handling.

These sub-cases have been summarized in Figs. 3 and 5. Each sub-case’s conclusion is summarized on a separate row in Fig. 5. The far-left column in Fig. 5 indicates the section in which the detailed derivation may be found; and $\tilde{u}, \tilde{v}, \tilde{w}$,
and \(w\) are defined as \(u_{\text{look}}^{-(k/2)}, v_{\text{look}}^{-(k/2)}, \) and \(w_{\text{look}}^{-(k/2)}\), respectively. Only those sub-cases in the striped cells can lead to actual peak directions.

A. If exactly two in \(\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}\) are zero

Consider first the special case of \(u_{\text{look}} = v_{\text{look}} = 0\); the other special cases of \(u_{\text{look}} = w_{\text{look}} = 0\) or \(v_{\text{look}} = w_{\text{look}} = 0\) are analogous and will be analyzed later.

If \(u_{\text{look}} = v_{\text{look}} = 0\), then implicitly \(w_{\text{look}} = \pm 1\) due to the constraint in Eq. (12). With the beamformer set toward the look directions of \((0, 0, \pm 1)\), the beam-pattern’s magnitude equals

\[
|B_k^{(0,0, \pm 1)}(u, v, w)| = |w|^k, \tag{28}
\]

which attains its maximum of

\[
\max_{(u,v,w)} |B_k^{(0,0, \pm 1)}(u, v, w)| = \max_{w \in \{-1,1\}} |w|^k = 1 \tag{29}
\]

at \(w = w_{\text{peak}} = \pm 1\). That is, the beam must peak at \((u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) = (0, 0, \pm 1)\), thus, exactly matching the preset look direction of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (0, 0, \pm 1)\). This holds \(\forall k \geq 1\).

Similarly, the special case of \(v_{\text{look}} = w_{\text{look}} = 0\) gives a peak direction of \((u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) = (\pm 1, 0, 0)\), which precisely matches the preset look direction of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (\pm 1, 0, 0)\).

Likewise, the special case of \(u_{\text{look}} = w_{\text{look}} = 0\) yields a peak direction of \((u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) = (0, \pm 1, 0)\), exactly matching the preset look direction of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (0, \pm 1, 0)\).

In summary, \((u_{\text{peak}}, v_{\text{peak}}, w_{\text{peak}}) = \pm (u_{\text{look}}, v_{\text{look}}, w_{\text{look}})\) if \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) \in \{ (\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1) \}\).

B. If exactly one zero in \(\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}\)

From Eqs. (22)–(24) for any odd \(k \geq 3\), and from Eqs. (25)–(27) for any even \(k \geq 4\): \(u_{\text{look}} = 0\) implies \(u_c = 0\), and similarly with \(v_{\text{look}}\) and \(w_{\text{look}}\).

Due to the interaxial permutational analogies among the \(x, y,\) and \(z\) axes, the following analysis will focus on the case of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (0, \neq 0, \neq 0)\), for example. The other cases of \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (\neq 0, 0, \neq 0)\) or \((u_{\text{look}}, v_{\text{look}}, w_{\text{look}}) = (\neq 0, \neq 0, 0)\) would be likewise.

The odd-\(k\) sub-case will be analyzed in Sec. IV B 1 with the even-\(k\) sub-case analyzed in Sec. IV B 2.

1. **Odd \(k \geq 1\)**

Although \(u_{\text{look}} = 0\) in Eq. (22) restricts \(u_c\) to zero, Eq. (23) allows \(v_c\) to be either zero or nonzero, and Eq. (24), likewise, permits \(w_c\) to be either zero or nonzero. The sub-case of both \(v_c\) and \(w_c\) being nonzero will be considered in Sec. IV B 1a, whereas the other sub-case of exactly one of \(v_c\) and \(w_c\) being zero will be considered in Sec. IV B 1b. [Constraint (12) precludes both \(v_c\) and \(w_c\) from being zero, in addition to precluding \(u_c\) from being zero.]

\[a. \text{ Both } v_c \text{ and } w_c \text{ are nonzero. With } k \geq 1 \text{ and odd,} \]

\[
B_k^{(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})}(u, v, w) = \left|B_k^{(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})}(-u, -v, -w)\right|. \tag{30}
\]

This implies that either both \((u_c, v_c, w_c)\) are local maxima of \(B_k^{(u_{\text{look}}, v_{\text{look}}, w_{\text{look}})}(u, v, w)\) or neither is.

The substitution of \(u_{\text{look}} = 0\) into Eqs. (22)–(24) gives

\[
\begin{align*}
u_c &= 0, \tag{31} \\
v_c &= \left(-\frac{2\lambda}{k v_{\text{look}}^2}\right)^{1/(k-2)}, \tag{32} \\
w_c &= \left(-\frac{2\lambda}{k w_{\text{look}}^2}\right)^{1/(k-2)}. \tag{33}
\end{align*}
\]

Substitution of the above three equalities into Eq. (12) yields

\[
\left(-\frac{2\lambda}{k}\right)^{1/(k-2)} = \pm \frac{1}{\sqrt{\frac{v_{\text{look}}^{-2k/(k-2)} + w_{\text{look}}^{-2k/(k-2)}}{v_{\text{look}}^{-2k/(k-2)}}}}. \tag{34}
\]

Last, substitute Eq. (34) into Eqs. (31)–(33) to produce

\[
\begin{align*}
u_c, v_c, w_c &= \pm \left(\frac{0, v_c^{-k/(k-2)}, w_c^{-k/(k-2)}}{v_{\text{look}}^{-2k/(k-2)} + w_{\text{look}}^{-2k/(k-2)}}\right). \tag{35}
\end{align*}
\]

\nb. \text{ Exactly one of } v_c \text{ and } w_c \text{ is zero. Suppose } v_c \text{ is zero in addition to } u_c = 0, \text{ but } w_c \text{ remains nonzero. Then } (u_c, v_c, w_c) = (0, 0, \pm 1) \text{ due to the constraint in Eq. (12).} \]

If, instead, \(w_c = 0\) in addition to \(u_c = 0\), but \(v_c\) is nonzero, then \((u_c, v_c, w_c) = (0, \pm 1, 0)\) is also due to the constraint in Eq. (12).

2. **Even \(k \geq 4\)**

\na. \text{ Both } v_c \text{ and } w_c \text{ are nonzero. The substitution of } u_{\text{look}} = 0 \text{ into Eqs. (25)–(27) gives} \]

\[
\begin{align*}
u_c &= 0, \tag{36} \\
v_c &= \pm \left(-\frac{2\lambda}{k v_{\text{look}}^2}\right)^{1/(k-2)}, \tag{37} \\
w_c &= \pm \left(-\frac{2\lambda}{k w_{\text{look}}^2}\right)^{1/(k-2)}. \tag{38}
\end{align*}
\]

The \(\lambda\) expression Eq. (34) holds whether \(k \geq 3\) is odd or even. Substitute that Eq. (34) into Eqs. (36)–(38) to give

\[
\begin{align*}
(u_c, v_c, w_c) &= \left(\pm \frac{0, \pm v_{\text{look}}^{-k(k-2)}, \pm w_{\text{look}}^{-k(k-2)}}{v_{\text{look}}^{-2k(k-2)} + w_{\text{look}}^{-2k(k-2)}}\right). \tag{39}
\end{align*}
\]

As expected, Eq. (39) is the same as Eq. (35).
Either all four directions in \((0, \pm v_c, \pm w_c)\) are local maxima or none is. This is because \(\pm\) makes no difference in \(B_k^{\text{look}, \text{peak}, \text{wmax}}(\pm u, \pm v, \pm w)\).

\textbf{b. Exactly one of \(v_c\) and \(w_c\) is zero.} Suppose \(v_c\) is zero in addition to \(u_c = 0\) but \(w_c\) remains nonzero. Then, \((u_c, v_c, w_c) = (0, 0, \pm 1)\) due to the constraint in Eq. (2). If \(w_c\), instead, is zero in addition to \(u_c = 0\) but \(v_c\) remains nonzero, then \((u_c, v_c, w_c) = (0, \pm 0, 1)\), which is due also to the constraint in Eq. (12).

Either all four directions in \((0, \pm v_c, \pm w_c)\) are all local maxima or none is. This is because \(\pm\) makes no difference in \(B_k^{\text{look}, \text{peak}, \text{wmax}}(\pm u, \pm v, \pm w)\).

The numerator’s signs give two candidate directions [for the actual peak(s)] at diametrically opposite directions.

\textbf{1. Odd \(k\)}

Three sub-cases exist as to how many zeros in \(\{u_c, v_c, w_c\}\)—no zero, one zero, or two zeros. These three sub-cases are discussed one by one below. [Recall that the all-zeros case is disallowed by the constraint in Eq. (12).]

\textbf{a. If \(u_c\), \(v_c\), and \(w_c\) are all nonzero in Eqs. (22)–(24).} Substitute Eq. (40) into Eqs. (22)–(24) to yield

\[
(u_c, v_c, w_c) = \pm \left(\frac{u_{\text{look}} - k/(k-2), v_{\text{look}} - k/(k-2), w_{\text{look}} - k/(k-2)}{\sqrt{u_{\text{look}} - 2k/(k-2) + v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}} \right)
\]

(41)

The directions specified in Eq. (41) are only a subset of all of the peak-candidates.

Recall the beam-pattern magnitude’s diametric symmetry described in Eq. (6). Either both \(\pm (u_c, v_c, w_c)\) are a local maximum of the magnitude beam-pattern or neither is.

\textbf{b. Exactly one of \(u_c\), \(v_c\), and \(w_c\) is zero.} Due to the mathematical similarity of \(u\), \(v\), and \(w\), take \(u_c = 0\) such that

\[
(u_c, v_c, w_c) = \pm \left(\frac{0, v_{\text{look}} - k/(k-2), w_{\text{look}} - k/(k-2)}{\sqrt{v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}} \right)
\]

(42)

As expected, Eq. (42) is the same as Eqs. (35) and (39).

Recall the beam-pattern magnitude’s diametric symmetry described in Eq. (6). Either both \(\pm (u_c, v_c, w_c)\) are local maxima of the magnitude beam-pattern or neither is.

\textbf{C. If no zero in \(\{u_{\text{look}}, v_{\text{look}}, w_{\text{look}}\}\)}

From Eqs. (22)–(24) for any odd \(k \geq 3\) and from Eqs. (25)–(27) for any even \(k \geq 4\), a nonzero \(u_{\text{look}}\) would not preclude \(u_c\) from being zero or nonzero.

The odd-\(k\) sub-case will be analyzed in Sec. IV C 1, whereas the even-\(k\) sub-case will be analyzed in Sec. IV C 2.

To facilitate the subsequent analysis: Substitute the \((u_c, v_c, w_c)\) of either the odd-\(k\)’s Eqs. (22)–(24) or the even-\(k\)’s Eqs. (25)–(27) for \((u(\theta, \phi), v(\theta, \phi), w(\theta, \phi))\) in the constraint of Eq. (12). Either case would give

\[
\frac{u_{\text{look}} - k/(k-2), v_{\text{look}} - k/(k-2), w_{\text{look}} - k/(k-2)}{\sqrt{u_{\text{look}} - 2k/(k-2) + v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}}
\]

if \(u_c, v_c, w_c \neq 0\);

or

\[
\frac{0, v_{\text{look}} - k/(k-2), w_{\text{look}} - k/(k-2)}{\sqrt{v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}}
\]

if \(u_c = 0, \ v_c, w_c \neq 0\).

(40)

Four other peak-candidates exist, corresponding to \(v_c = 0\) or \(w_c = 0\).

\textbf{c. Exactly two of \(u_c, v_c, w_c\) are zero.} Three sub-cases exist such that

(1) if \(v_c = w_c = 0\) but \(u_c \neq 0\): \((u_c, v_c, w_c) = (\pm 1, 0, 0);\)

(2) if \(u_c = w_c = 0\) but \(v_c \neq 0\): \((u_c, v_c, w_c) = (0, \pm 1, 0);\) or

(3) if \(v_c = u_c = 0\) but \(w_c \neq 0\): \((u_c, v_c, w_c) = (0, 0, \pm 1).\)

\textbf{2. Even \(k\)}

Recalling Eqs. (25)–(27), three sub-cases exist and will be separately analyzed below.

\textbf{a. If \(u_c\), \(v_c\), and \(w_c\) are all nonzero in Eqs. (22)–(24).} Substitute Eq. (40) into Eqs. (25)–(27) to yield

\[
(u_c, v_c, w_c) = \pm \left(\frac{u_{\text{look}} - k/(k-2), \pm v_{\text{look}} - k/(k-2), \pm w_{\text{look}} - k/(k-2)}{\sqrt{u_{\text{look}} - 2k/(k-2) + v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}} \right)
\]

(43)

Here, Eq. (43) points toward the peak-candidates.

Recall the eightfold symmetry in Eq. (7) for any even \(k \geq 4\). Hence, either all eight of \((\pm u_c, \pm v_c, \pm w_c)\) are local maxima of the magnitude beam-pattern or none is.

\textbf{b. Exactly one of \(u_c, v_c, w_c\) is zero.} Due to the mathematical similarity of \(u\), \(v\), and \(w\), take \(u_c = 0\):

\[
u_c = \pm \frac{v_{\text{look}} - k/(k-2)}{\sqrt{v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}}
\]

(45)

\[
w_c = \pm \frac{w_{\text{look}} - k/(k-2)}{\sqrt{v_{\text{look}} - 2k/(k-2) + w_{\text{look}} - 2k/(k-2)}}
\]

(46)
For \(u_c = 0 \), there are \((0, \pm v_c, \pm w_c)\). And there are eight other points for \(v_c = 0 \) and \(w_c = 0 \).

For even \(k \geq 4 \), the following symmetry holds:
\[
|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w)| = |B_k^{[\text{group}, \text{lock}, \text{uncon}]}(\pm u, \pm v, \pm w)|.
\] (#)

Thus, if \((u_c, v_c, w_c)\) is not a local maximum of \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w)|\), \(\forall k \geq 4\), then neither are the following seven points: \((-u_c, v_c, w_c), (-u_c, -v_c, w_c), (-u_c, v_c, -w_c),\)
\((-u_c, -v_c, -w_c), (u_c, v_c, -w_c), (u_c, v_c, -w_c), (u_c, v_c, w_c)\).

c. Exactly two of \(u_c, v_c, w_c\) are zero. If \(v_c = w_c = 0 \) but \(u_c \neq 0 \), then \((u_c, v_c, w_c) = (\pm 1, 0, 0)\); if \(u_c = w_c = 0 \) but \(v_c \neq 0 \), then \((u_c, v_c, w_c) = (0, \pm 1, 0)\); if \(v_c = w_c = 0 \) but \(u_c \neq 0 \), then \((u_c, v_c, w_c) = (0, 0, \pm 1)\).

V. DIRECTIVITY-ORDER \(k \geq 3 \): THE BEAM-PATTERN’S LOCAL MAXIMA

The beam-pattern’s peak direction (i.e., global maximum) must necessarily be a local maximum, which, in turn, must be a critical point. All critical points have already been identified in Sec. IV for any directivity-order of \(k \geq 3 \). This section will determine which of these critical points are local maxima and which are not. Please refer back to Fig. 3 for a macroscopic overview of the logical flow among Secs. IV–VI.

The many sub-cases in Sec. IV fall into only three groups for the present purpose of testing which critical point is a local maximum:

1. \(\{u_c, v_c, w_c\}\) contains no zero: These sub-cases are the earlier Eq. (41) in Sec. IV C 1a and Eq. (43) in Sec. IV C 2a. Section VA will deal with this group of cases.
2. \(\{u_c, v_c, w_c\}\) contains exactly one zero: These sub-cases are the earlier Eq. (35) in Sec. IV B 1a, Eq. (39) in Sec. IV B 2a, Eq. (42) in Sec. IV C 1b, and Eqs. (44)–(46) in Sec. IV C 2b. Section VB will deal with this group of cases.
3. \(\{u_c, v_c, w_c\}\) contains exactly one zero: These sub-cases are the earlier Secs. IV A, IV B 1 b, IV B 2 b, IV C 1 c and IV C 2 c. Section VC will deal with this group of cases.

The “second partial derivative test” will be used below but in a not-so-straightforward manner. This indirectness is because the second partial derivative test is for unconstrained optimization, whereas the beam-pattern’s three Cartesian direction cosines of \(u, v,\) and \(w\) are constrained through Eq. (12).

A. If no zero in \(\{u_c, v_c, w_c\}\)

Section VA will mathematically prove that all of the critical points with no zero in \(\{u_c, v_c, w_c\}\) must be a local minimum and, hence, not a global maximum. The proof is given in the rest of Sec. VA.

The beam-pattern’s three Cartesian direction cosines of \(u, v,\) and \(w\) are functionally dependent, inter-related through the constraint in Eq. (12). Thus, the second partial derivative test cannot be applied straightforwardly here by regarding \(u, v,\) and \(w\) as three degrees-of-freedom. Nonetheless, any local minimum of the unconstrained \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w)|\) cannot possibly be a local maximum of the constrained \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w)|\). The following will first prove that all of the critical points here are local minima when without constraint and, therefore, cannot be a local maximum when with constraint.

According to the second partial derivative test: If a multivariate function’s Hessian matrix is invertible and positive definite at a critical point, that critical point must be a local minimum. For the trivariate function of \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w)|\), among its nine second-order partial derivatives, six are zero and only three are nonzero. Those three are \(\partial^2/\partial u\partial u, \partial^2/\partial v\partial v,\) and \(\partial^2/\partial w\partial w\). Hence, the beam-pattern’s Hessian matrix is diagonal, and the \(3 \times 3\) Hessian matrix’s eigenvalues are its diagonal entries,
\[
\frac{\partial^2}{\partial \xi \partial \xi} B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u, v, w) = k(k - 1) e_{\text{look}}^{-k} e_{\text{look}}^{-k} e_{\text{look}}^{-k} -2, \tag{48}
\]
for all \(\xi \in \{u, v, w\}\). At the critical point of
\[
(u_c, v_c, w_c) = \left(\frac{u_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}}}{k(k - 1) e_{\text{look}}^{-k} e_{\text{look}}^{-k} e_{\text{look}}^{-k} -2} \right) \]
\[
= \left(\frac{u_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}} + v_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}} + w_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}}}{k(k - 1) e_{\text{look}}^{-k} e_{\text{look}}^{-k} e_{\text{look}}^{-k} -2} \right) \tag{49}
\]
the aforementioned eigenvalues in Eq. (48) become
\[
\frac{\partial^2}{\partial \xi \partial \xi} B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u_c, v_c, w_c) = k(k - 1) > 0. \tag{50}
\]
Hence, the Hessian matrix is positive definite; all of the critical points of the form in Eq. (49) [on account of the symmetry properties in Eqs. (6) and (7)] must each be a local minimum in the unconstrained case.

The aforementioned analyzes the amplitude pattern \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u_c, v_c, w_c)|\). The following will show that the critical points in either Eq. (41) or Eq. (43) are local minima of the magnitude pattern \(|B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u_c, v_c, w_c)|\). At these critical points,
\[
B_k^{[\text{group}, \text{lock}, \text{uncon}]}(u_c, v_c, w_c) = \left(\frac{u_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}} + v_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}} + w_{\text{look}}^{\text{group}, \text{lock}, \text{uncon}}}{k(k - 1) e_{\text{look}}^{-k} e_{\text{look}}^{-k} e_{\text{look}}^{-k} -2} \right)^{1/2} > 0 \tag{51}
\]
because the numerator’s every term has been raised to an even power.

The above has analytically proved that all of the critical points of the form Eq. (49) are a local minimum in the unconstrained case and, therefore, not a local maximum under constraint (12).
B. If exactly one zero in \(\{u_c, v_c, w_c\} \)

Section V B (in its entirety) will mathematically prove that all of the critical points with exactly one zero in \(\{u_c, v_c, w_c\} \) must be a local minimum and, hence, not a global maximum. The rest of Sec. VB will prove this.

As in Sec. VA, the second partial derivative test cannot be applied straightforwardly here by regarding \(u, v , \) and \(w \) as three degrees-of-freedom because only two degrees-of-freedom exist among these three. So, the second partial derivative test will also be applied indirectly here but in a way that is different from that in Sec. VA. The present approach is as follows:

(i) Consider two constraints:
 (A) \(u^2 + v^2 + w^2 = 1 \); and
 (B) \(u = 0 \) and \(v^2 + w^2 = 1 \). This constraint is met by all of the critical points considered in Sec. VB.

Constraint (B) is obviously a restricted case of constraint (A). Suppose the beam-pattern magnitude, \(B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u_c, v_c, w_c) \), has a critical point \((u_c, v_c, w_c)\) that satisfies (B). That \((u_c, v_c, w_c)\) must also satisfy (A).

(ii) Prove \((u_c, v_c, w_c)\) to be a local minimum of the beam-pattern magnitude under constraint (B). Then, that \((u_c, v_c, w_c)\) must not be a local maximum within the larger set defined by constraint (A).

Under constraint (B),
\[
B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u_c = 0, v_c, w_c) = v_c^2 + w_c^2.
\]

Its \(2 \times 2\) Hessian matrix (when without constraint) would be diagonal because the off diagonal entries for \(\partial^2/\partial u \partial v \) and \(\partial^2/\partial v \partial w \) both equal zero. The Hessian matrix’s two eigenvalues are, thus, its diagonal entries as in Eq. (48) but for only \(\xi = v, w \).

At the critical point of
\[
(u_c, v_c, w_c) = \left(0, v_c, w_c\right),
\]
the aforementioned eigenvalues in Eq. (48) become
\[
\frac{\partial^2}{\partial \xi^2} B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u_c = 0, v_c, w_c) = \frac{k(k - 1)}{(2/v_c^2 + 2/w_c^2)} > 0.
\]

Hence, the Hessian matrix is positive definite, and all of the critical points of the form Eq. (53) [on account of the symmetry properties in Eqs. (6) and (7)] must each be a local minimum of the beam-pattern amplitude when under constraint: \(u = 0 \) (\(v, w \) unconstrained), hence, a local minimum of the beam-pattern amplitude when under constraint (B) where \(u = 0 \) and \(v \) and \(w \) are constrained.

The preceding analyzes the amplitude pattern \(B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u, v, w) \). The following will show that the critical points are not any local maximum of the magnitude pattern \(B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u_c, v_c, w_c) \). At these critical points,
\[
B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (u_c = 0, v_c, w_c) = \frac{v_c^2}{v_c^2 + w_c^2} > 0
\]
because the numerator’s every term has been raised to an even power.

The above has analytically proved that all of the critical points of the form of Eq. (53) must be a local minimum when under a more restricted constraint (B) and, therefore, cannot be a local maximum when under constraint (A).

C. If exactly two zeros in \(\{u_c, v_c, w_c\} \)

Sections VA and VB have each shown that all of their sub-cases are not producing any local maximum. Therefore, any local/global maxima must be in the only remaining group (3), mentioned at the start of the Sec. V.

VI. DIRECTIVITY-ORDER \(k \geq 3 \): THE BEAMPATTERN’S ACTUAL PEAK DIRECTIONS

This section will prove that for any \(k \geq 3 \), the triad cannot be steered incrementally over any contiguous directional sector but can only hop among six discrete directions.

Recall that for directivity-orders \(k \geq 3 \), Sec. IV has analytically derived the set of critical points for each possible setting of \(k \), \(\{\theta(\hat{u}, \hat{v}, \hat{w})\} \), and \(\{u_c, v_c, w_c\} \). Among these critical points, Sec. V has proved that the local maxima could only be among \(\{\pm 1, 0, 0\}, \{0, \pm 1, 0\}, \{0, 0, \pm 1\} \).

Which of these are global maxima? This can be determined by comparing their beam heights,
\[
\left| B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (\pm 1, 0, 0) \right| = \left| u_{\text{peak}} \right|; \quad \left| B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (0, \pm 1, 0) \right| = \left| v_{\text{peak}} \right|; \quad \left| B^{[\theta(\hat{u}, \hat{v}, \hat{w})]} (0, 0, \pm 1) \right| = \left| w_{\text{peak}} \right|.
\]

Hence,
\[
\begin{align*}
(\hat{u}_{\text{peak}}, \hat{v}_{\text{peak}}, \hat{w}_{\text{peak}}) & = \begin{cases}
(\pm 1, 0, 0) & \text{if } |u_{\text{peak}}| > |v_{\text{peak}}|, |w_{\text{peak}}|; \\
(0, \pm 1, 0) & \text{if } |u_{\text{peak}}| > |v_{\text{peak}}|, |w_{\text{peak}}|; \\
(0, 0, \pm 1) & \text{if } |w_{\text{peak}}| > |u_{\text{peak}}|, |v_{\text{peak}}|.
\end{cases}
\end{align*}
\]

The conclusion above for \(k \geq 3 \) is identical to that in Eq. (17) for \(k = 2 \). This is summarized in Fig. 4.

(i) For any \(k \geq 2 \): The triad’s SMF beam peak has three disjoint cases: peaking at \((\pm 1, 0, 0) \) for any look direction in the horizontally striped directional sector (see Secs. III A, III D, and VI), or peaking at \((0, \pm 1, 0) \) for the vertically striped sector (see Secs.
III. A. III. C. and VI), or peaking instead at \((0, 0, \pm 1)\) for any look direction in the blank sector.

(ii) For \(k \geq 3\): If the look direction is on any thick dark curve, four peaks exist simultaneously; please see Eqs. (56)–(58). If the look direction is any of the eight hollow-circle points, six peaks exist simultaneously; please see Eqs. (56)–(58).

VII. CONCLUSION

Given the practical beamforming successes realized by the triad comprising orthogonally collocated \(k\)-order figure-8 microphones/hydrophones, a simple-minded expectation is that the \(k\)-order and higher-order figure-8 sensors (being sharper in their individual gain pattern) would make the triad’s SMF beam peak while retaining the first-order case’s steerability. Instead, this paper analytically exposes one critical shortcoming of these higher-order cases: their triad’s SMF peak has limited maneuverability. Whereas the first directivity-order of \(k = 1\) facilitates the triad to steer toward any polar-azimuthal direction (and to do so without any pointing bias), any higher directivity-order of \(k \geq 2\) would permit the beam peak only to hop among the six discrete directions of \(\left(u_{\text{peak}}, w_{\text{peak}}, v_{\text{peak}} \right) \in \{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}\). In this sense, the \(k = 1\) case is preferable over all of the \(k \geq 2\) cases.

This finding echoes a complementary discovery in Ref. 28 for a pair of identical, collocated but orthogonally oriented figure-8 sensors of any equal directivity-order that (i) only the \(k = 1\) directivity-order facilitates full steerability of the SMF beam to any look direction, and (ii) at any \(k \geq 2\), the beam peak can only hop to \(\left(u_{\text{peak}}, w_{\text{peak}}, v_{\text{peak}} \right) \in \{(\pm 1, 0, 0), (0, \pm 1, 0)\}\). Therefore, relative to the pair in Ref. 28 at \(k \geq 2\), the present triad at \(k = 2\), here, only adds two potential peaks at \((0, 0, \pm 1)\).

ACKNOWLEDGMENTS

S.S.D. and K.T.W. were supported, in part, by the National Natural Science Foundation of China via Grant No. 62071018. Y.S. was supported, in part, by the National Natural Science Foundation of China via Grant No. 61801128. The authors would like to thank Dr. Ping Kwan Tam for a useful discussion.

20The trigonometric functions’ periods are unaffected by the power law. For example, sin(\(\psi\)) and sin(\(\psi\)) have the same period (other than due to any sign change for an even \(\psi\)). This 4th power differs from \(\sin(\psi)\), which would indeed change the period.