
 

 

 
 

Exploring the use of call stack depth 
limits to reduce regression testing costs 
 

Patrik Bogren 
Isak Kristola 

Final Project 
Main field of study: Computer Engineering BA (C) 
Credits: 15 
Semester/Year: VT 2021 
Supervisor: Raja Khurram Shahzad 
Examiner: Felix Dobslaw 
Course code/registration number: DT133G 
Degree programme: Programvaruteknik 



   
 

  1 
 

Exploring the use of call stack depth limits to reduce 
regression testing costs 

 

Isak Kristola, Patrik Bogren 
BSc. Thesis, Programvaruteknik 

Institute of Computer and Systems Sciences 
Mid Sweden University 

Östersund, Sweden 
{iskr1300, pabo1800}@student.miun.se 

 
 
Abstract –  
 
Regression testing is performed after existing source code 
has been modified to verify that no new faults have been 
introduced by the changes. Test case selection can be used 
to reduce the effort of regression testing by selecting a 
smaller subset of the test suite for later execution. Several 
criteria and objectives can be used as constraints that 
should be satisfied by the selection process. One common 
criteria is function coverage, which can be represented by 
a coverage matrix that maps test cases to methods under 
test. The process of generating and evaluating these 
matrices can be very time consuming for large matrices 
since their complexity increases exponentially with the 
number of tests included. To the best of our knowledge, 
no techniques for reducing execution matrix size have 
been proposed. This thesis develops a matrix-reduction 
technique based on analysis of call stack data. It studies 
the effects of limiting the call stack depth in terms of 
coverage accuracy, matrix size, and generation costs. 
Further, it uses a tool that can instrument Java projects 
using Java’s instrumentation API to collect coverage 
information on open-source Java projects for varying 
depth limits of the call stack. Our results show that the 
stack depth limit can be significantly reduced while 
retaining high coverage and that matrix size can be 
decreased by up to 50%. The metric we used to indicate 
the difficulty of splitting up the matrix closely resembled 
the curve for coverage. However, we did not see any 
significant differences in execution time for lower depth 
limits. 
 Index Terms - Regression Testing, Test Case Selection, 
Code Coverage, Dynamic Program Analysis, Execution Matrix 
 

ACKNOWLEDGEMENT 

We would like to thank our supervisor Raja Khurram 
Shahzad for his guidance throughout this work and Felix 
Dobslaw for the initial idea for this thesis. Furthermore, we 
would like to express our appreciation to the #java 
community on IRC for answering our questions about how to 
use the ASM framework successfully. 

 

I.  INTRODUCTION 

Regression testing is a form of software testing conducted 
after changes have been made to existing software to ensure 
that the introduced changes do not introduce problems in 
other parts of the program [1]. The simplest form of 
regression testing is retest-all where the entire test suite is 
rerun. However, as the project grows in size, rerunning all 
tests is usually not feasible due to time and resource 
constraints. For large-scale projects it is often necessary to 
reduce the cost of regression testing by various means [2] [3].  
 
One common way of reducing regression testing costs is test 
case selection, which identifies a subset of test cases that can 
still detect any introduced faults in the changed parts of the 
software [3]. However, a consequence of selecting a subset 
of the test suite is that we usually aren’t guaranteed to find all 
faults that may have been introduced in the code. Thus, 
various heuristics and metrics are used in the selection 
process to obtain a set of test cases that have a high 
probability of finding all possible faults. A standard 
measurement is code coverage, which provides knowledge 
about which parts of the software that were executed by the 
test suite. This thesis focuses on a particular way of 
representing coverage data called coverage matrix, or 
execution matrix, that maps test cases to structural elements 
in the system under test [3]. 
 
Based on available research, the general effectiveness of code 
coverage selection methods is hard to establish. Although its 
wide usage [4] implies that it is an effective technique in 
many cases, it has also been shown that it in other cases, 
coverage based selection methods result in no test suite 
reductions at all [5]. Another issue raised by Inozemetseva 
and Reid [6] is that the costs of the coverage measurements 
can be too high to justify the additional information it 
provides. A problem related explicitly to coverage matrices 
is that they can be too large to use during test case selection 
[3]. Currently, no technique of reducing coverage matrix size, 
or the costs of producing them, has been proposed. However, 



   
 

  2 
 

Niedermayr and Wagner [7] show how stack depth between 
test cases and tested methods correlates to test effectiveness. 
Their work studies its implication for mutation testing. There 
is a lack of research on how the relationship between stack 
depth and coverage could be used in a test case selection 
scenario. A hypothesis can be made that limiting the stack 
during test execution is a viable method for reducing 
coverage matrix size and costs during test case selection.  
 
This thesis investigates the relationship between stack depth 
and function coverage by analyzing the execution data of 
Java applications. Existing coverage tools for Java (such as 
JaCoCo and JCov) don’t allow the user to limit the stack 
depth during execution, nor can they produce coverage 
matrices, so we develop a tool that can create coverage 
matrices of arbitrary stack depths. The tool is applied to open-
source projects from GitHub to generate the empirical data 
for the thesis. In analyzing the data, we also attempt to 
understand how much information is lost at different call 
stack depths of coverage analysis and the possible 
consequences for the test case selection techniques. 
 

II.  PROBLEM STATEMENT 

Execution matrices can aid the process of regression test case 
selection. However, these matrices can be huge for large 
projects and may be of limited use during the selection 
process [3]. Furthermore, the overhead costs associated with 
coverage measurements might cancel out the benefits it 
provides [6]. Reducing matrix size and generation costs could 
make the selection process more efficient, but no such 
techniques have been proposed. It has been shown that a 
program method is less relevant to the behavior examined by 
a test case if it appears at a considerable distance from the test 
case on the call stack [7]. This suggests that excluding 
methods deep in the call stack from the execution matrix 
could reduce its size and evaluation costs while retaining a 
high failure detection accuracy. 
 
To address the problem, this thesis presents a technique for 
generating coverage matrices for arbitrary call stack depths 
and examines how it can be applied in a test case selection 
scenario. To evaluate the effectiveness of the proposed 
technique and its potential usage during test case selection, it 
is applied to open-source Java projects to generate empirical 
data, which is analyzed in terms of coverage accuracy, matrix 
size, and matrix generation cost.  
 
The first research question we define concerns the 
relationship between the call stack and coverage matrix size. 
The size of the matrix has two aspects. First is the two-
dimensional size i.e., the number of test cases and methods 
recorded in the matrix. This is tightly coupled with the 

function coverage of the test suite. The second aspect is the 
possibility of splitting up the matrix into several smaller 
matrices that would be less costly to analyze during the 
selection process. We hypothesize that when limiting the call 
stack depth, several methods that link together otherwise 
unrelated test cases will be excluded from the matrix, making 
the matrix easier to split into smaller submatrices. We 
formulate the first research question as       
 

RQ1: What size reductions of execution matrices can be 
made if the call-stack depth is limited during coverage 
collection? 

 
We further hypothesize that an approximate relationship 
between the depth limit and the coverage of the resulting 
matrix can be described. For instance, “given a depth limit of 
n, it is a good approximation that the resulting matrix will 
have a function coverage of c, where c is expressed as a 
percentage of full coverage”. In other words, if we require an 
accuracy of 95% coverage, there exists a general limit on call-
stack depth that we can use as a heuristic that will result in 
the target coverage. Our second research question is thus: 
 
 RQ2: Can we heuristically predict the function coverage 
for arbitrary depth limits? 
 
Here, we define function coverage as the percentage of 
functions marked as executed by the matrix when running a 
test suite with a limited depth compared to running the tests 
without a depth limit. Hence, if the matrix shows that 90 
functions have been executed when the test suite is run with 
some limit d on call stack depth and 100 functions have been 
executed when run without a limit, the function coverage for 
the depth d is 90%.  
 
The third research question we formulate is related to the 
costs associated with the collecting of coverage data. With 
fewer functions being recorded during coverage collection, 
the execution time will likely decrease.  
 

RQ3: What time savings during coverage collection can be 
made if the call-stack is limited during coverage collection? 

 

III. BACKGROUND 

Regression testing is performed after existing software has 
been modified. The goal of regression testing is to make sure 
that the newly added modifications did not introduce any new 
faults in the previous features of the program [3]. There are 
several strategies to achieve this goal and many of them can 
be combined. The most straightforward approach is the 
retest-all approach in which the entire test suite is run [5]. 



   
 

  3 
 

However, regression testing can be complex and expensive 
[8], especially when performed on large code bases. 
Regression testing is considered a significant challenge in 
industrial settings with large code bases and high standards 
for software quality due to its resource costs [2]. To reduce 
the costs of regression testing, several strategies can be 
employed. These strategies are described in [9]. The major 
strategies are test suite minimization, test case selection and 
test case prioritization. Test suite minimization tries to 
remove redundant tests to minimize the size of the test suite. 
Test case prioritization attempts to order the tests to increase 
early detection frequency [10].  
 
The third strategy, which is the topic of this thesis, is test case 
selection. Test case selection is a strategy that involves 
selecting a smaller subset of the test suite [3]. The selected 
test cases should ideally be the ones that are relevant to the 
modifications. Some test selection techniques, referred to as 
safe, guarantee that the selected test cases will find all 
introduced faults in the modified program [11]. However, 
most selection techniques are unsafe since these techniques 
can considerably reduce the number of tests to execute [5]. 
The drawback is that care must be taken to ensure that the 
fault detection capabilities are as high as possible for the 
selected sub-set of the test suite [11]. For this purpose 
heuristics are usually employed [12]. The heuristics can, for 
example, be based on the software specifications [13], fault 
coverage history or test case diversity [4]. However, most test 
case selection heuristics are based on analysis of the program 
code, especially various code coverage metrics [4]. 
 
Code coverage is a type of measurement that indicates how 
much, or what parts of the source code are executed when a 
test case runs [14]. In a regression testing context, coverage 
can be used as a criterion for the selected test cases [15]. The 
level of detail of coverage measurements can vary [16] [7]. 
Fine-grain coverage information potentially renders more 
efficient test case selection solutions but they are usually 
performed dynamically, that is, they require execution of the 
tests and the related code from the software [4]. Dynamic 
code coverage analysis can be performed by instrumenting 
the program with code that analyzes the program at runtime. 
When the coverage information has been collected it can be 
represented in an execution matrix that is the product of the 
set of test cases and program functions. Each element in the 
matrix represents whether a particular program function was 
called during the execution of a specific test case. Given 
knowledge about the modified functions in the program, the 
execution matrix is a helpful tool to select the test cases that 
makes direct or indirect calls to these functions [9].  
 
One way of collecting coverage data from an executed 
program is call stack analysis. Each thread in a stack-based 

architecture has a related call stack that stores the programs’ 
active subroutines [17]. A function is pushed to the stack 
when it is called and popped off the stack when it returns. 
Every function on the stack exists at a certain depth, where 
the depth is the size of the call stack sequence that led to the 
function being called [18]. Call stack data can be used in 
various ways to facilitate software testing. For example, the 
call stack distance between a test case and a given function 
can be measured [7]. If a function has a high minimum stack 
distance to a given test case, that could indicate that the 
function is ineffectively tested. Call stack data can also be 
used as a code coverage criterion during test suite reduction 
[18]. Test cases that generate a call stack that is the same or 
highly similar to another are good candidates for removal 
since the impact on coverage will be small if removed. 
 

IV.  RELATED WORK 

An overview of the main strategies used to reduce the cost of 
regression testing (test case selection, minimization and 
prioritization) can be found in [9]. They show how the three 
main strategies are closely related and describe existing 
problems in detail. Further, they define the test selection 
problem and give descriptions of various approaches to solve 
it. Overall, this is a good primer for regression testing.  
 
Since there are so many different test selection techniques it 
is important to evaluate and compare them. In an influential 
study, Rothermel and Harrold [13] suggests four categories 
for evaluating techniques: inclusiveness, precision, 
efficiency, and generality. However as Engström et al. [19] 
notes, it can be difficult to compare individual techniques 
since implementations and context can vary subtly. Instead, 
categories of techniques can be compared. Five categories, 
minimization, safe, dataflow-coverage-based, ad-
hoc/random, and retest-all was described by Graves et al 
[20]. Another study by Orso et al. [16] classifies techniques 
according to the degree of granularity, i.e., at higher levels 
(methods and classes) and lower levels (statements). 
However, care must be taken to use adequate criteria and 
algorithms from each category during comparison. As Jones 
and Harrold [21] point out, test selection efficiency varies 
with different coverage criteria and optimization algorithms. 
 
Multiple literature reviews specifically describe and compare 
test selection techniques. Engström et al. [19] reviews the 
empirical evaluations of 32 test selection techniques and 
concludes that no particular technique stands out as superior. 
This conclusion is echoed in a literature review by Narciso et 
al. [12], who builds upon the work of Yoo et al. and Engström 
et al., but has a broader scope and considers selection 
techniques from other fields in computer science. A more 
recent review finds that during 2007-2015 mutation score 



   
 

  4 
 

was gradually replacing coverage for evaluation of test suites 
[22]. 
 
Nonetheless, code coverage has been a staple approach for 
test case selection for many years [4]. A description of 
coverage based techniques is given in Rothermel and Harrold 
[13]. Even though strategies other than code coverage (such 
as mutation testing) have become more popular recently, 
code coverage remains a widespread test selection criterion 
with a steady output of research in the area. In [8] the authors 
show that the costs of reducing the test suite, in terms of fault 
detection capabilities of the remaining test suite, may be 
higher in certain circumstances. However, they note that 
coverage-based reduction techniques significantly 
outperform random selection. They conclude that the risk of 
reducing the test suite must be weighed against potential 
savings and that the relationship between the two is not as 
clear as previously thought.  
 
Some recent studies have focused on methods that use code 
coverage in combination with other objectives. Yoo and 
Harman [9] point out that one difficulty with regression 
testing is that it often requires the satisfaction of multiple 
objectives and constraints. Mondal et al. [4] show that the 
solution sets of the coverage and diversity methods generate 
barely overlapping solution sets and can be efficiently 
combined. 
 
Code coverage might not be the best approach in every 
situation. Di Nardo et al. [5] found that the size of selected 
test suites varies significantly between studies, with some 
reporting no reductions at all.  Inozemetseva and Reid [6] 
show that there is not necessarily a strong correlation between 
code coverage and test suite effectiveness. In addition, they 
suggest that the expenses associated with complex coverage 
measurements might not justify the additional information 
that it provides.  Mondal et al. [4] compared test case 
diversity optimization (maximizing dissimilarity of test 
cases) to code coverage when performing test case selection 
on real-world Java programs. They found that diversity was 
slightly more efficient in reducing test execution time.  
 
Call stacks produced during program execution can be 
utilized to make regression testing more effective. McMaster 
et al. [18] demonstrate how call stack information can 
compare test cases during test suite reduction. They follow 
up their initial work on stack coverage with a study explicitly 
addressing challenges in multithreaded GUI environments 
[17]. Another stack-based approach is demonstrated by 
Niedermayr and Wagner [7]. They show how the stack depth 
of a tested function correlates with test case effectiveness. 
The greater the minimal distance between the test case and 
the tested function, the more likely it is to be inefficiently 

tested. However, they don’t apply this knowledge to 
regression testing techniques but instead show how stack 
analysis can be used in place of mutation testing.  
 
This thesis presents a method for generating high-level code 
coverage data in a scalable way regarding generation cost and 
accuracy. The data is in the form of execution matrices where 
test cases are mapped to the tested functions. To approach the 
general code coverage issues related to generation cost and 
accuracy described by other works [4], [6], [8], and the 
specific size-related problems of coverage matrices explained 
by Yoo and Harman [9], we propose limiting the call stack 
depth during test execution. The study examines how call 
stack depth is related to matrix size, accuracy, and generation 
costs, and its implications for test case selection. Smaller, 
low-cost matrices could prove helpful in the multiple-
constraint test selection scenarios described in [3] where the 
effectiveness of the selection depends on a combination of 
constraints/objectives. 
 
Hopefully, the thesis provides some new insights into how 
the call stack can be used in a regression testing setting. 
Where previous work on call stacks and test effectiveness 
have focused on the comparison of call stacks [17], [18], or 
its implications for the related field of mutation testing [7], 
this thesis is situated in the context of test case selection 
during regression testing. 
 

V. RESEARCH METHODOLOGY 
This thesis investigated how varying the call-stack depth 
during coverage analysis affects function coverage and 
execution matrix size. The first step was to construct the 
coverage analysis tool. Next, open-source projects to analyze 
were selected from GitHub according to a set of predefined 
criteria. The third step was primary data collection and 
primary analysis. The developed tool was used to find a 
suitable subset of depths that could be used for data collection 
in the fourth step (the data collection/analysis phases are 
visualized in Fig. 1). The fourth step, i.e., secondary data 
collection, used the tool with the selected depths to generate 
data that could be used to analyze and compare with the 
findings from the third step to find out how coverage and 
matrix size change with depth. 



   
 

  5 
 

 
Fig. 1. The workflow for analyzing the projects. The primary analysis 

informed the parameters for the secondary analysis. 
 

1. Tool construction 
An analysis tool called Matrixer1 was developed in the initial 
phase of the project. The tool was constructed to facilitate 
data collection for the thesis. It enabled the collection and 
analysis of execution data from Java programs and generated 
coverage matrices for arbitrary call stack depths. The tool is 
described in more detail in section VI. Besides developing the 
tool itself, a simple Java application for testing the 
functionality of the Matrixer was created2. 

 
2. Project selection 

This section describes the process of selecting projects from 
GitHub for the empirical part of the study. GitHub offers 
various project metrics, i.e., user stars or number of forks, as 
well as an advanced search function. We used the star rating 
to rank Java repositories from highest to lowest, which 
allowed us to find the most popular projects on the site (stars 
indicate user interest or satisfaction with a project and can be 
used to gauge its popularity [23]). Furthermore, we filtered 
out projects smaller than 1 MB to increase the frequency of 
larger projects with many tests and methods. Since project 
size depends on multiple factors, some smaller projects could 
have been included in the first selection. After the final 
selection, the size variation in lines of code ranged from 1370 
to 32236 with an average of 12994 (standard deviation 8154). 
We also excluded repositories that were android based, non-
applications (course files, implementations of 
algorithms/design patterns, etc.), or not documented in 
English. With these restrictions and rankings in place, we had 
a systematic method for finding the most popular, large-scale 
open-source Java application projects. 
 

 
1 https://github.com/ikristola/matrixer/tree/master 

We selected the first 100 projects that matched the selection 
criteria from the top hits. We had to make sure that the 
Matrixer could adequately analyze the selected projects. The 
requirements that a project must satisfy to be analyzable by 
the Matrixer tool are the following: 
 

- The project must be developed in Java. 
- Gradle or Maven must be used as a build system. 
- The project must be able to build without errors. 
- JUnit or Testng must be used as a test framework. 

 
Many of the projects had initial build issues or complications 
with running the test suite. Therefore, we allowed a small 
amount of time to investigate and try to fix the errors. 
Usually, 15 minutes was enough to discern whether the 
problems could be fixed or if the project had to be rejected. 
Out of the selected projects only 20 would build without 
errors. Six projects of the remaining 20 had a build structure 
that prohibited the loading of some of the classes in the agent. 
These problems could be fixed by a small, manual 
modification of the build file. This required the tool to be 
modified to skip the automatic manipulation of the build file. 
 

3. Data collection and analysis 
The empirical part of the thesis work consisted of four steps: 
primary data collection, primary analysis, secondary data 
collection, and secondary analysis. In the preliminary phases, 
the Matrixer was used to collect coverage of the selected 
projects without limiting the call stack depth. The results 
were then analyzed and used to guide the secondary data 
collection phase where depth limited analysis was made to 
produce coverage matrices of smaller sizes. In the concluding 
analysis step, the secondary data was compared to the 
primary data to understand how varying the call stack depth 
affects coverage matrix size. 
 
The tool was used by running the command  
 
matrixer –-target <path to project> --pkg <target package 
name>  

 
with the flag  --testpkg <test package name> set if necessary. 
The main package name for every project had to be manually 
identified and provided as an argument to the tool. When 
running this way, the tool automatically handles attaching the 
agent to the target program by build-file modification, 
program executing, and generation of coverage data. In the 
secondary data collection step, the argument –-depth <depth 
limit> were also provided to cap the call stack depth.  
In the primary data analysis, the execution matrices were 
manually investigated for generalizations regarding average, 
median, maximum, and minimum call stack depth. From 

2 https://github.com/ikristola/matrixer-test 



   
 

  6 
 

these, we could draw some conclusions about whether there 
is a range of depths that encompasses the most relevant (for 
regression testing purposes) methods and selecting a set of 
depths to test in the secondary data collection step. The 
Matrixer was run with the --depth <depth> flag set to collect 
data for different depths. A run script was constructed that 
automatically executed the matrixer for the target range of 
depths. We discovered that the most critical changes in 
coverage metrics appeared at lower depth limits, so we wrote 
the script to start with a depth of one and increment the depth 
limit by 1 for each run. Whenever the script noticed that the 
number of recorded methods was repeated for consecutive 
depths, it increased the step at which the depth was increased. 
This gave us dense data points when the data changed rapidly 
and sparser data points when the changes decreased. It also 
sped up the process of running projects that had a significant 
difference between the average and maximum depth of calls. 
 
The secondary data analysis compared the matrices from both 
data collection steps. The analysis method we used for 
individual programs is described in the following section. For 
every program tested, relevant coverage data was lifted from 
the matrices and inserted into a spreadsheet designed to 
perform the analysis calculations. We could also compare full 
stack and depth limited matrices to see how many methods 
were not executed for a given depth. 
 

4. Analysis method 
For each run the Matrixer gave us information about the 
execution time of the test suite and on the resulting matrix. 
The matrix data consisted of the number of methods and test 
cases it contained, the depth of calls, and the number of 
unique calls per method, expressed as an average and a 
median for the entire set of methods. 
 
We can define the following: 
 

Coverage The number of functions executed at least 
once when running the entire test suite. 

Fd Coverage when using a stack depth limit d. 
C = F∞ Full coverage baseline. 
Cd = Fd / C The coverage ratio at depth d 
Iavg The average number of unique invocations  

per method 
T The number of executed tests 
CT = Iavg / T Test coverage per method 

 
For RQ1 we will be looking at CT, RQ2 relates to CD and RQ3 
is concerned with the execution time of the tests. The test 
coverage per method metric, CT, gives us a notion of how 
many test cases are connected through a single method, on 
average. Another way to look at this value is how full the 
average row (representing a method) is in the matrix. An 

increased number of such connections could make the matrix 
harder to split up into smaller disjoint matrices. Fig. 2 
presents a simplified example. It shows a matrix with the 
minimum depth of calls from a test case to a method. At a 
depth of six the matrix is impossible to split up without losing 
information or creating redundancy between the resulting 
matrices. But if we limit the depth to five it is trivial to divide 
it up into two matrices, where one of them contains T1, T2 and 
M2 and the other contains T3, T4 and M1. Hence if we know 
the matrices where the methods we want to cover are located, 
the process of selecting the best test cases has fewer tests to 
consider. This metric is not a perfect indicator of how trivial 
the matrix is to split up. Instead, what is interesting is how 
this number varies for different depth limits.  
 

 T1 T2 T3 T4 

M1   3 4 
M2 3 4 6  

 
Fig. 2. An example of a matrix that can be split up easily at depth 5 but is not 

possible to split up at depth 6. 
 
For each metric above, the data from each project was 
collected into a table and the average, median and standard 
deviation was calculated. 
 
We expect to see a decrease in CT as the depth limit is more 
restrictive. This follows from the hypothesis that passive 
methods – methods that are deep in the call stack and less 
relevant to the tested behavior, link together otherwise 
unrelated test cases. Furthermore, we expect to see a decrease 
in coverage and execution time at the shallower depths. Some 
functions may only appear at deeper levels of the call stack, 
which means they will not be recorded at shallower depths. 
And if we record fewer method calls there is less work to do 
for the stack recorder and the execution time should decrease. 
  

5. Limitations 
The Matrixer had some difficulties analyzing large projects 
with very complex build structures. Since projects with big 
test suites and a large number of methods stand to benefit the 
most from matrix size reductions, it is possible that these 
were excluded from the study. Furthermore, no 
considerations were taken about the categories (except being 
non-android) of the projects during the selection phase. 
Another limitation related to the Matrixer tool is that there is 
no way of knowing that it found and instrumented all 
methods in the target. It is thus conceivable that some of the 
analyzed projects did not produce correct coverage matrices. 
 

VI. ARTEFACTS 

This section describes the Matrixer tool that we used to 
collect the empirical data for the thesis. The tool was required 



   
 

  7 
 

to analyze Java projects in terms of function coverage per test 
case and gather call stack data from the program’s execution. 
Furthermore, it allowed us to limit the stack depth for the 
coverage collection during test execution. Lastly, the tool 
needed to convert the analyzed results into a visual format 
that is easy to understand by the user. The tool is written in 
Java (JDK 11) and uses Gradle for build automation.  

The target applications were dynamically instrumented with 
code that could collect the coverage information. 
Instrumentation is the practice of injecting functionality into 
the source code or the compiled binaries of a program for 
diagnostic or performance-measuring purposes [24]. A 
common way of instrumenting Java programs is by using 
Java Instrumentation API3 facilitated by Java Agents, 
packaged in separate JAR files, that attach to the program 
statically at JVM startup or dynamically through an API call. 
These agents can change a program by byte-code additions to 
the compiled code. A custom agent was developed as a 
submodule to the Matrixer. The agent performs the necessary 
instrumentation using the commonly used ASM4 framework. 
 

1. Program flow 
When the tool is executed, it begins by identifying the build 
file of the target project and modifies it so that the agent is 
attached to the JVM that runs the test suite(s). The tool then 
uses the build automation tool’s native test commands to 
execute the test suite in a forked process. The agent is started 
before the tests and target classes are loaded and registers a 
class file transformer with the instrumentation API. The 
transformer is then called by the regular class loading process 
whenever a new class is loaded and modifies the byte code 
accordingly. When the methods of the target project are 
instrumented, execution data will be continuously collected 
while the test suite is running. The tool waits for the test suite 
to finish executing and then analyzes the execution data to 
map test cases to the target methods it called and at which 
depth in the stack the call occurred.  
 

2. Instrumentation 
This section describes the Java Agent that is used to extract 
coverage data from the target program. Each target method is 
instrumented such that the original code in the method is 
wrapped in a try-finally5 block. Before the original code is 
executed, the method calls a static class to notify it that a new 
method has been called. Similarly, the finally block contains 
a call to notify that the method has finished execution. 
Placing the last call in a finally block guarantees its 

 
3 
https://docs.oracle.com/en/java/javase/11/docs/api/java.instr
ument/java/lang/instrument/package-summary.html 
4 https://asm.ow2.io/ 

execution, regardless of whether the function is exited 
through a normal return or through an exception. Fig. 3 shows 
how a decompiled instrumented class might look. 
 

 
 Fig. 3. Example of decompiled instrumented method 

 
Analogous instrumentation is performed on every method in 
the test classes that are annotated with a Test annotation. 
These methods are instrumented to notify the invocation 
logger when test cases are started and when they finish. Other 
methods in the test classes are ignored entirely, making them 
transparent to the logger. Thus, it appears to the tool that any 
calls e.g., from test helper methods etc., were made from the 
Test-annotated method. Furthermore, the invocation logging 
class is thread-aware: it keeps track of when a new thread is 
created and the parent thread. This allows the logger to record 
the depth of calls across threads. This is achieved by 
instrumenting the native Thread class.  

3. Limitations of the tool 
Third party classes and native Java classes (excluding the 
Thread class) are not instrumented and will not be considered 
when calculating the stack depth. Furthermore, the tool uses 
the location of the class files and Test annotations to identify 
test classes and their test cases. If, for some reason, the 
location is not available, the class will not be instrumented. 
We could not find any information about when the location 
of the class files would be missing, it might differ between 
different JVM implementations. Still, it may be important 
since these tests are not considered. Furthermore, the method 
we used for instrumentation does not work with constructors, 
since they must not be instrumented with code before the call 
to the super constructor[25]. ASM has special adapter classes 
developed for handling the complexity of this particular use 
case, but we were unsuccessful in applying them. For this 
reason, constructors are not recorded. 
 
The first version of the tool collected the stack depth using 
Java’s native stack trace mechanism in the Thread class. As 
mentioned in [7] this turned out to be a costly operation and 
not viable for many projects. For this reason, we abandoned 

5 
https://docs.oracle.com/javase/tutorial/essential/exceptions/f
inally.html 



   
 

  8 
 

the approach and created the stack recorder class instead. 
Initially, we also used the Javassist6 framework to do the 
instrumentation. But it did not have the capacity to instrument 
Java’s native Thread class. As such we had to resort to the 
lower-level framework ASM. As the instrumentation 
required was not too complicated, we decided to remove 
dependency on Javassist entirely and instead used the ASM 
framework to do all the instrumentation.  
 

VII. RESULTS 
This thesis selected 20 out of 100 open-source Java programs 
to analyze. The analysis was performed by creating coverage 
matrices of the test suites for different call stack depths. This 
section presents the data collected and analyzed to answer the 
research questions of the thesis. 
 
The projects were first run without depth limitations to 
acquire baseline data that could be later compared to depth 
limited tests. Moreover, this data was used to guide the depth 
limits of the secondary data analysis. The results are shown 
in Table 1. 
 

Table 1. Results from primary data collection 
 
The number of test cases per project range from 44 to 967 
with an average of 240, and the number of tested methods 
range from 66 to 2286 with an average of 513. While the 
maximum call stack depth in most cases doesn’t exceed 50, 
three projects stand out with very high maximum depths (in 
one case 514). The average depth varies between 1.2 and 15.5 
with all projects but one having an average below 10. Median 
depth follows the average with a margin of +-1.3, except for 
one project that has a median depth that is 3.5 smaller than 
the average.  
 

 
6 https://www.javassist.org/ 

To determine how limiting the call stack affects matrix size, 
the projects were instrumented with the tool and the tests 
executed with various depth limits. The primary results 
indicated that the shallower depths might be more important 
to function coverage in general. Yet, the large variation in 
maximum depth suggests that this might not be true in all 
cases. Based on these preliminary findings, a set of coverage 
data for depth one to 20 was collected using the tool. Any 
project that had not reached 100% coverage at depth 20 was 
run continuously, with a larger step between depths, until full 
coverage was achieved. 
 
Table 4 and Fig. 4 present the results of the collection of 
coverage data. The average coverage at depth one starts at 
45.87% and then increases rapidly up to depth six where avg. 
coverage is 89.59%. The curve then flattens out at around 
95% coverage. The median initially follows the average but 
flattens out at 100% coverage at depth 13. This difference is 
due to one project (SocketIO-client-java) having a 
considerably lower coverage, especially at depths 5-15 
compared to the rest of the projects. The standard deviation 
is 19.27% at depth one, indicating high initial coverage 
variation among the projects (the lowest is 16.10% and the 
highest 84.80%). However, this variation gradually shrinks, 
and at depth 20 the deviation is 13.44.  
 

 
 Fig. 4. Average and median coverage for stack depths 1-20 

 
The size of the matrix can be defined as F x T where F is the 
number of functions it contains, and T is the number of tests. 
If the tests are the same, then the size of the matrix is 
proportional to the coverage. When it comes to the possibility 
of splitting the matrix into several smaller ones, some 
indication can be found in Fig. 5. It shows the percentage of 
tests in the matrix that covers the average and median 
method, CT. The behavior is highly similar to that of the 
coverage presented in Fig. 4.  
 

Project Stars LoC Test 
time 

Test 
time. 
Instr. 

Methods Tests Max. 
depth 

Avg. 
depth 

Med. 
depth 

Initializr 2.5k 32236 03:05 02:30 2286 967 45 8.2 7.0 
Java-faker 2.6k 8388 01:08 04:53 967 556 29 3.9 3.0 
Logstash logback encoder 1.8k 15166 00:29 00:32 876 320 14 3.5 3.0 
Bootique 1.3k 18599 00:41 00:39 824 235 58 9.5 9.0 
apollo 1.6k 14599 00:51 00:56 811 432 28 5.7 5.0 
Jimfs 2k 17876 00:48 03:17 735 457 174 2.2 2.0 
GCViewer 3.7k 22270 00:52 01:24 646 427 514 5.0 5.0 
Telegrambots 2.4k 22424 01:47 01:03 596 64 6 1.2 1.0 
Git commit id maven plugin 1.2k 7243 04:29 03:27 330 131 16 6.9 6.0 
jcasbin 1.4k 6413 00:10 00:16 300 107 16 4.7 5.0 
Client java 1.5k 10228 01:33 05:11 298 179 11 4.4 5.0 
Pushy 1.4k 9033 00:56 01:00 267 144 10 2.3 2.0 
Scribejava 5.2k 20997 00:49 00:30 262 97 9 3.7 3.0 
socketIO client java 4.7k 3791 02:28 02:20 243 86 100 15.5 12.0 
Easy rules 3.1k 5917 00:20 00:26 224 189 11 3.7 4.0 
Jvm profiler 1.5k 7576 00:08 05:12 161 64 6 2.0 2.0 
Egads 1k 7056 00:19 00:19 159 44 5 2.7 3.0 
Oryx 1.8k 20214 06:29 03:24 129 98 15 2.8 2.0 
Nv websocket client 1.8k 8491 00:09 00:14 90 73 13 4.3 3.0 
JavaVerbalExpressions 2.5k 1370 00:07 00:07 66 85 5 1.7 2.0 



   
 

  9 
 

 
Fig. 5. Average number of tests that execute a given method for depths 1-
20. The individual values are compared to the max value for the project: a 
value of 100% means that the number of tests at that depth limit is equal to 

the maximum value for the project. 

 
To visualize how individual projects meet arbitrary coverage 
criteria, the minimum depths required to reach 60, 70, 80, 90 
and 100% coverage are shown in Fig. 7. This chart shows that 
in general, the depths required for coverage targets between 
60 and 90% are quite consistent. On average, coverage targets 
between 50% and 90% require depths between two and 
seven. To reach 100% coverage, the graph shows larger 
variations in depths. In average, a depth of 15.35 is required 
however, only three projects require a depth larger than 15 to 
reach full coverage. These, on the other hand, needs depths 
up to 65 for 100% coverage. These results are summarized in 
Table 2.  
 

Target 
coverage 

Average Median Std 
dev. 

Min. Max. 

60% 3.05 2 3.98 1 19 
70% 4.10 3 5.22 1 25 
80% 5.05 4 6.27 1 30 
90% 6.75 5 8.25 2 40 
100% 15.35 9.5 17.10 2 65 

Table 2. Coverage targets and depths required to meet them 
 
To adjust for variations in maximum depths among the 
projects tested, Fig. 8 presents the coverage targets with 
depths expressed as a percentage of the full depth. These 
results show more significant variations between projects 
compared to Fig. 6. For 60% coverage, between 0.58% and 
40.00% of the stack depth are used. For 70% coverage, the 
depths vary between 0.78% and 46.15%. For 90% coverage, 
the numbers are between 1.17% and 61.54%. Table 3 
summarizes these findings. 
 
To assess the overhead costs associated with limiting the call 
stack during coverage collection, the time costs of running 
the instrumented tests at different depths were measured and 

compared to the time for coverage collection of the entire 
depth (Fig. 6). The data does not show any significant 
 

Target 
coverage 

Average Median Std 
dev. 

Min. Max. 

60% 14.03% 14.58% 11 0.58% 40.00% 
70% 19.01% 17.71% 14 0.78% 46.15% 
80% 24.67% 25.00% 19 0.78% 61.45% 
90% 31.84% 33.81% 22 1.17% 63.64% 
100% 61.57% 69.17% 32 2.33% 100% 

Table 3. Coverage targets and percentage of maximum depth required to 
meet them 

 
changes in execution time except for the first two depths 
(85.36% and 94.86% of the time for full depth coverage); 
however, the standard deviation is 26.29% and 20.32%, so 
these numbers should be taken with caution. 

 

 Fig. 6. Average and median execution time for stack depths 1-20 

 

VIII. DISCUSSION 
The results show that test coverage behavior is consistent for 
most projects in the study at call-stack depths up to 10. All 
projects except one reach 90% coverage within a depth of 
eight, and 85% reach full coverage at or before a depth of 15. 
No significant variations due to differences in project size, 
test execution times, and test cases can be found. When the 
depths required to reach various coveragep goals are 
expressed as a percentage of maximum depth, no trends can 
be detected.  However, coverage behavior and maximum 
stack depth of the tests can vary significantly in extreme 
cases. This is revealed as one of the projects requires a stack 
depth of 41 to reach a 90% coverage.  

RQ1: What size reductions of execution matrices can be 
made if the call-stack depth is limited during coverage 
collection? 

As hypothesized, the size of the matrix decreases at shallower 
depths, along with the coverage of the matrix. However, the



   
 

  10 
 

 
Project 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Apollo 49.60% 72.50% 81.20% 87.20% 92.40% 95.30% 97.10% 98.50% 99.00% 99.40% 99.60% 99.60% 99.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Easy-rules 49.10% 63.80% 84.80% 96.40% 99.10% 99.60% 100.00% 100.00% 100.00% 100.00% 100.00%          

TelegramBots 67.70% 89.30% 94.90% 97.70% 99.00% 99.80% 99.70% 99.80% 100.00% 99.90% 99.80% 99.80% 100.00% 99.80%       
Logstash Logback 
Encoder 40.00% 61.50% 73.40% 82.20% 89.80% 94.50% 97.70% 98.50% 100.00%            

scribejava 44.70% 67.90% 78.60% 84.40% 91.20% 97.70% 98.90% 99.60% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

GCViewer 30.50% 52.30% 68.90% 81.70% 85.90% 90.60% 94.10% 97.30% 98.60% 98.80% 99.70% 100.00% 100.30% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
maven git commit id 
plugin 16.10% 34.50% 48.50% 62.10% 72.10% 86.70% 92.40% 95.20% 97.30% 99.10% 99.70% 99.70% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

jimfs 49.90% 75.60% 86.00% 93.10% 96.40% 98.90% 99.60% 99.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%     

pushy 49.50% 62.30% 74.00% 81.30% 87.20% 93.80% 96.00% 98.50% 100.00% 100.00% 100.00%          

oryx 83.60% 96.90% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%      

nv-websocket-client 30.30% 50.60% 59.60% 61.80% 66.30% 71.90% 78.70% 93.30% 98.90% 100.00% 100.00% 100.00% 100.00%        

JavaVerbalExpressions 84.80% 100.00% 100.00% 100.00% 100.00%                

java-faker 60.20% 75.00% 86.60% 95.70% 96.70% 97.30% 97.80% 98.60% 98.90% 99.00% 99.20% 99.50% 99.70% 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

jcasbin 41.70% 56.60% 78.80% 86.40% 92.70% 96.00% 98.30% 99.00% 99.70% 99.70% 99.70% 99.70% 99.70% 100.00% 100.00% 100.00%     

jvm-profiler 64.60% 86.30% 96.90% 99.40% 100.00% 100.00%               

egads 40.50% 70.30% 94.30% 100.00% 100.00%                

client-java 40.50% 70.30% 94.30% 100.00% 100.00%                

initializr 34.20% 49.30% 61.80% 72.30% 80.30% 86.30% 89.90% 92.50% 94.20% 95.70% 96.40% 97.10% 97.70% 98.10% 98.20% 98.40% 98.70% 98.90% 99.10% 99.40% 

Socket.IO-client Java 13.90% 17.60% 20.00% 21.60% 23.30% 26.90% 31.40% 33.50% 36.70% 39.60% 44.90% 47.30% 47.80% 50.20% 52.70% 55.50% 57.60% 59.60% 60.80% 61.60% 

Bootique 25.90% 43.70% 54.30% 67.40% 79.90% 87.80% 91.20% 93.20% 94.30% 94.60% 95.50% 95.90% 95.90% 96.00% 96.50% 96.80% 97.10% 97.20% 97.20% 97.30% 

Average 45.87% 64.82% 76.85% 83.54% 87.62% 89.59% 91.43% 93.59% 94.85% 95.05% 95.63% 95.28% 95.46% 95.33% 95.22% 95.07% 94.18% 94.46% 94.64% 94.79% 

Std dev 19.27% 20.46% 20.30% 19.37% 18.07% 17.70% 16.92% 16.23% 15.62% 15.43% 14.10% 14.47% 14.37% 14.26% 14.15% 13.94% 14.82% 14.12% 13.71% 13.44% 

Median 43.20% 65.85% 80.00% 86.80% 92.55% 95.30% 97.40% 98.50% 99.35% 99.70% 99.70% 99.70% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Table 4. Average and median coverage for stack depths 1-20 

Fig. 7. Depths required to meet various coverage criteria 
 



   
 

  11 
 

 

Fig. 8. Depths (percentage of maximum) required to meet various coverage criteria 

 

curve quickly flattens and reaches a close to a maximum 
value at depth 10. Similarly, the steady increase in CT in Fig. 
5 suggests that as we increase the depth limit, the number of 
tests that executes the average method is also increasing. This 
could indicate that it will be more challenging to split up the 
matrix for higher depths. But how hard that would be in 
practice needs to be examined further. It may also be because 
the metric we chose as the heuristic for the possibility of 
splitting the matrix were not sufficiently useful. 

RQ2: Can we heuristically predict the function coverage for 
arbitrary depth limits? 

The consistency of the coverage behavior at smaller depths 
of the analyzed projects suggests that limiting call stack 
during coverage collection is a viable technique for 
increasing the effectiveness of test selection procedures. 
Depending on coverage requirements, varying depth limits 
can be used heuristically for predictable size reductions of 
coverage matrices. In scenarios where a high coverage is 
required, a stack depth of 10 yields on average 95% coverage. 
If lower coverage is acceptable, such as when used in 
combination with other criteria, a smaller depth could be 
used. At depth seven, the average coverage is 91.43% which 
could be enough for many applications. However, no 
coverage guarantees are provided so if meeting the coverage 
target is critical to the test selection operation, regular full 
call-stack coverage collection might be necessary. And 

importantly, these results may differ for larger, more 
complicated projects than the ones included in this thesis.  

RQ3: How much, if any, time savings can be made if the 
call-stack is limited during coverage collection?  

Like Niedermayr and Wagner [7], we noticed a single digit 
factor slowdown in execution time for the instrumented test 
suite. The results further show no significant variation 
between recorded times of coverage collection for different 
depths, except for the two smallest depths that are executing 
slightly faster than the rest. However, the standard deviation 
for those depths is relatively high so these results should be 
taken with caution. The lack of variation in execution times 
could be caused by the relatively small size of the tested 
projects. Most projects (18/20) have test execution times that 
are under five minutes. It is possible that the largest part of 
the recorded test execution times consists not of executing 
code but of various overhead costs such as JVM startup and 
module initialization. It is still conceivable that the technique 
we present might render time savings in test suites with long 
execution times. This might be a good direction for future 
studies since inefficient coverage measurement methods, as 
pointed out by Inozemetseva and Reid [6], might not justify 
its informational value. 
 
Surprisingly, for some of the projects the original test suites 
had faster execution times in the instrumented version. In 
most cases where this occurred, the difference was so small 



   
 

  12 
 

that it could probably have been caused by momentary 
changes in throughput of the test environment. We have no 
reasonable explanation for the instances with a more 
significant execution time difference.   
 

1. Limitations 
We experienced some difficulties with finding large projects 
that were compatible with the Matrixer. Execution matrix 
size problems are mainly a problem for industrial-scale 
projects, however the projects selected for this thesis were 
comparatively small (in terms of lines of code). Furthermore, 
many of the selected projects don’t have explicit integration 
test suites that could be run. Instead, we evaluated the entire 
test suite which included both unit tests and integration tests. 
This fact may skew the results, since an integration testing 
suite has a broader reach across software modules than unit 
tests.  
 

2. Threats to validity 
There were some notable exceptions among the projects in 
the coverage behavior and identified maximum depth. This 
may be a consequence of poor compatibility between the 
instrumentation method and project structure, but perhaps 
more likely due to natural variations in program design. This 
thesis did not examine the internal structure of the projects; 
hence a direction for future studies could be to investigate 
coding patterns, APIs, and programming paradigms and find 
possible connections to call-stack performance during 
testing.  
 
For most of the projects, the number of test cases recorded by 
the Matrixer was close to the number discovered by the build 
tool. But for some projects our tool found a significantly 
smaller number of tests. One contributing factor to this 
discrepancy is that some test suites use parameterized and 
repeating tests. That means that the same test method is run 
multiple times, possibly with variations in parameters, and 
the build tool treats each run as a separate test. However, the 
Matrixer is only concerned with the test method’s name, and 
hence the repeated tests will be treated as a single test.  
 
Concurrency is infamously challenging to test [26], and 
although the Matrixer itself does not use concurrency, some 
of the tested projects do. We did our best to write the agent in 
a thread safe manner, but we cannot exclude the possibility 
that concurrency bugs may affect the results.  
 
Considering the above limitations, the results of this thesis 
may not be directly applicable to industrial size projects. 
More research needs to be conducted on the coverage 
reduction method proposed in this work and its effectiveness 
on large scale projects. Yet, the results of this thesis may still 
point the teams of large projects in the right direction, 

providing a starting point for their analysis and providing an 
additional technique that can help make the test case selection 
process more effective. 
 

3. Ethical aspects and social relevance 
The motivation for this study was to increase the knowledge 
on how limiting the stack depth during function coverage 
collection can make the process of regression testing more 
efficient. As a large portion of the software development 
lifecycle is spent on maintenance [27], this can have a 
beneficial impact on the cost of developing software. 
Furthermore, if some of the resources used for testing and 
related activities can be redirected towards other areas of the 
development process, the software quality may increase.  We 
cannot see any ethical consequences of this study as it doesn’t 
involve any sensitive data or any malicious use cases. All the 
projects included in this study where open-source and 
published on GitHub. 
 

IX. CONCLUSIONS 
This work examined how the use of stack depth limits during 
coverage collection affects matrix size, coverage,  and the 
execution time of the dynamic analysis. We found that 
coverage, and thus matrix size, is increasing drastically at 
shallow depths. However, this increase quickly diminishes 
and the coverage soon reaches a steady value for most of the 
projects analyzed. A very similar pattern can be seen for the 
difficulty of splitting up the resulting coverage matrix into 
several smaller, disjoint matrices that retain the same 
coverage. Still, the execution times for the dynamic analysis 
did not change to a noticeable degree for the tested projects. 
This suggests that if the particular use case for the matrix can 
afford to reduce enough coverage, the size of the matrix can 
be reduced, and potentially be more trivial to split up. Since 
the size of the matrix affects the cost of analysis, this could 
reduce the effort of test case selection constraint satisfaction. 
On the other hand, if the dynamic analysis and coverage data 
collection are the bottleneck, then other strategies are 
required. 
 
This thesis only used the average number of tests that invokes 
any given method as a heuristic for the difficulty of splitting 
up the matrix in smaller matrices, that would be easier to 
analyze. Future work may investigate various algorithms 
with different goals for splitting up the matrix. The most 
trivial example would be to select a method in the matrix at 
random and walk the connected test cases and then walk the 
method they invoke and so on, until a disjoint matrix has been 
found. The found tests and methods can be put in a separate 
matrix, and the process is repeated until every method has 
been traversed. This will retain the same coverage as the 
original matrix but will likely be hard to achieve in practice. 



   
 

  13 
 

Other strategies may trade off coverage to achieve a better 
split between the created matrices. We further suggest that 
the applicability of the findings of this thesis be explored for 
larger and more complex projects.  
 

REFERENCES 

[1] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, A. Corazza, 
and G. Antoniol, “Adequate vs. inadequate test suite reduction 
approaches,” Inf. Softw. Technol., vol. 119, p. 106224, Mar. 2020, 
doi: 10.1016/j.infsof.2019.106224. 

[2] N. bin Ali et al., “On the search for industry-relevant regression 
testing research,” Empir. Softw. Eng., vol. 24, no. 4, pp. 2020–2055, 
Aug. 2019, doi: 10.1007/s10664-018-9670-1. 

[3] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection 
and Prioritisation : A Survey,” p. 60, 2012. 

[4] D. Mondal, H. Hemmati, and S. Durocher, “Exploring Test Suite 
Diversification and Code Coverage in Multi-Objective Test Case 
Selection,” in 2015 IEEE 8th International Conference on Software 
Testing, Verification and Validation (ICST), Apr. 2015, pp. 1–10. 
doi: 10.1109/ICST.2015.7102588. 

[5] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based regression test case selection, minimization and prioritization: 
a case study on an industrial system: COVERAGE-BASED 
REGRESSION TESTING: AN INDUSTRIAL CASE STUDY,” 
Softw. Test. Verification Reliab., vol. 25, no. 4, pp. 371–396, Jun. 
2015, doi: 10.1002/stvr.1572. 

[6] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated 
with test suite effectiveness,” in Proceedings of the 36th 
International Conference on Software Engineering, Hyderabad India, 
May 2014, pp. 435–445. doi: 10.1145/2568225.2568271. 

[7] R. Niedermayr and S. Wagner, “Is the Stack Distance Between Test 
Case and Method Correlated With Test Effectiveness?,” in 
Proceedings of the Evaluation and Assessment on Software 
Engineering, New York, NY, USA, Apr. 2019, pp. 189–198. doi: 
10.1145/3319008.3319021. 

[8] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical 
studies of test-suite reduction,” Softw. Test. Verification Reliab., vol. 
12, no. 4, pp. 219–249, 2002, doi: https://doi.org/10.1002/stvr.256. 

[9] S. Yoo and M. Harman, “Pareto efficient multi-objective test case 
selection,” in Proceedings of the 2007 international symposium on 
Software testing and analysis, New York, NY, USA, Jul. 2007, pp. 
140–150. doi: 10.1145/1273463.1273483. 

[10] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four 
typical test suite reduction techniques,” Inf. Softw. Technol., vol. 50, 
no. 6, pp. 534–546, May 2008, doi: 10.1016/j.infsof.2007.06.003. 

[11] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative study 
of coarse- and fine-grained safe regression test-selection techniques,” 
ACM Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp. 149–183, Apr. 
2001, doi: 10.1145/367008.367015. 

[12] E. N. Narciso, M. E. Delamaro, and F. D. L. D. S. Nunes, “Test Case 
Selection: A Systematic Literature Review,” Int. J. Softw. Eng. 
Knowl. Eng., vol. 24, no. 04, pp. 653–676, May 2014, doi: 
10.1142/S0218194014500259. 

[13] G. Rothermel and M. J. Harrold, “Analyzing regression test selection 
techniques,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–551, 
Aug. 1996, doi: 10.1109/32.536955. 

[14] J. Lee, S. Kang, and P. Jung, “Test coverage criteria for software 
product line testing: Systematic literature review,” Inf. Softw. 
Technol., vol. 122, p. 106272, Jun. 2020, doi: 
10.1016/j.infsof.2020.106272. 

[15] D. S. Rosenblum and E. J. Weyuker, “Using coverage information to 
predict the cost-effectiveness of regression testing strategies,” IEEE 
Trans. Softw. Eng., vol. 23, no. 3, pp. 146–156, Mar. 1997, doi: 
10.1109/32.585502. 

[16] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel, M. L. Soffa, 
and H. Do, “Using component metacontent to support the regression 
testing of component-based software,” in Proceedings IEEE 

International Conference on Software Maintenance. ICSM 2001, 
Nov. 2001, pp. 716–725. doi: 10.1109/ICSM.2001.972790. 

[17] S. McMaster and A. Memon, “Call-Stack Coverage for GUI Test 
Suite Reduction,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 99–
115, Jan. 2008, doi: 10.1109/TSE.2007.70756. 

[18] S. McMaster and A. M. Memon, “Call stack coverage for test suite 
reduction,” in 21st IEEE International Conference on Software 
Maintenance (ICSM’05), Sep. 2005, pp. 539–548. doi: 
10.1109/ICSM.2005.29. 

[19] E. Engström, M. Skoglund, and P. Runeson, “Empirical evaluations 
of regression test selection techniques: a systematic review,” in 
Proceedings of the Second ACM-IEEE international symposium on 
Empirical software engineering and measurement, New York, NY, 
USA, Oct. 2008, pp. 22–31. doi: 10.1145/1414004.1414011. 

[20] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, 
“An empirical study of regression test selection techniques,” ACM 
Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp. 184–208, Apr. 2001, 
doi: 10.1145/367008.367020. 

[21] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization 
for modified condition/decision coverage,” IEEE Trans. Softw. Eng., 
vol. 29, no. 3, pp. 195–209, Mar. 2003, doi: 
10.1109/TSE.2003.1183927. 

[22] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective 
Regression Test Case Selection: A Systematic Literature Review,” 
ACM Comput. Surv., vol. 50, no. 2, p. 29:1-29:32, May 2017, doi: 
10.1145/3057269. 

[23] H. Borges, A. Hora, and M. T. Valente, “Understanding the Factors 
That Impact the Popularity of GitHub Repositories,” in 2016 IEEE 
International Conference on Software Maintenance and Evolution 
(ICSME), Oct. 2016, pp. 334–344. doi: 10.1109/ICSME.2016.31. 

[24] D. Tengeri, F. Horváth, Á. Beszédes, T. Gergely, and T. Gyimóthy, 
“Negative Effects of Bytecode Instrumentation on Java Source Code 
Coverage,” p. 11. 

[25] E. Bruneton, “ASM 4.0 A Java bytecode engineering library,” p. 154. 
[26] C. Wang, M. Said, and A. Gupta, “Coverage guided systematic 

concurrency testing,” in Proceedings of the 33rd International 
Conference on Software Engineering, New York, NY, USA, May 
2011, pp. 221–230. doi: 10.1145/1985793.1985824. 

[27] P. K. Chittimalli and M. J. Harrold, “Recomputing Coverage 
Information to Assist Regression Testing,” IEEE Trans. Softw. Eng., 
vol. 35, no. 4, pp. 452–469, Jul. 2009, doi: 10.1109/TSE.2009.4. 

 
  



   
 

  14 
 

APPENDIX I: TIME PLAN 

INITIAL 

 
ACTUAL 

 

 

APPENDIX II: CONTRIBUTIONS 

Patrik Bogren 
 
Report 
Abstract & Introduction 50% 
Problem Statement 50 % 
Background 30% 
Related Work 20% 
Research Methodology 70% 
Artefacts 50% 
Results 50% 
Discussion & Conclusion 50% 
 
Other 
Tool implementation 80% 
 
Isak Kristola 
 
Report 
Abstract & Introduction 50% 
Problem Statement 50 % 
Background 70% 
Related Work 80% 
Research Methodology 30% 
Artefacts 50% 
Results 50% 
Discussion & Conclusions 50% 
 
Other 
Tool implementation 20% 
 
 
 
 
 
 

 APPENDIX III: PROJECT REPOSITORIES 

 
Apollo https://github.com/spotify/apollo 

Bootique https://github.com/bootique/bootique 

Easy-rules https://github.com/j-easy/easy-rules 

Socket.IO-client 
Java 

https://github.com/socketio/socket.io-client-java 

TelegramBots https://github.com/rubenlagus/TelegramBots 

Logstash Logback 
Encoder 

https://github.com/logstash/logstash-logback-
encoder 

Scribejava https://github.com/scribejava/scribejava 

GCViewer https://github.com/chewiebug/GCViewer 

maven git commit 
id plugin 

https://github.com/git-commit-id/git-commit-id-
maven-plugin 

Jimfs https://github.com/google/jimfs 

pushy https://github.com/jchambers/pushy 

Oryx https://github.com/OryxProject/oryx 

initializr https://github.com/spring-io/initializr 

nv-websocket-
client 

https://github.com/TakahikoKawasaki/nv-
websocket-client 

jCasbin https://github.com/casbin/jcasbin 

jvm-profiler https://github.com/uber-common/jvm-profiler 

egads https://github.com/yahoo/egads 

client_java https://github.com/prometheus/client_java 

java-faker https://github.com/DiUS/java-faker 

JavaVerbalExpress
ions 

https://github.com/VerbalExpressions/JavaVerbalE
xpressions 

 

 


