

Bot Integration to Website Application

Integrating an application with Microsoft Teams to have a chatbot
collect and send useful information to the system.

Jonas Carlsson

Main field of study: Computer Engineering

Credits: 15 Hp

Semester/Year: VT 2021

Supervisor: Jan-Erik Jonsson

Examiner: Patrik Österberg

Course code: DT099G

Degree program: Bachelor's degree

Bot Integration to Website Application

Jonas Carlsson 2021-08-22

i

Abstract
As technology evolves, more and more companies strive to automate as

much work as possible. The use of chatbots in messaging apps is

becoming more and more common as replacements in the operation of

customer service because of the efficiency and reliability it poses.

Replacing customer service with chatbots also saves companies money.

In this paper an IT company have asked for the implementation and

proof of concept of integration between their server-side application, to

Microsoft Teams. They want it to be possible to use a chatbot in Teams

to send tickets containing data to their system in order to be handled by

users of their application. In this paper a solution to this problem is

described as well as discussions about the chosen implementation. The

discussion is focused on the final solution, user tests, related work,

ethical issues as well as future work. User tests of the implemented

solution are included in the results. The conclusion of the work is that

this implementation is useful and saves time and effort both for the

customer and the employees. There is much potential for future work to

be expanded upon, including specialized Ticket Forms and implemented

AI.

Keywords: Integration, C#, Chatbot, API, Adaptive Cards, Teams.

Bot Integration to Website Application

Jonas Carlsson 2021-08-22

ii

Abstrakt
Medan teknologin ständigt utvecklas strävar mer och mer företag efter

att automatisera arbetsuppgifter. Användningen av chatbotar sociala

media blir allt mer vanligt som en ersättning av kundtjänster då de både

är effektivt och pålitligt, samt att företagen sparar pengar. I denna

projektrapport har ett IT-företag frågat efter en implementation och

konceptbevis på en integration mellan deras applikation och

meddelande tjänsten Microsoft Teams. De vill att det ska vara möjligt att

använda en chatbot i Teams för att kunna fylla i information i ett

formulär som sedan skickas som ticket till deras system. De som arbetar

i systemet ska då kunna se ticketen och direkt kunna börja arbeta på

uppgiften. I denna rapport beskrivs en lösning på detta problem samt,

hur det fungerar, hur det implementeras samt en diskussion på

lösningen. Diskussionen fokuserar på den slutliga lösningen,

användartesterna, relaterat arbete, etiska problem samt framtida arbete.

Keywords: Integration, C#, Chatbot, API, Adaptive Cards, Teams.

Bot Integration to Website Application

Jonas Carlsson 2021-08-22

iii

Table of Contents
Abstract ... 1

Abstrakt .. 2

1 Introduction .. 1

1.1 Background and problem motivation ... 1

1.2 High-level problem statement ... 1

1.3 Concrete and verifiable goals ... 1

1.4 Scope .. 2

1.5 Outline ... 2

1.6 Contributions .. 2

2 Theory .. 3

2.1 API.. 3

2.1.1 REST .. 3

2.1.2 API Endpoint ... 3

2.2 Bot Software .. 3

2.3 Integration ... 4

2.4 JSON... 4

2.5 Ticket System .. 4

2.6 Easit-Go Application ... 4

2.6.1 Restservice.. 6

2.6.2 Import Handler .. 7

2.7 Postman ... 7

2.8 Microsoft Development .. 7

2.8.1 Microsoft Teams .. 7

2.8.2 Adaptive Cards ... 8

2.8.3 Microsoft Application Development ... 9

2.8.4 Azure Bot Service .. 9

2.8.5 Bot Framework Emulator .. 9

2.9 IDE ... 9

2.10 Apache Maven ... 10

2.10.1 Jetty plugin .. 10

2.11 ZK8 .. 10

2.12 LESS ... 10

2.13 Node.js .. 10

2.14 GIT ... 10

2.14.1 Bitbucket .. 10

2.15 MySQL .. 10

2.16 Ngrok ... 11

Bot Integration to Website Application

Jonas Carlsson 2021-08-22

iv

2.17 Waterfall Dialog ... 11

3 Method ... 12

3.1 Workflow .. 12

3.2 Project Goals ... 12

4 Model ... 14

4.1 Setup of Environment ... 15

4.2 Bot Setup .. 17

4.3 Bot Development ... 18

4.4 Integration ... 19

4.5 Research Question.. 19

5 Results .. 21

5.1 Analyzing two question forms in Appendix A and B 25

6 Discussion ... 28

6.1 Integration ... 28

6.2 Bot... 28

6.3 Question Form .. 28

6.4 Ethical and Societal Discussion .. 31

6.5 Future Work .. 32

References .. 34

Appendix A: Question Form 1 .. 37

Appendix B: Question Form 2 .. 40

1 Introduction
API integration has the possibility to allow different applications of

exchanging data. An example of this is when information needs to be

sent to a database from outside the system. Maybe a company wants a

customer to be able to send work requests into a database without having

to contact an employee or being inside the system. The idea behind API

integration is allowing communication between applications to exchange

usability.

1.1 Background and problem motivation

Within the company Easit, customers have expressed a growing interest

in ease of access for customers to create work requests via Microsoft

Teams. The company works with creating and selling a work application

called Easit-GO where employees can, for example, see work tasks and

access a database. To date there is a REST-API implementation for the

database but no implementation of integration to other applications. In

this study we have taken on the task of implementing an integration from

the Easit-GO application to Microsoft Teams. A solution to this problem

is sought after by customers to improve the work environment and make

it easier for their customers to make requests to their company without

having to establish contact.

1.2 High-level problem statement

The project’s aim is to develop a technical solution to allow integration

between a backend Rest API to a .NET bot. This report is proof of concept

to show that such integration is possible.

1.3 Concrete and verifiable goals

The project has an objective to answer the following problems:

• Use the API to connect to the database from a Bot service.

• Create a Bot that will answer commands and share a Ticket Form.

• Have the Ticket Form send the data to the database for the Easit-

GO application to read.

• Have the Bot work in Microsoft Teams.

Explain the following Questions:

• How does the solution solve an existing problem?

• Justify the efficiency of the solution.

1.4 Scope

This project has its focus on developing a technical solution but will also

investigate the importance of integration between applications.

1.5 Outline

Chapter 2 contains all the necessary information needed about the

software and methods used during the project.

Chapter 3 describes the project workflow and how the goals will be

answered.

Chapter 4 describes the process of performing the work needed to

complete the project goal.

Chapter 5 contains all the results gathered during the project.

Chapter 6 is where all the results are discussed and conclusions about the

project are made.

1.6 Contributions

Most of the work in this project has been solved by own hand. Parts that

needed help to be completed included: Installation of the Easit-GO

application on the PC, explanation of the already existing API with

documentation, and setup of the dynamic database to allow tickets to be

inserted. The testers filling out the question forms were also a great help.

2 Theory
This chapter is going to cover all the theory, software and background

information needed for the reader to better understand the work done

during this project.

2.1 API

API stands for application programming interface and is a way for

applications to use and communicate with the software that has an API

set up. It can be seen as a contract between an information provider and

an information user, but sometimes the user is the one giving the

provider information. The interface of the API is usually a set of functions

that provide different uses for the data. Normal functions include

retrieving, sending and updating data.

These functions are based on API requests which allow you to send data

to, or retrieve data from, a data source. APIs run on web servers and by

exposing endpoints they allow other applications to use their functions.

Each API request uses the HTTP method. These methods include GET

and POST which are used to retrieve, send, and update data.[1]

2.1.1 REST

A REST API is an API that follows the constraints of REST architectural

style. REST architecture describes how machine-to-machine

communication can be achieved by webservices. It often uses JSON for

data transfer but can also use other text formats.[2]

2.1.2 API Endpoint

An endpoint is the outer end of the communication channel to the API.

The endpoint can include an address of a server or service and is the

place where APIs send requests. It is how an application can contact the

API.[3]

2.2 Bot Software

A bot service is a software application programmed to automatically

perform operations. In this project the bot software that will be used is a

chatbot.

Chatbots are bots programmed to respond to messages sent by users in

a chatroom. These bots work by running on a server constantly waiting

for messages. When a message arrives, the bot will react according to

how it has been programmed, followed by continued waiting for the next

message.[4]

2.3 Integration

Software integration is a process to make different systems work together

as one. It allows a system to use functionality of another and work as one

system. One goal of integration can be to increase value to the customer.

Other times it is machine-to-machine communication between systems.

An example of how software integration can be used is a normal website

with its own database that retrieves data from other sources or websites.

In this case integration is the step for the database to fetch data from

various sources.[5]

2.4 JSON

JSON stands for JavaScript Object Notation and is a file format that stores

data in objects consisting of attribute-name pairs and arrays. JSON is a

popular method to store and transmit human readable data since it is

easy for software to parse and generate. [6]

2.5 Ticket System

A “Ticket System” is a management tool used to handle customer service

requests. The requests can be called tickets or issues and are added to the

system either by ticketing services or by the employees handling the

system.

A ticket usually contains the information needed by the employee to

handle the request. Such information can include personal information

about the customer and information about the specific order or request.

[7]

2.6 Easit-Go Application

The Easit-GO application is a product the company Easit has developed

and is selling to other organizations. The application is dynamically built,

in order to easily be adjusted to what their customer needs. It is a web

application connected to a dynamic database with many different uses.

In this project we are specifically looking to understand more about the

ticket system that exists in the application.

Figure 1: Incoming Tasks to the system

As seen in figure 1, there exists a function showing the incoming tasks

to the database. These tasks are added from inside the application by

employees handling the workflow. This means that each task in the

system could represent a customer with a problem, calling or emailing

the company for an employee to answer and create the task in the

system.

Figure 2: Existing tasks in the database with possibility to add, delete and update

tasks.

An employee can create tasks in the system for other employees to see

them and fix the issues as they pop up. In figure 2 we see the task view

showing many different tasks and clicking on an item shows even more

information about the task stored in the database. The customer either

contacts the company via email or by calling, to give the company a

work request. [8]

2.6.1 Restservice

To start working on integration to other applications an API has been

developed for communication with the database. In the Easit-GO

application an employee can thus add an API key connected to their

own user. These keys are what will later be used to establish

connections to the database.

Figure 3: Swagger-UI Documentation on how to use the API

API documentation was created to make understanding and using the

functions easier.

As seen in figure 3, there are three functions that will be used to

communicate with the database: getitems, importitems and ping. The

first one is used to retrieve information from the database, the second one

is to create or update information and the last one exists just to check if

connection to the database is possible.

For the API to be successfully used, the data sent must be set up in the

correct format. This part is done from within the Easit-GO application.

Since the database is dynamically built the object type that is to be

imported with the API must be created and specified in the application.

Once an object type is set and the data to be included is known, the JSON

data can be written.

2.6.2 Import Handler

The Import-Handler is an operation used when the ImportItems

endpoint is called. An Import-Handler is needed to be able to update

existing Items in the database. The Import-Handler is also what defines

what Items are included in the object.

2.7 Postman

Postman is an API client used for running and testing APIs. Postman

allows users to create and save different HTTP requests. Postman also

reads the responses of the API when testing them out.

In this project Postman is mainly used as a tool to make sure connections

are working and making sure the database retrieves the correct data.

When a HTTP request is being set up in Postman the correct

authorization must be set up and the body need to contain the correct

data format. In this case JSON data format is used and so the correct set

up of the JSON data needs to be written for the request to be successful.

If the HTTP request is not set up in the correct way, postman will respond

with the corresponding error message. This is a very efficient way of

trying to find a correct solution to set up APIs, since it often tells you

what is wrong.[9]

2.8 Microsoft Development

In this section all the software and tools created by Microsoft that were

used in this project will be explained.

2.8.1 Microsoft Teams

Microsoft teams is a business communication platform offering

workspace chats and videoconferencing. Because of the significant

increase in users in the recent past, the platform has gotten much more

attention in demands for integration.

Teams provide many features and possibilities and include tight

connectivity with other Microsoft apps. Examples of this include

Microsoft Adaptive Cards and Microsoft Azure Bot Service, which are

two very important features in creating working bots with a good

graphical interface.

Teams allow bots to be added to conversations which is a great way of

letting business partners and customers receive automated answers to

questions or commands.[10]

2.8.2 Adaptive Cards

“Adaptive Cards are platform-agnostic snippets of UI, authored in JSON,

that apps and services can openly exchange. When delivered to a specific

app, the JSON is transformed into native UI that automatically adapts to

its surroundings. It helps design and integrate light-weight UI for all

major platforms and frameworks.” (Adaptivecards.io, 2021-08-24), is

how it is described on their own website and honestly, it’s the best

explanation.

Figure 4: Adaptive Card Example given by Official Website

Adaptive cards are honestly the biggest reason to why integration with

Teams is such an attractive idea. With adaptive cards it is possible to

create forms the user can fill out or gain information from, which a

normal text bot wouldn’t be close to achieving. Not only is it possible to

create forms that a bot can send, but the developer can even design the

adaptive cards to their liking. Figure 4 is an example of an adaptive card

given by Microsoft's own samples.[11]

2.8.3 Microsoft Application Development

C# is a programming language created by Microsoft and is the most

common language to use for creating Microsoft desktop applications.[12]

The .NET Framework is a software development framework used to

develop Microsoft software. [13]

ASP.NET is the main tool that is present in the .NET Framework and

aimed at simplifying the creation of dynamic webpages.[14]

2.8.4 Azure Bot Service

Azure is a bot deployment service created by Microsoft. Azure Bots can

be added to services like Microsoft Teams but is hosted and paid for in

the Azure Portal. [15]

2.8.5 Bot Framework Emulator

The Bot Framework Emulator is a useful desktop application that allows

testing and debugging bots locally. The main use of the emulator is to

test the chat responses of the bot without having to set up the whole bot

server. [16]

2.9 IDE

IDE stands for Integrated development environment and is a software

application used for software development. An IDE normally consist of

a source code editor, build automation tools and a debugger.[17]

Eclipse is an IDE mainly used for building Java applications.[18]

Visual Studio is an IDE developed by Microsoft. With both .NET and

Visual Studio being Microsoft products, it’s an ideal platform for

developing .NET software. [19]

2.10 Apache Maven

Maven is a software project management and comprehension tool.

Maven is a standard way to build projects and is a definition of what the

project consists of. Its main goal is to make the build easy whilst also

providing project information and a uniform build system.[20]

2.10.1 Jetty plugin

Jetty is a Maven plugin used for rapid development and testing. Jetty

periodically scans the project for changes and automatically redeploys if

any are found. This means that any changes made in the IDE are picked

up, allowing testing of the recent changes straight away.[21]

2.11 ZK8

The ZK framework 8 is a Java framework for building web and mobile

applications.[22]

2.12 LESS

Less, short for Leaner Style Sheets is a backwards-compatible language

extension for CSS. Style sheets languages can be used for styling

webpages.[23]

2.13 Node.js

Node.js is a JavaScript runtime environment that executes JavaScript

code outside a web browser. Node.js LTS is the long-term support

version of Node.js. [24]

2.14 GIT

Git is a distributed version control system designed to handle projects

with speed and efficiency. [25]

2.14.1 Bitbucket

Bitbucket is a Git-based source code repository hosting service. A git

repository is a place to store code with ease of access. Project codes are

usually stored in repositories. [26]

2.15 MySQL

MySQL is a database service used to store data in an organized way. It is

a relational database where data can have relations with other data. [27]

2.16 Ngrok

Ngrok is a tunneling service that allows communication from a

webserver to your locally specified address. Ngrok creates its own

address that can replace the local address when establishing contact. [28]

2.17 Waterfall Dialog

A waterfall dialog is a way for a bot to guide the user through a series of

steps by sequentially leading the user through questions or other

methods. Stepping out of the dialog would lead the user back to the

beginning, meaning that actions can be locked by previous conditions.

This is good to implement in a chatbot, such that users do not access

options that they are in no need of. [29]

3 Method

3.1 Workflow

The workflow of this project consists of the implementation of the

product combined with the research required. In order to start the project,

research of the area was required. During setup and implementation

even more research was required in order to understand and prepare the

necessary steps needed.

During implementation Agile workflow was followed in order to always

have a working implementation after every new part of the code was

finished.

Continuous research and implementation were followed by even more

research into the research questions once the solution was completed.

3.2 Project Goals

The goals of this project are defined in Chapter 1.3 and here we will

discuss the method used to answer these goals.

• Use the API to connect to the database from a Bot service.

The first goal requires the setup of a Bot service as well as the setup of

the Easit-GO application. This goal will be achieved through

implementation of the existing API with the created bot. The Easit-GO

application requires a lot of research and help from the company in order

to understand and set up. This goal is completed with implementation

and testing of the system.

• Create a Bot that will answer commands and share a Ticket Form.

This goal has its focus on the bot service. It is achieved through extensive

research of Bot implementations and the possibilities to send form cards.

The goal is completed once the implementation can be run and tested on

an emulator for testing bots.

• Have the Ticket Form send the data to the database for the Easit-

GO application to read.

This goal focuses on making sure that the two previous goals work

together, and that the data created can be seen on the Easit-Go

application. This goal requires even more research into how the database

and workflow functions work in the Easit-GO application. Once the

necessary setup is prepared, the goal is achieved by combining the

previous steps and testing if the data arrives at the website.

• Have the Bot work in Microsoft Teams.

This goal relies on the fact that the previous steps were successful and

requires the bot to be set up for Microsoft Teams. This step requires

research on how bots can be hosted and published in different software.

After implementation has been achieved, this goal is completed when the

bot service developed can be used in a chatroom in Teams, and the data

arrives to the database.

• How does the solution solve an existing problem?

This question will be answered after researching and discussing the

importance of integration and bot services. Research papers will be read

in order to compare and draw conclusions from the question.

• Justify the efficiency of the solution.

This question will be answered by having testers try the bot service and

analyzing their behavior and experience. The area will be discussed to

even further theorize the pros and cons of the solution.

4 Model
In this project, communication between a Chatbot in Microsoft Teams,

and the database for the EaistGo application is what is being

implemented.

Figure 5: Overview of the system

As shown in figure 5, the customer should be able to have a Teams

conversation with a chatbot. The Chatbot should then show the user

Adaptive cards which contain useful information and provide forms

that the user can fill out and send. The filled-out forms should be

translated into JSON data which then is sent to the API-endpoint. The

Form is then posted to the database and readable to the employee using

the Easit-GO application.

Figure 6: Overview of the system

In figure 6, we see the different steps of the implementation from the

perspective of the different tools and methods used. We see that

Microsoft Teams is shown Adaptive Cards through the bot provided

and hosted by an Azure Server. The implementation of the bot and the

adaptive cards are given to the azure server by the code

implementation. The program is converting the input data to JSON

format to handle and use the API-endpoint. The program also uses C#

code with the help of ASP.NET and the Microsoft Bot Framework to

implement a functional chatbot.

This project implementation is thus what is contained within the box to

the right of figure 6. The things to the left are the tools used in order to

integrate between systems.

4.1 Setup of Environment

To begin with, the Easit-GO environment had to be installed, in order to

use the API-endpoint and connect to the database. This was a long and

tedious process since many installations were needed before the

application was correctly installed.

To begin with Java JDK Version 11 or later is needed, since Easit-GO is

developed in Java.

Maven is a tool used to handle builds, dependencies, project structures,

and other things. Easit-GO requires Maven in order to run.

ZK Framework 8 used by the Easit-GO application requires LESS for

theme handling and styling. This requires Node.js Version LTS to be

installed

Using Eclipse as an IDE was recommended since most developers of the

company use that environment.

To be able to download the application code, Git was used with Bit

Bucket. The Bit Bucket code was only accessible after the company

created a company email that could access the Git code and download it.

The Git was also used for version handling to make sure the correct code

version containing the API was used.

The application also requires a database set up. There were a few choices

as to what database to run, but MySQL was chosen. Important here is to

make Character Set UTF-8.

Once all the necessary installations and preparations were ready, it was

time to get the Easit-GO application working. First off, Maven was used

to compile the code downloaded from Git and install all the modules in

the local repository. This was easily done from the command prompt,

with the command “mvn install”, whilst standing in the correct

repository.

In the IDE a workspace was created. Eclipse made this part easy since it

had a function for importing existing Maven projects. Additional settings

that needed adjustment in Eclipse were to enable editing of ZUL-files,

change settings to use Character Set UTF-8 and to create a local version

of properties.xml such that the code finds the correct path to the local

database.

The last step to get the Easit-GO application up and running is to start

debugging. Jetty is used as the choice of debugging tool since it is small,

fast and easy to use. Jetty is run as a Maven plugin.

Once the server is up and running and the application can be accessed

through http://localhost:8080/. After installation and setup was

completed, it was now time to start learning how to use the application

and API-endpoint.

Even though the application was working at this step, the database is still

empty. This means that all the necessary data needed to log in and all the

example data that fills out the application is missing. To work around

this, a dataset was provided to fill the database with.

Another necessary step was to disable the function that requires a

password for logging in. This was done to be able to get inside the system

and change password on the administrator login. Once the password

was changed, the administrator login was accessible, and the code could

be changed back.

Postman is used to make sure importing and getting from the database

is working. An API key was created for the administrator user, by using

the API-key generator in the Easit-GO application. This key was then

used inside Postman for authorization. Basic authorization was chosen

with the key as username and password left blank. Testing a GET with

the ping-endpoint through http://localhost:8080/restservice/ping was

http://localhost:8080/
http://localhost:8080/restservice/ping

successful and responded with correct data. Testing a POST with either

/getitems or /importitems did not work at this point, since the POST must

be sent with a corresponding body, and the body content is not yet

known.

To be able to make POST work in Postman, an Import Handler must be

created in the Easit-GO application. The setup of the Import Handler also

specifies what Items exist in the object. This information is what is used

when writing the body in Postman. The objects formed by the Import

Handler is easily converted to JSON format and is thus what is sent

through the Postman body.

Once the Import Handler has been created and the JSON format for the

import is known, the /getitems and /importitems will finally work.

Testing to POST with these API-endpoints with the correct body format,

now returns a success-message along with the corresponding return data.

The return data is defined in the Import Handler. We can also see in the

Easit-GO application that there are new incidents/tasks in the system,

and each task inserted has all the information available.

4.2 Bot Setup

With the server side of the project up and running, the next step is to

figure out how to develop a working bot.

After researching bot implementation for Teams and advice from

employees at Easit, it was decided that the code would be written in C#

with the use of ASP.NET and the bot running on an Azure Server for

integration to Teams.

To start off with this research, sample bots were downloaded and

executed on Visual Studio to try and get a bot running. During this step

a Bot Framework Emulator provided by Microsoft was downloaded in

order to check if the bot was working locally first.

Once a working bot was running on the emulator, connection was to be

established to Azure. Azure is a paid service where you pay for the

messages the bots send, but since this bot testing would not send many

messages, I could get away with using their free trial.

One problem that appeared whilst using Azure is that the code is run

locally whilst the Azure server requires connection to the bot through a

Http address. This could be bypassed by using a network tunneling

software called Ngrok. With Ngrok tunneling the localhost address for

the bot could be tunneled through a usable Http address, such that the

Azure Server could then access the bot. One last step to get Azure to work

was to use a secret ID and Value generated by Azure and change the

properties file in the bot to match the secret data. After doing this step,

the bot could be accessed through the chat testing in the Azure Portal.

Now that the bot is working on the Azure Server, it is time to add it to

Microsoft Teams. This can easily be done in the Azure Portal by going to

the Channels tab and adding Teams from the featured channels. Now

that Teams has been added, a bot embed code can be retrieved which can

then be used as an address by pasting in the browser search bar. This bot

embed code will add the bot as a contact in Teams. The bot is now fully

implemented and working in Teams.

4.3 Bot Development

Now that we know the bot service will work with Teams and we have

seen the API-endpoints work, it is time to figure out how the bot will get

the data needed for the import.

Now we are getting into the reason Teams is such a suitable application

to do integrations towards. That reason is Adaptive Cards. Adaptive

Cards is a way of implementing designed cards that can be sent instead

of messages in supported environments. Teams is one of these

environments.

With the help of all the different sample bots showing the diverse ways

you can use Adaptive Cards; Figuring out how to write code suited for

the type of form card that was needed, was possible. To make

development easier, the import data was adjusted to only take a string

for subject and a string for description.

Since the bot is supposed to share a Ticket-form used to fill out necessary

information and then send it to the database, the card would need a field

for every different data item, and a send button.

The bot is also supposed to be able to do other things, which is why more

cards were also created. When the bot/user first joins the conversation

the bot also sends a welcome message explaining how to use the bot. A

Help command was created for the users to get a list of commands to use.

This help card is designed to appear anytime the user writes a faulty

command to the bot.

The Bot will follow the Waterfall dialog design. This is to make the bot

easier to use and create consistency in how it works. Waterfall dialog is

also useful since it prevents the user from accessing bot commands that

have prerequisites.

Now that the Ticket Form is created, the data inserted into the form must

be handled. This is possible since every time the buttons are pressed, all

other information inside that card is saved in the corresponding Activity.

All data that was inserted can thus be accessed and used in other

functions.

4.4 Integration

Now that all other steps have been taken care off, the last step is to

implement the Integration. To separate the API-endpoint from the rest of

the code, a class was created. This class contains the necessary steps of

defining a HttpClient, setting all the header data according to standards

and adding Authentication. This is all like how Postman is set up.

The big difficulty here comes from setting up the body. First, a class

object must be created in the same way as the JSON body will be set up.

All the attributes and arrays must be correctly set up. When this is the

case, a simple conversion can be made to transform the object into JSON

data.

When calling upon the class, the data that is set to be imported is handled

and the Import function is awaited. This makes it so that the bot will wait

for the data to reach the database until it sends a confirmation message.

It is then possible to check the Easit-GO application for confirmation that

the data reached the database successfully.

4.5 Research Question

To be able to answer the research question, actual comparable data is

needed. To acquire some relevant data for analyzing the method, we let

testers test the different methods and answer a question form.

Before this integration there were mainly two different methods for

customers to send work requests to the company. These two methods

require the customer to either call or email the customer service of the

company. The employee is then required to add the work request to the

system using the Easit-GO application.

To get some tangible data that can be analyzed we need to let testers use

the two preexisting methods and then also use the bot to send a work

request. The testers will then answer the form to rate the different

methods used and write down how much time it took to perform the

small task. Since this process also requires an employee handling the

requests, the testers will also play the role of employee to record the same

data but from a unique perspective.

The two different question forms for sending and receiving a work

request will then be compared and analyzed. Hopefully the data will

show that the project has solved an existing problem and the efficiency

of the software.

5 Results
The integration to a Teams bot from the Easit-GO application was

successful. With the existing software developed during the project, it is

possible to open a conversation with the bot and ask for a ticket form.

With the ticket form it is possible to write all the necessary information

asked for by the form, followed by sending it to the Easit-GO database

with the “Send” button. Sending the information will also have the bot

send an acknowledgement message to the user confirming that the

message was sent successfully.

Following we will see the process as seen from the web application.

Figure 7: Recent Tasks in the system before sending a ticket.

In figure 7 we see the different work tasks already existing in the

database, before sending the ticket from the bot.

Figure 8: Recently incoming tasks in the system before sending a ticket

In figure 8 we also see that there were no incoming tasks in the current

week and that there are 71 tasks in total in the system.

Figure 9: Chatbot after joining chat and using command

In figure 9 we can see the process of connecting to the bot. First off, the

bot welcomes the user and tells them about the commands. After the

user writes the “Ticket” command, the bot answers with the ticket

form. The form requires the user to fill out all questions in order to send

the work request.

.

Figure 10: Using bot to send a ticket.

In figure 10 we can see that the data was filled out and sent successfully

to the database. During this step, I made sure to send three requests

with different data just to show that they all reached the database. I did

send four other requests with other data that I decided to delete in

order to have better named subjects in the results.

Figure 11: Recent Tasks in the system after sending three tickets.

Here in figure 11, we see that the data did reach the database and we

have three new work tasks sent in on a Monday.

Figure 12: Recent Tasks in the system after sending three tickets.

The three tickets can be seen in figure 12 but have higher Ids since I

deleted four tasks before.

The data sent from the bot can now be accessed through the Easit-GO

application and changed/deleted at will. This means that all employees

now can see the new tasks and start working straight away.

5.1 Analyzing two question forms in Appendix A and B

When the testers acted as the customer sending the work request, 80% of

them preferred using the bot. The tester that preferred Calling customer

service said that it was because they thought it was faster and that the

information would be more accurately conveyed. The consensus of the

testers preferring the bot is that it is simple to use and that all the

information they would need to be filled out is given to them as a form.

Two of them also liked the fact that you got confirmation that the form

was sent.

When the testers acted as the employee handling the work request, all of

them preferred using the bot. The consensus was that they preferred the

bot since there was no work needed to put the request in the system. They

could thus start working on the problem straight away instead of any

additional work. One tester said that they liked using the bot since they

did not have to deal with the customer. One of the testers also pointed

out that they might need to check that all the information was correctly

filled out.

Figure 13: Average time taken to send ticket

Figure 14: Average time taken to handle ticket

Most testers said that handling the work request sent from the bot takes

no time for the employee as seen in figure 14, but one tester pointed out

that there might be a need to check that the information is correct.

Looking at figures 13 and 14, we see that using the bot takes less time

than calling and email for both the user and the employee. Email takes

less time than calling as the employee, but the opposite is true for the

user. A user could take less time calling in if we assume that no queue

takes place whilst the employee takes the most time to answer the phone.

Figure 15: Average score for the methods to send tickets

Figure 16: Average score for the methods to handle tickets

In figures 15 and 16 we see that using the bot was highest rated. In figure

15, the customers have rated emailing the lowest with calling in second

place. The users acting as employees had no real preference between

handling an email or a call.

Additional input given by the testers:

The tester that preferred calling customer service gave the input that they

would be using the bot once it provided the same level of service as

human customer support.

One tester included the input that they would like an email confirmation

with the work request after they sent it in via the bot.

One tester gave the input that they thought having the customer write

and send in the work request via the bot was more efficient and less time

consuming for the employees.

6 Discussion
6.1 Integration

As we can see from the results, the integration was successful. It is now

possible to post tasks from the bot into the database without having

anything to do with the Easit-GO application.

Since using the Bot Service via Teams does not require any type of

connection to the Easit-GO application, it is now entirely possible for

customers to create Tickets from outside the system.

This means that it is possible to allow users to post to the database

without posing any security threat of being inside the system. What

might be a problem though, is access to the bot. At this moment, anyone

having access to the bot would be able to post data to the database. It

could be an issue if someone maliciously spammed the database with

data. This issue could be solved by limiting access to the chatbot.

The integration of the two systems was successful, which means that

integration between other systems would also be entirely possible. This

successful integration thus works as proof of concept that this kind of

implementation is possible.

6.2 Bot

The chatbot implementation was done with simple input data for the

forms. This does not have to be the case when implementing a future bot.

Any kind of input data can be added as long as the same data is prepared

for the database in the Easit-GO application.

Many different types of adaptive cards are available for development

and can possibly be designed to include information from the Easit-GO

application given by data obtained though the API. The Bot could even

be implemented to give ticket forms tailored to the specific customers.

This chatbot is a simple design that gets the work done to show the proof

of concept.

6.3 Question Form

We can see from the results of the question form that the bot was the most

preferred way of sending a work request. One of the testers liked calling

the company more though. He said that he would use the bot if it

provided the same level of service as a human would. This concern that

important information would be missed or misunderstood by text is not

something to be ignored.

In this topic using email as the method should also be discussed. As we

see in the results, no one seems to like email compared to the other two

options. The reason could be that the customer might not know what

information they need to include when sending the work request. When

calling, the employee would ask you for the necessary information and a

well programmed bot would require you to include the necessary

information before sending. Another thing about emails is that you

usually include unnecessary information such as greetings and such,

which would not be needed in a bot.

The issue of giving the same information during a call and to a bot could

be solved with a ticket form card sent by the bot that is adjusted for the

type of work request that is to be sent. Another thing calling the company

is advantageous is that you get the chance to ask questions whilst also

giving you confirmation that the request has reached the company. The

confirmation part can be implemented in the bot though. After sending

the work request the bot can answer if the information was successfully

sent, and additional code can be added to make sure the customer

receives an email with the order information.

Calling the company also has its flaws. Some companies have automated

response bot directing you to the correct employee, which can take time.

Other times you may sit in a queue for a long time waiting to get through.

There is also the problem of no one picking up and only being able to call

during work hours. All these problems are easily bypassed by using the

bot, which is accessible at any time of the day.

Looking at the average time it took the testers to hand out the work

request to the company, we see that the bot took the least amount of time

followed by calling. The real-world situations could differ more though,

but the user testers time gives a sense of how it could work. For example,

writing an email could take way less time whilst calling would have you

wait 20 minutes to get through. The results make sense for a minimum

time taken to send the request. Using the bot would require you to fill

out a form and press send, which is a short task, whilst sending an email

requires you to think about what to include in the message. Calling could

be either fast or slow depending on the situation.

The ratings the testers gave the different methods show a base line of

how the different methods are liked. Email, being the most disliked

method and the bot service the most liked, shows that having to write

the work request is not the problem. Knowing that the correct

information is given is one of the most crucial factors in the decision. That

and how easy it is to send work requests to the company.

When we get to the results of the testers acting as employees there is

suddenly a significant difference in the ratings of the methods. Calling

and emailing are suddenly both very low whilst the bot is highly rated.

Looking at the average time taken for the employee to handle the task

shows us why. Suddenly using the bot takes no time for the employees

since all the work requests are automatically sent to the database and

shown on the application. One of the testers even wrote the input that

they liked not having to deal with the customer.

Having the customers use the bot has now saved even more time for

employees to work on solving the tasks instead of being customer service.

As noted by a tester, there might be more work though. There might be

a need to double check that the work requests were correctly filled in or

there might be a need to contact the customer for additional information.

Despite this, I would still argue that the ease of access for the customers

and the time saved for the employees is a big reason for using the bot.

• How does the solution solve an existing problem?

As we can see from the results, this solution releases a lot of time needed

to handle work requests. Instead of spending that time on handling

requests the employees can now continue doing more important things.

It is also easier for customers to fill out the needed information in the

form given by the bot compared to the customer having to write an email.

The customer can also create a work request at any time of the day which

would not be possible when calling.

• Justify the efficiency of the solution.

The efficiency of the solution is shown in the time it takes for a customer

to fill out the form and send the request but is even more visible for the

employees. Instantaneous delivery of the work request to the database

without any needed work of an employee is an improvement to the

previous methods.

Both the previous questions can also be answered with the word

automation. The automation that is created by implementing integration

between applications is a good reason to try to use integration more as a

solution to problems.

Related Work

In the paper “An Overview of Chatbot Technology” [31], it is discussed

how Chatbots can reach out to broad audiences on messaging apps

whilst being more efficient than humans are. They conclude that chatbots

provide significant savings in the operation of customer service

departments which strengthens the conclusions reached in this project.

[31]

6.4 Ethical and Societal Discussion

When discussing software ethics, we should look at the challenges that

may arise. These include security concerns, unexpected behaviors from

what we create, technological deficiencies and negative social

impacts.[30]

If there are any security concerns in this project it probably has to do with

directing business related information over the Teams application. This

is a concern that arises no matter if you use the ticket bot, email or calling

as the method to contact the company. The choice the company must

make is if they want to use Teams or not. The weak point of security is

the information stored in chat messages and possibly the use of the API

endpoint.

Unexpected behavior could include an outsider getting access to the bot

and thus being able to spam unwanted tickets to the database of the

company. Such an issue would require the company to be careful about

who they give access to the bot. Other unexpected behavior could arise

but, would need to be fixed as they appear since there is no way of

knowing they will happen since they are unexpected.

Technological deficiencies could be difficult to predict if the software is

seemingly working to begin with. This is something that time and use of

the software will show and thus require a fix for afterwards.

Social impact is in this case on the positive side since it releases the

workload from customer service and allows more efficient work to be

completed. Changing the way customers interact with the company from

using email or calling to instead be using a bot seems to be a positive

improvement looking at the results. How this affects society in the long

run is hard to say, but the way technology is moving is more contact with

automated bots and less contact with employees.

Replacing customer service with bots leads to less human contact. This

might be a problem since in some cases the problem might be very

complicated. In these cases, having direct contact with the company

might be a better option. This type of bot service does not exclude

customer service though. It is still entirely possible for a company to offer

both customer service by calling and with a bot service.

6.5 Future Work

Since this project focuses on making the integration work, there are a

bunch of aspects of this integration that can be improved upon.

The company this project was done for will of course have to adjust the

code so that it is usable for their own customers. The code developed in

this project is more of a guide for them to use when setting up and

preparing for whatever use their customers will ask for.

More functionality for the bot. The bot doesn’t only have to be a Ticket

bot but could also give other information. The welcome message and

commands/help message can be improved upon with Adaptive Cards.

Adaptive Cards could also be used to send information about prices,

products and services the company offers. The functionality can be

adjusted to whatever the specific company desires.

Waterfall dialog for the bot. To make the bot easy to use after more

functionalities have been added, there needs to be a good structural

guideline for how the bot will work. All the additional code should then

be written with Waterfall Dialog in mind, such that a user can easily use

the bot. With that method the user should not be able to get lost in the

functions and always easily get back to the beginning.

Possibly implement the chatbot to use AI for answering questions. This

is something we often see with automated answering systems and could

possibly be useful, depending on what the bot is meant to be used for.

Send an email confirmation of the order when it reaches the database.

Not only should the bot tell the user that it is currently sending a request,

that the request arrived successfully, but it could also be advantageous

to send the user confirmation via email with the information sent with

the ticket. Such an email could be used as proof of order for the customer.

Disable old form cards in such a way that it’s only possible to send one

request per card called upon. This is an important feature to work on

since the customer could accidentally send a duplicate of the same ticket

without knowing. Disabling the card after use would make it more

difficult for the customer to send tickets that aren’t intended to be sent.

Add more required form questions depending on the database object.

The database objects are decided on the web application and thus must

be adjusted for in the code. Depending on what type of object is to be

created and what information is needed, the Ticket and JSON format

needs to be changed accordingly.

Add more requestable Ticket Cards depending on the problem type. The

companies running the application might want more types of Tickets

available for the customers and thus must be created and adjusted for the

type of information needed.

References
[1] IBM, “Application Programming Interface (API)”

https://www.ibm.com/cloud/learn/api Retrieved 2021-08-23.

Retrieved 2021-08-23.

[2] Roy Thomas Fielding “Architectural Styles and the Design of

Network-based Software Architectures”, Chapter 5

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_styl

e.htm Retrieved 2021-08-23.

[3] Stackoverflow, “What is an api-endpoint?”

https://stackoverflow.com/questions/2122604/what-is-an-endpoint

Retrieved 2021-08-23.

[4] Oracle, “What is a Chatbot?”

https://www.oracle.com/chatbots/what-is-a-chatbot/ Retrieved

2022-01-07.

[5] Generation Digital, “What is an API Integration?”

https://www.gend.co/blog/what-is-api-integration-a-guide-for-

non-technical-people Retrieved 2022-01-07.

[6] Official JSON website, “Introducing JSON”

https://www.json.org/json-en.html Retrieved 2021-08-23.

[7] Helpshift, “What is a Ticket System”

https://www.helpshift.com/glossary/ticketing-system/ Retrieved

2021-08-24.

[8] Easit, “Lär känna plattformen” https://easit.se/produkter/easit-go/

Retrieved 2021-08-23.

[9] Postman Learning Center, “Introduction”

https://learning.postman.com/docs/getting-started/introduction/

Retrieved 2021-08-23.

[10] Microsoft Teams, “Frontpage” https://teams.microsoft.com/

Retrieved 2021-08-23.

[11] Microsoft Adaptive Cards, “Adaptive Cards”

https://adaptivecards.io/ Retrieved 2021-08-23.

https://www.ibm.com/cloud/learn/api
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://stackoverflow.com/questions/2122604/what-is-an-endpoint
https://www.oracle.com/chatbots/what-is-a-chatbot/
https://www.gend.co/blog/what-is-api-integration-a-guide-for-non-technical-people
https://www.gend.co/blog/what-is-api-integration-a-guide-for-non-technical-people
https://www.json.org/json-en.html
https://www.helpshift.com/glossary/ticketing-system/
https://easit.se/produkter/easit-go/
https://learning.postman.com/docs/getting-started/introduction/
https://teams.microsoft.com/
https://adaptivecards.io/

[12] Microsoft Docs, “Csharp” https://docs.microsoft.com/en-

us/dotnet/csharp/ Retrieved 2021-08-23.

[13] Microsoft .NET, “.NET” https://dotnet.microsoft.com/ Retrieved

2021-08-23.

[14] Microsoft .NET, “ASP.NET”

https://dotnet.microsoft.com/apps/aspnet Retrieved 2021-08-23.

[15] Microsoft Azure, “Azure” https://azure.microsoft.com/sv-

se/services/bot-services/#overview Retrieved 2021-08-23.

[16] Microsoft Docs, “Bot Framework Emulator”

https://docs.microsoft.com/en-us/azure/bot-service/bot-service-

debug-emulator?view=azure-bot-service-4.0&tabs=csharp

Retrieved 2021-08-23.

[17] Codecademy, “What is an IDE?”

https://www.codecademy.com/article/what-is-an-ide Retrieved

2022-01-07.

[18] Eclipse Official wegsite, “Eclipse” https://www.eclipse.org/

Retrieved 2021-08-23.

[19] Visual Studio, “Visual Studio 2019”

https://visualstudio.microsoft.com/vs/ Retrieved 2021-08-23.

[20] Apache Maven Project, “Introduction”

https://maven.apache.org/what-is-maven.html Retrieved 2021-08-

23.

[21] Eclipse Foundation, “Jetty Maven Plugin”

https://wiki.eclipse.org/Jetty/Feature/Jetty_Maven_Plugin

Retrieved 2021-08-23.

[22] ZK official website, “ZK Framework”

https://www.zkoss.org/product/zk/zk8 Retrieved 2021-08-23.

[23] LESS official website, “Overview” https://lesscss.org/ Retrieved

2021-08-23.

[24] NodeJS official website, “About Node.js”

https://nodejs.org/en/about/ Retrieved 2021-08-23.

https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://dotnet.microsoft.com/
https://dotnet.microsoft.com/apps/aspnet
https://azure.microsoft.com/sv-se/services/bot-services/#overview
https://azure.microsoft.com/sv-se/services/bot-services/#overview
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-debug-emulator?view=azure-bot-service-4.0&tabs=csharp
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-debug-emulator?view=azure-bot-service-4.0&tabs=csharp
https://www.codecademy.com/article/what-is-an-ide
https://www.eclipse.org/
https://visualstudio.microsoft.com/vs/
https://maven.apache.org/what-is-maven.html
https://wiki.eclipse.org/Jetty/Feature/Jetty_Maven_Plugin
https://www.zkoss.org/product/zk/zk8
https://lesscss.org/
https://nodejs.org/en/about/

[25] Git official website, “Git” https://git-scm.com/ Retrieved 2021-08-

23.

[26] Bitbucket official website, “Bitbucket” https://bitbucket.org/

Retrieved 2022-01-07.

[27] Mysql, “MySQL” https://www.mysql.com/ Retrieved 2021-08-23.

[28] Ngrok, “What is Ngrok?” https://ngrok.com/product Retrieved

2021-08-23.

[29] Microsoft Docs, “About component and waterfall dialogs”

https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-

concept-waterfall-dialogs?view=azure-bot-service-4.0 Retrieved

2021-08-23.

[30] TheNewStack, “The Five Principles of Software Ethics”

https://thenewstack.io/five-principles-software-ethics/ Retrieved

2021-08-23.

[31] Adamopoulou E., Moussiades L. (2020) An Overview of Chatbot

Technology. In: Maglogiannis I., Iliadis L., Pimenidis E. (eds)

Artificial Intelligence Applications and Innovations. AIAI 2020.

IFIP Advances in Information and Communication Technology,

vol 584. Springer, Cham. https://doi.org/10.1007/978-3-030-49186-

4_31. Retrieved 2021-08-23

https://git-scm.com/
https://bitbucket.org/
https://www.mysql.com/
https://ngrok.com/product
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-waterfall-dialogs?view=azure-bot-service-4.0
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-waterfall-dialogs?view=azure-bot-service-4.0
https://thenewstack.io/five-principles-software-ethics/
https://doi.org/10.1007/978-3-030-49186-4_31
https://doi.org/10.1007/978-3-030-49186-4_31

Appendix A: Question Form 1
Bot Integration: Sending Work Request

Appendix B: Question Form 2
Bot Integration: Receiving Work Request

	Abstract
	Abstrakt
	Table of Contents
	References
	Appendix A: Question Form 1
	Appendix B: Question Form 2

