

Developing a Python based web scraper

A study on the development of a web scraper for TimeEdit.

Pontus Andersson

Thesis – Examensarbete

Main field of study: Computer Engineering

Credits: 300

Semester/Year: Summer 2021

Supervisor: Magnus Eriksson

Examiner: Patrik Österberg

Course code/registration number: DT099G

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

i

Abstract
The concept of scraping the web is not new, however, with modern

programming languages it is possible to build web scrapers that can

collect unstructured data and save this in a structured way. TimeEdit, a

scheduling platform used by Mid Sweden University, has no feasible

way to count how many hours has been scheduled at any given week to

a specific course, student, or professor. The goal of this thesis is to build

a python-based web scraper that collects data from TimeEdit and saves

this in a structured manner. Users can then upload this text file to a

dynamic website where it is extracted from the file and saved into a

predetermined database and unique to that user. The user can then get

this data presented in a fast, efficient, and user-friendly way. This

platform is developed and evaluated with the resulting platform being a

good and fast way to scan a TimeEdit schedule and evaluate the

extracted data. With the platform built future work is recommended to

make it a finishes product ready for live use by all types of users.

Keywords: Web Scrper, Dynamic Website, Unique Users, Structured

data

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

ii

Sammanfattning
I en vä rld dä r älltmer informätion lägräs pä internet ä r det svä rt fo r en
vänlig änvä ndäre ätt hä ngä med. Ä ven nä r informätionen finns tillgä nglig pä
en och sämmä hemsidä kän den hemsidän säknä funktioner eller värä svä r
ätt lä sä äv. Ide n bäkom ätt skräpä hemsidor, tidningär eller spel pä
informätion ä r inte ny och dettä exämensärbete fokuserär pä ätt byggä en
web scräper med tillho rände hemsidä dä r änvä ndäre kän läddä upp sitt
schemä skräpät frä n TimeEdit. Hemsidän skä sedän presenterä dennä
skräpäde dätä pä ett visuellt tilltälände sett. Nä r system ä r fä rdigutveckläde
utvä rderäs dem fo r ätt se om exämensärbetets mä l här uppnä tts sämt om
systemen här fo rbä tträt det befintligä sä ttet ätt hänterä schemälä ggning i
TimeEdit hos lä räre och studenter. I sämmänfättningen finns sedän
främtidä forskning och ärbeten presenterät.

Nyckelord: Web scräping, TimeEdit.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

iii

Acknowledgements
I would like to äcknowledge Mägnus Eriksson on Mid Sweden University
thät provided me with the ideä of the project. Mägnus gäve me importänt
informätion regärding how the system works todäy änd why it is än issue,
änd without this informätion it would häve been härd to build ä cäse.
Outside this Mägnus wäs älso my mentor during the thesis.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

iv

Table of Contents
Abstract ... 1

Sammanfattning .. 2

Acknowledgements .. 3

1 Introduction .. 1

1.1 Background and problem motivation ... 1

1.2 Overall aim.. 2

1.3 Limitations .. 2

1.4 Concrete and verifiable goals / Detailed problem statement 3

1.5 Scope .. 3

2 Theory .. 4

2.1 Programming languages ... 4

2.1.1 Web scraping ... 4

2.1.2 Python .. 5

2.1.3 Beautiful soup library .. 6

2.1.4 Alternatives to Beautiful Soup.. 6

2.1.5 PHP and SQL .. 6

2.1.6 PhpMyAdmin ... 7

2.1.7 HTML and CSS ... 7

2.2 One.com – hosting service .. 8

2.3 Visual Studio Code .. 8

2.4 User Stories ... 8

2.5 Requirement Specifications .. 8

2.6 Function analysis ... 9

2.7 Related works ... 9

2.7.1 An Overview on Web Scraping Techniques and Tools 9

2.7.2 A comperative study on web scraping .. 9

3 Methodology / Model ... 11

3.1 Time planning .. 11

3.2 Development process .. 11

3.2.1 Pre-study and data collection ... 11

3.2.2 Requirement specification and user stories 12

3.2.3 Functional analysis ... 12

3.2.4 Ethical Aspects, GDPR. .. 12

3.2.5 Environmental Aspects .. 12

3.2.6 Traditional development ... 13

3.2.7 Python .. 13

3.2.8 Beautiful Soup ... 13

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

v

3.3 Evaluation ... 13

3.4 Presentation .. 14

4 Design and Implementation ... 15

4.1 Development .. 15

4.1.1 Pre study and Data Collection .. 15

4.1.2 Process of the platform .. 15

4.1.3 Information gathering .. 16

4.2 Requirement specification .. 17

4.3 Function analysis ... 19

4.4 Ethical Aspects, GDPR .. 20

4.5 Environmental Aspects ... 20

4.6 Development .. 20

4.6.1 Analyzing TimeEdit ... 20

4.6.2 Building a python-based web scraper ... 23

4.6.3 Building a dynamic website .. 25

4.7 Testing the efficiency ... 28

4.7.1 Testing the developed system .. 28

4.7.2 Testing the old system ... 29

5 Results ... 30

5.1 Web scraper .. 30

5.2 Dynamic website .. 31

5.3 Analysis of results and developed program 33

5.3.1 Analysis of the web scraper .. 33

5.3.2 Analysis of the website .. 34

5.4 Results from evaluation of efficiency .. 35

5.4.1 Results from developed system.. 35

5.4.2 Results from the old system .. 36

6 Conclusions / Discussion ... 37

6.1 Methods chosen .. 37

6.2 Working with Python .. 37

6.3 Concrete and verifiable goals ... 38

6.3.1 Summary of goals ... 39

6.4 Ethical and societal aspects... 39

6.5 Future work .. 40

6.6 Problems during development .. 41

References .. 42

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

vi

Terminology
Acronyms/Abbreviations

HTML Hypertext Markup Language

CSS Cascading Style Sheet

PHP PHP: Hypertext Preprocessor+

SQL Structured Query Langugage

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

1

1 Introduction
TimeEdit is a scheduling platform built by the company Evolvera.

When the platform was originally built in 1992 it would mainly be used

by the department of education at the university of Gothenburg for

scheduling [1]. Since then, this platform has expanded and is now used

by hundreds of different universities, some of them being Mid Sweden

University and Gothenburg University.

The platform is used by universities around the world to schedule

classes, exams, and meetings.

TimeEdit is mainly used by Mid Sweden University’s schedulers to

help manage and schedule students and teachers, exams, and

laboratory sessions that both students and teachers attend. The system

is intended to work good for presenting schedules for both students

and teachers and is connected to both general and individually

connected schedules that can be reached by the students or teacher’s

unique logins.

The system is not designed to present information regarding number of

hours scheduled between students and teachers, how many hours each

course has scheduled for any given month or if a teacher has to many

hours scheduled, something that can become a problem on big

institutions with a lot of people connected

1.1 Background and problem motivation

With the functionality that is available on TimeEdit today it is difficult

for students, teachers, and study directors to follow up on whether the

allocated working time is in relation to the number of lessons that each

teacher gives. Since there is no automated system for this, students and

teacher’s need to hand-count the number of lessons scheduled for each

period or term, a very time-consuming task.

In a university system where this needs to be done every period and

term, every year, it can be difficult for teachers to detect errors. A

common problem is that teachers have too many hours scheduled for

certain weeks or periods so the total amount of hours for the course is

correct, but a large portion of those hours are concentrated to specific

days or weeks. This can lead to stress and overload.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

2

This does not only affect teachers, but also students. Some periods have

three courses running simultaneously that contest for time. As a

student, especially first term student, it can be difficult to get an

overview of how much time is scheduled each week during the entire

period. This can lead to less planning and more stress.

A system that has high usability and efficiency, that is cheap to use and

that is scalable is therefore needed to help students and teachers alike

with planning and structure. The system needs to use existing methods

and systems to work.

1.2 Overall aim

The overall purpose and goal of this degree is to develop a system for

TimeEdit’s scheduling platform that will meet the need for teachers and

students to be able to review the number of hours that each teacher and

student has been scheduled for any period. This information then needs

to be presented on a website with high usability, users-friendliness, and

efficiency. The system needs to be scalable so hundreds of students and

teachers can use it.

A python-based web scraper will be developed to scrape all the

available information from TimeEdit. A dynamic and scalable website

will be developed where the user can upload the web scraped

information. This information will then be extracted, cleansed, and

uploaded to a database. The user will be able to review the uploaded

data that is being presented in a user-friendly way.

The thesis will the conclude if the new system is more efficient than the

old one and draw conclusions from that. There will be less focus on

added functionality and further development.

1.3 Limitations

This degree project at Mid Sweden University has a time limit in the form

of 15 point, corresponding to 400 working hours. Because of this time

constraint the project will be limited to development of both a Python

based web scraper and the associated website and evaluation on if the

new system is more efficient than the old one. There will be close to no

focus on further developments of the website or web-scraper as this is

beyond the 400-hour limit.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

3

1.4 Concrete and verifiable goals / Detailed problem

statement

With this project the following verifiable goals have been set:

1. Build a Python based web scraper that can scrape information

from TimeEdit’s scheduling platform.

2. Build a dynamic and scalable website where the data can be

uploaded by the user to a database.

3. Build functions to sort and present the data in a user-friendly way

for every unique user.

4. Implement all three parts of the system so they work together.

5. Evaluate if the new system is more efficient than the old one.

5b: Evaluate the number of clicks needed for the user to display data.

1.5 Scope

This project will only focus on building the platform needed to reach the

goals. No hardware will be developed and only TimeEdit will be scraped.

The website will only work with the scraped data from this web scraper

and it will only do what it needs to reach the goals.

Handling scarped data outside of the goals of this project will not be a

part of the programming, and the web scraper will only be able to handle

TImeEdit. The website will only be able to handle said data from that

specific webscraper.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

4

2 Theory
In this chapter all theory related subjects will be presented together with

articles that are related to this work.

2.1 Programming languages

During this project multiple different programming languages will be

used to build the entire pipeline from scraping parsed data from

TimeEdit to displaying this in a readable way for the user on a website.

During the chapter 2.1.x the languages used, and more importantly, why

they are used will be outlined. For details about how the languages are

used to build the functions, see chapter three, method, and chapter four,

implementation.

2.1.1 Web scraping

The concept of gathering data from the internet is not new. With

approximately 1.2 billion websites in the world as of May 2021 and more

than 4.5 billion active internet users the amount of information that exists

can be hard to find and structure in a meaningful way. [2][3]

The term web scraping comes from gathering data by “scraping” the

information from a website. It is, in theory, possible to scrape more things

than websites and things such as documents and games could be possible

candidates as well, however, most scraping is usually done towards

websites.

Building a web scraper is not the same as using a pre-defined API from

websites. Examples of this could be Twitter and Wikipedia. The Twitter

API lets users analyze already organized, cleansed and well-formatted

data, something that is much more effective than building your own web

scraper for the same task. The API often gives users the tools to choose

and change what type of data they want to gather. [4]

Most websites, like TimeEdit that this project focuses on, do not have well

documented and well-developed API tools that the users can utilize to

gather the data, and thus, a “web scraper” needs to be built.

A web scraper, in short, is a program built to collect data directly from

the source code of the website, both HTML, CSS or other information on

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

5

the website, and then parse the scraped data so the developer can choose

what parts of data, information or text that should be extracted.

A benefit and downside of web scraping is that there is no predetermined

solution for all websites. There is currently no feasible way to build a web

scraper that works for all types of websites. For every website that the

developer wants to scrape adjustments to the code needs to be done. This

is because the scraper uses classes and names from each specific website

to collect and parse data. With a well-developed scraper where good

programming practices has been used it is often possible to adjust the

code to work with other websites without having to build a new web

scraper from scratch.

Figure 1: Basic pipeline of a web scraper

2.1.2 Python

Python, at the time of writing this article, has quickly become one of the

most popular programming languages and was as of November 2020

ranked as the second most popular programming language after C. [5]

Python was first released in 1991 but has since been re-worked and re-

done, the biggest update being in 2008 when Python 3.0 was launched.

Python is a strongly typed language as the compiler keeps track of what

types of variables you use and what type of data you are working with,

and typing errors are prevented by the compiler during runtime. Despite

this, Python as a language do allow variables to change names and is not

as strict as other strongly typed programming languages such as Perl. [6]

It is an object-oriented programming language that is very well known

for using significant indentation. This concept forces developers to write

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

6

very clean, easy to read and logical code and, because of this, it works

well for big projects. Python has an extensive standard library with many

different tools, as beautifulSoup. [7]

2.1.3 Beautiful soup library

Beautiful Soup is the most well used library to scrape and parse data

from websites. According to the developers of the library it parses

anything that it is given. Beautiful Soup does this using simple methods

and pythonic idioms to build a parse tree that can be navigated and

searched. The upside of using Beautiful Soup is that it converts parsed

data to UTF-8, something that is well used on the internet. [8]

The web scraper in this project was built using the tools available in the

Beautiful Soup library, and all the documentation regarding the library

can be found under source 8.

2.1.4 Alternatives to Beautiful Soup

There are several different alternatives to the Beautiful Soup library, with

the biggest one being lxml. The libraries work in a similar way with

similar functions. Historically lxml was a faster parser than Beautiful

Soup, hence, it was used when speed was a vital factor and Beautiful

Soup was used with bigger documents that lacked structure. [9]

Today, Beautiful Soup uses the lxml parser and therefore both libraries

work similarly.

Besides lxml there are other alternatives to Beautiful Soup as well, such

as Selenium and Scrapy where Selenium has some extra tools to work

with websites whilst Scrapy works more as a framework rather than a

library. [9]

2.1.5 PHP and SQL

PHP is a modern and well used general-purpose scripting language that

was developed to build more advanced websites. PHP stands for PHP:

Hypertext Preprocessor and is developed as an open-source language.

[10]

What makes PHP strong is that it executes server-side code on the

website that is then displayed as normal HTML for the user. This makes

it possible to build much more competent platforms where it is possible

to have unique users, save information, and start sessions for a more

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

7

dynamic experience that changes based on what the developer wants the

user to see.

PHP was chosen over JavaScript or other scripting languages for this

project as the goal is to build a scalable and dynamic website that changes

based on what user is online, something that is possible when building

with PHP in combination with SQL.

SQL is the backbone of the website and stands for Structured Query

Language. SQL is the tool used to communicate between the website that

is built using PHP, HTML and CSS with the database where all the

information about the user is being stored. SQL is the most used database

management system, and it works using commands such as insert,

update, delete, create, and drop. Commands used to remove and insert

information from the website into the database. [11]

2.1.6 PhpMyAdmin

phpMyAdmin is the tool used to create, handle, and store the database.

As a tool it helps developers build a database using a visual interface.

From phpMyAdmin developers can create, drop, rename, or alter the

databases that are being used. It is possible to import data directly into

the database and that data can then be shown to users through the

website using PHP and MYSQL. [12]

phpMyAdmin was used for this project because of the user-friendly

interface and ease of use when working with big amounts of user stored

data.

2.1.7 HTML and CSS

HTML, short for HyperText Markup Language, is the standard language

used to build websites that are displayed for the user. HTML is a way to

build structured websites that is rendered by the browser.

CSS, short for Cascading Style Sheets, is a style sheet language that is

used to design the website. The CSS is used to design the elements and

classes that developers use on the website. It is here that the developer

implements everything from the design of a box to the color of text.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

8

2.2 One.com – hosting service

This project wäs done during the covid-19 pändemic which meänt thät no

user testing could be done in person. To work around this problem the

entire website was built towards the hosting service one.com.

One.com offers tools to upload and download files and edit the source

code directly in the control panel. When working with a hosting service

the website is always live and iterative work can be done whilst getting

user feedback along the way.

During a non-pandemic development localhost can, and should, be used

for programming.

2.3 Visual Studio Code

To structure änd write good code äll developers need ä good code editor.
Visuäl Studio Code wäs chosen for this täsk becäuse it is ä lightweight code
editor with ä deep extensions märketpläce.

Visuäl Studio Code händles HTML, CSS, SQL, PHP änd Python, äll länguäges
used in this project. The built-in terminäl änd debugger äre eäsy to use änd
mäkes iterätive chänges eäsy.

2.4 User Stories

User stories is a way for the developer to get a good understanding of

what the user needs from a given product. User stories, or the content

generated from user stories, is formatted in a way as if it was written

from the user’s perspective. User stories are a part of the agile framework

and is often used to get a quick understanding of what the value is for

the customer. [13]

2.5 Requirement Specifications

Requirement specifications is a way of summarizing the requirements

that the customer and developer has on the product or program. It is

often done in different types of lists and stretches from design to

functions and backend. When all the demands in the requirement

specification is met the product is done. [14]

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

9

2.6 Function analysis

Function analysis can be similar to requirement specification, but is

instead divided into different categories. These categories can often be,

but are not limited to, main function and sub functions to that function.

For the main function to be done the sub functions also need to be done.

These different functions can be divided into classes, such as class 1, class

2 and class 3. [15]

2.7 Related works

Related work was researched for this project to get a good baseline

understanding of how web scraping work. During this research two

interesting articles were found.

2.7.1 An Overview on Web Scraping Techniques and Tools

In this article written by Anand V. Saurakar, Kadar G. Pathare and

Shweta A. Gode the authors explain in detail what web scraping is, how

it works and what it can be used for.

For this project the most important part of this article is where the

authors explain what web scraping is and how it works. In the article the

authors say that web scraping is a way to pull unstructured information

from a website in a structured manner so it can be easily accessible for

the users or developers. [16]

This can be done to all types of different data, but a few examples

mentioned are stock price, item pricing, product details or reports. [16]

The article goes on to mention that a website can be seen in three different

ways. The HTML website that the user sees, the HTML code and the

document object model and they visualize this with the following

graphic. [16]

It is through these three different viewpoints that the web scraper uses

HTML tags to scrape the data from the website.

2.7.2 A comperative study on web scraping

The second article is written by SCM de S Sirisuriya and here the author

explains that web scraping is a way for developers and user to extract

data from big websites with sometimes multiple pages of data in an

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

10

automatic or vastly faster way. This data can then be visualized in a better

way. [17]

SCM de S Sirisuriya’s article is interesting for this project as it aligns with

the goals that has been set in this project. In the article the author

mentions several different ways to handle web scraping but is focused

on already pre-built solutions. These solutions often have visual

interfaces where the user can decide what should be scraped from a

website. These solutions are beyond what will be done in this project but

showcase different solutions for web scrapers.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

11

3 Methodology / Model
This report and project can be broken into a few different steps with the

over-arching goal of building a platform where users can web scrape

their TimeEdit scheduling pages, upload this parsed, structured, and

cleansed data a website where the data gets stored in a database. This

data can then be presented in a visually pleasing way to the user.

In chapter 3, Methodology, the different processes chosen for the project

are presented together with the main steps done to ensure that the project

is followed through.

The methodology used in this project is a combination of previously

acquired knowledge about methods and projects done at Mid Sweden

University.

3.1 Time planning

Due to the scope of the project the structure and planning are key

elements to achieve the set goals. Three different objects need to be built

with a python-based web scraper, a dynamic website that can handle

active users and a database to store both log-in information regarding the

user, but also the scraped data that the user uploads.

To achieve this a Gant-based schedule was chosen to plan how the time

was divided between the three different objects and writing the report.

[18]

3.2 Development process

A development process was created early in the project to go from a

concept and idea to developed product. The development process for this

project can be divided into 7 different steps.

3.2.1 Pre-study and data collection

The first step in the pre study is to analyze what needs to be done. How

much research is needed to learn how to build a python-based web

scraper. During this step questions like if code from previous projects can

be re-used or not is answered. It’s also the step where the baseline of the

platform is outlined.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

12

3.2.2 Requirement specification and user stories

The second step is to do a requirement specification. What must be

developed to accomplish the project based on the goals and boundaries

that has been previously mentioned. Creating a solid requirement

specification is important so the development has an end goal. The

requirement is usually what the project needs to accomplish when done.

3.2.3 Functional analysis

The third step is to do a functional analysis. Step two, requirement

specification, makes it clear what the projects requirements are, what it

needs to achieve, while functional specification is a continuation of this.

The functional analysis is done to evaluate what functions the platform

needs to have. These functions are then presented in a table that clearly

outlines what the developed product needs to be able to do.

3.2.4 Ethical Aspects, GDPR.

Step four is to evaluate what ethical aspects that needs to be considered

during the project. As of the 25th of May 2018, the GDPR, short for

General Data Protection Regulation was passed. This is a data privacy

law that all states in the European union need to follow. As this project

will handle users and data from those users, the GDPR laws must be

considered. [19]

3.2.5 Environmental Aspects

Step five is environmental aspects of the project. As of 4th of November

2016, the Paris agreement was implemented over the world. The object

of this agreement is the keep the average temperature below 2 degrees,

but preferably 1.5 degrees, compared to pre-industrial levels.

This project does not have a direct impact on the environment, but, living

in a modern world where society at large is trying to reach these goals it

is important to evaluate what impact the project can have, both good and

bad. An example of this could be less travel time to the university because

the developed product leads to better planning, or vice versa. [20]

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

13

3.2.6 Traditional development

During the project iterative and agile development was used. A lot of

knowledge was gained, and a lot of research was read during the project,

which mean that the most important part of development was having an

iterative pipeline where code and functions could be changed and

iterative as the development continued.

The result of the development is the finished project.

3.2.7 Python

As discussed in chapter 2.1.2, Python is a well-developed strong

language with a vast library, with the most important one for this project

being beautifulsoup for web scraping.

Different languages were considered for this project the choice of Python

was motived through previous experience with the language and the

existence of the web scraping library beautiful soup.

3.2.8 Beautiful Soup

Beautiful Soup is the library used for this project because of all the well

documented functions. There are other libraries that are as easy to use,

such as lxml, but Beautiful Soup has a big and dedicated user base that

publishes solutions to a lot of problems. This makes it easy to

troubleshoot issues on the internet and reach out for help. For more

advanced projects or other types of web scraping better libraries exist,

however, the learning curve of these can be steep and to big for the scope

of this project.

3.3 Evaluation

Once everything has been developed an evaluation is done to see if the

new system is better than the old system. This is a way of quality control

to make sure that the goals of the project were reached.

The evaluation will be done measuring two different variables. The

number of clicks needed for both the new system and the old system, and

the amount of time needed for the old system and the new system. This

will then be presented under chapter 5.4.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

14

The number of clicks is measured through counting the number of clicks

from start to result. The amount of time is measured by the amount of

time from start to presented result. The tests are done by the author of

this report, and done back to back to ensure the fairest amount of

measurements.

3.4 Presentation

When the development process is done, and the coding and development

of the project is finished a technical report is written. This report includes

the theory behind the project, the tools used and how the project was

constructed.

During the entire project an iterative design and development process

was used to make sure that time was allocated as best it could be and that

the project reached completion in time for the deadline.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

15

4 Design and Implementation
Chäpter four showcäse how the system will be designed, developed, änd
implemented. It is divided up into sub chäpters for eäch step täken in the
development änd is split between the web scräper änd the website.

4.1 Development

The development process wäs divided into severäl different steps listed
below.

4.1.1 Pre study and Data Collection

The first step of the project is to analyze how the system would work and

what needed to be done to get the information needed for the project

from the website. Before a general design was created literature was read

on the internet to get a grasp of how it works. The previously mentioned

articles were read to get an understanding of already working web

scrapers.

4.1.2 Process of the platform

A sketch of how the finished platform would work was done early to

make sure that everything needed was developed.

Figure 2: first draft of how the developed platform will handle data.

Whilst analyzing what needed to be built to reach the projects goals a

process was developed. It consisted of five major steps that needed to be

created to reach the set goals of the project.

1. The user needs to find their schedule on the TimeEdit platform.

Either the personal schedule or the schedule for a specific class or

teacher.

2. A python-based web-scraper scrapes the data from the schedule

and saves this data to a text file.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

16

a. The correct information needs to be collected. A modern

website has thousands of lines of code, and the web scraper

needs to scrape information about classes.

3. A website where the user can log in needs to be developed. It is

important that the user can log in so that the scraped data can be

saved to the correct profile in a secure and private manner. When

the user uploads the .txt file containing the data to the website the

website needs to parse this data again and add this to the database.

a. By parsing the data at two different steps, the web scraper

can be built to scrape more data than is needed for this

project. More functions can then be added to the website

down the line without further development to the web

scraper.

4. A backend platform where the user’s scraped data is stored and

can be collected for use. The .txt file should also be saved for future

use.

5. A profile page where the user can get the data presented in a

visual manner.

By developing these main objectives, the entire platform will be able to

do what the project has set out to achieve.

4.1.3 Information gathering

To develop a python-based web scraper a lot of research was done. The

library for using Beautiful Soup is very well documented on the website

for the library. This, combined with knowledge from previous courses at

Mid Sweden University together with the help of google made it possible

to build a web scraper using python. [21]

Building the dynamic website became a bigger task than the actual web

scraper as the development for this had more moving parts. Knowledge

about the how to build a login system with unique users had to be

acquired. That unique user had to be able to upload a file, and the website

extract the text strings from that file and add them into the database.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

17

Once the user has done these steps the website has to be able to display

and show this to the user. This requires different get methods in SQL in

combination with HTML and CSS to display the information correctly.

A big part of the project was spent gathering information regarding how

to develop and build these modules of the project. A lot of knowledge

was able to be reused from previous courses at Mid Sweden University

which saved time during development.

4.2 Requirement specification

A shorter requirement specification was done during this project. As this

is a smaller project the requirement specification focusses broadly on

what must be developed, and the functional analysis, 4.3, focus on what

functions need to develop to reach those goals.

Table 1: Requirement Specification

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

18

If everything in the must column gets developed the project will have

reached most of the goals set out. If all the demands in the must and

should categories have been reached all the goals in the project will have

been reached.

After the requirement specification was done user stories were

performed on two students to acquire if something important has been

missed. Here, the students followed the process of the platform after

being pitched the idea. The students wrote down what requirements they

would have from a website like this, and demands were created from this.

The demands and user stories are not sorted in any order.

Table 2: User Stories.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

19

With user stories and requirement specifications done it is possible to do

a function analysis based on these requirements.

4.3 Function analysis

The functions are based on the user stories and requirement

specifications. These functions are needed to meet the requirement

specifications of the project and they are sorted into three different

classes. Class 1 is functions that are demanded, class 2 is functions that

are needed, and class 3 is functions that are wanted.

Table 3: Function Analysis

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

20

4.4 Ethical Aspects, GDPR

During the project severäl different ethicäl äspects were considered, the
biggest one being GDPR. When working with user dätä, änd more
specificälly, personäl user dätä, greät cäre häs been täken äbout how thät
dätä is stored.

Greät emphäsis wäs put on häving häshed änd protected pässwords, where
only the user thät wäs logged in only häd äccess to the dätä thät wäs
connected to thät user. No other user should or could be äble to see the dätä
thät they häd uploäded.

Personäl informätion wäs not needed during user stories or testing of the
plätform. Äs the test group wäs two students the informätion could be
änonymized änd säved in excel-sheets to develop the requirement
specificätion änd functionäl änälysis.

4.5 Environmental Aspects

This project was created on a home computer and is being hosted on a

hosting service. The research and development during the project have

no environmental impact. The long-term effects of the developed

product can have positive effects such as smarter scheduling of students

and professors, however, this is not something that is being considered

during the project.

4.6 Development

Chapter 4.6 is divided into subchapter to better present the construction

of the platform.

4.6.1 Analyzing TimeEdit

The first step of building a web scraper is deciding what on the website

should be collected by the web scraper. TimeEdit is designed in a way

that creates both challenges but also makes it easy to divide the scraped

data.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

21

Figure 3: TimeEdit design

As seen on figure 6 every scheduled moment gets a box where the

information regarding time, course code, course name, moment,

professor, and information is being saved. These boxes are built as

dynamic cubes on the website generated in the backend of TimeEdit.

The first step is to recognize where on the website this data is being

presented. This can be done through the inspection tool on modern web

scrapers.

Figure 4: source code of TimeEdit

Knowing what all the classes of the website are named is needed to

scrape the data. Figure 7 shows that all the information needed for this

project is stored in the class “rr clickable2”. Scraping “rr clickable2” would

not be sufficient, as the result would be all the containing classes inside

this class.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

22

By going further into the class, the containers containing the information

needed can be found.

Figure 5: Classes containing the data for the project where the red box highlights

the classes.

Figure 5 show the classes needed to scrape the data. By scraping the

specific classes containing the data needed the saved data is more

structured and easier to handle and less work needs to be done on the

website down the line.

By inspecting the classes in the source code of TimeEdit one major issue

arise. Some of the classes have identical names to each other and when

working with web scarpers this is a critical problem.

As the concept goes out on scraping by identifying classes one of the

classes will either not be scraped or will be scraped at the same time

leading to corrupt data that can’t be used.

In figure 5 the red box around the code visualizes what classes that

display the information on the TimeEdit website and in figure 6 the red

boxes showcase that two of those classes have identical names but

different content.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

23

Figure 6: Identical class-names where the red box highlights the identical ones.

This problem was never solved and is discussed further in chapter 6,

discussion.

4.6.2 Building a python-based web scraper

When the knowledge about what should be scraped from TimeEdit is

known it is possible to start building the actual web scraper.

All needed libraries are installed on the project computer and imported

into the code.

Figure 7: libraries used.

The scraper needs to know what website it scrapes. There are commands

ready for this in Python. The first step was making sure that it was

possible to scrape any data from TimeEdit.

By telling the web scraper to scrape all boxes it was possible to evaluate

if data could be scraped or not.

In figure 11 the text “LinkToWebsiteYouWantToSCRAPE is replaced

with the link for the TimeEdit that the user wants to scrape.

Figure 8: scraping all boxes.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

24

During the development of the web scraper a major flaw was found with

scraping TimeEdit. For a student to see their personal schedule the

student needs to be online on the website. The website uses a third-party

login system to connect with different universities all around the world.

When logging in to the website the user gets forwarded to Mid Sweden

Universities log in system.

Figure 9: MIUN log in system

The issue with this is that it starts a session for that user, and it requires

the user several clicks to reach the log in page. It is possible to scrape

websites locked behind log in requirement using functions within

beautiful soup, see figure 10, however, as the Mid Sweden University

link is a session-based log-in, no way was found during this project to

make the scraper automatically log in to the website as no work around

to all the forwarding was found.

Figure 10: logging into a website.

The issue of this is that a major part of the goals of the project is that the

user should be able to scrape the individual data of that user. Thus, not

being able to log in to the personalized schedule is a major drawback.

That being said, a workaround to this problem comes from how

TimeEdit works. On TimeEdit it is possible for the user see the schedule

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

25

for their year and course. By using these tools, the user can select what

year and program they study and get the schedule for each period. A

lecturer can then sort courses based on the name and see all courses the

chosen lecturer is hosting.

This problem is further discussed in chapter 6, discussion.

At this point the source and class variables being scraped are known

and it is possible to start scraping the information from the TimeEdit.

As it is no longer possible to scrape the users personalized schedule a

function to sort out specific courses by typing them into the program

was developed.

Figure 11: variables being scraped.

As TimeEdit uses the same class name for the lecturer and course code

both cannot be scraped using these methods. The choice to only scrape

the course code was done.

With the web scraper it is possible to scrape the time of the lecture as

well. TimeEdit changes the format of how this is saved. As this format

changed the choice to remove time from the scraped data was taken as

it made the data in the file hard to predict and handle.

All the data scraped from the website is then saved to the file test.txt.

The actual sorting of the scraped data will be done on the website

where the user uploads the file.

4.6.3 Building a dynamic website

Once the scraped data exists and can be collected the work on building

the website where the functions to display the data back to the user exists.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

26

As previously discussed in this report a main goal of the project was to

create a platform with unique users that has hashed and secure

passwords.

A basic form is created where the user enters the username chosen and

the password connected to that user. This is stored in a database together

with a unique id that gets created together with the user. The website has

built in features that makes sure that no two users with the same name

gets created but even if this happens, they would be separated with the

unique ID.

Figure 12: stored users in the database.

This unique ID is what enables the entire website to be dynamic towards

the user that is currently logged in.

This system also includes features such as log in through email and

forgotten passwords in case a user cannot access the account anymore.

The website is designed in such a way that every time a user navigates to

a new page a session is started. This session includes the previously

mentioned user data and can change according to that.

With a working login system, a function to handle file uploads is built.

To build a system where it is possible to upload a file to the database is

done by using simple web programming methods, however, due to the

design of this project the website needs to be able to handle text files with

different names from different parts of a computer, and this is a more

complex problem as files can clash with the same name in the database.

To work around this the information in the file was extracted before the

file was uploaded to the database.

Php can handle contents of a through already existing functions. By

using the function explode in php the website changes the name of

the .txt file but keeps the extension, making sure that it gets saved to the

database with a random name.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

27

When the users press the button upload the website creates a temporary

array. Inside this array the contents of the file get read line by line and

are saved as strings, see figure 16.

figure 13: raw data

As seen in figure 16 this raw data is too unorganized to use and needs to

be structured. At this stage it is possible to see why it was important to

scrape the data in a structured manner when building the web scraper.

By adding characters such as: “;” and “,” during the scraping process it is

now possible to use php functions to explode and structure this data, see

figure 17.

figure 14: structured data.

The data is now presented in a manner that is possible to add to the

database connected to the website. Because of the unique user id this data

is saved to the correct user inside the database.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

28

figure 15: database with structured data.

With the data saved to a database in a structured way it is now possible

to present this in any way, shape, or form to the user and a results page

was built to display it. This is shown in chapter 5, results.

To present this data the SQL (*) count function was used.

4.7 Testing the efficiency

To test the efficiency of the system two different variables were used. The

number of clicks the user needs to do from start to finish, divided

between three different steps on the new developed system and the old

way of doing it, by counting for hand. The time needed to do these clicks

were recorded to evaluate how much faster the new system is.

The aim is to measure the same variables between both systems, even if

they are done in different ways. TimeEdit was set to display a period of

a week. This is done to quantify if the new system is more efficient than

the old system.

4.7.1 Testing the developed system

The test was divided into three steps, as seen below.

• Reach their schedule in the web browser.

• Scrape the schedule with the web scraper.

• Upload the file from the web scraper to the website and get the

result presented.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

29

4.7.2 Testing the old system

The old system wäs counting the number of lectures by händ änd then
looking ät how mäny hours thät is per week. The säme väriäbles were
meäsured for the old system äs well, but with ä different äpproäch.

• Reäch their schedule in the web browser.

• Count the number of lectures in the schedule by händ.

• Cälculäte the ämount of time those lectures ämount to.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

30

5 Results
In chapter 5, results, figures, and illustrations show the developed

platform and systems in full. The developed systems are being evaluated

against the goals set out at the start of the project. The program is also

evaluated to see if the developed solution is faster than the old method

used for the same task.

5.1 Web scraper

The developed web scraper has no interface but can be saved as an

executable file that the user can run. This file will start up the terminal

and ask the user to remove what courses that should be sorted out.

Figure 16: text-based interface.

The interface is text based and tells the user what has been done. The

result in the file test is sorted, structured and cleansed.

Figure 17: scraped data.

The developed web scraper can scrape the course code, course name and

extra information. It cannot scrape the name of the lecturer. As seen in

figure 20 characters such as “;” and “,” is used to divide the data inside

file. This becomes important when uploading it to the website.

Figure 20 shows a small sample of everything scraped from the website.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

31

The web scraper can handle the encoding iso-8859-1 that is Swedish

letters such as “å”, “ä” and “ö”. Without this encoding errors could occur

when scraping websites with letters outside the English alphabet.

Once the program is run again the file is emptied and the new data is

added. If the data inside the file is not uploaded the database before it is

run again the data inside the file is lost.

Because of this the data uploaded to the website is always new and never

old.

5.2 Dynamic website

The website uses a fully functioning system where users can create

accounts and log in using both email and passwords and the website

follows a simple design principle where all the pages have the same

layout but with different content.

Figure 18: sign in page.

Once the user has logged on the website directs to the start page. Here

the user can choose to upload the scraped data or see the previous results.

The previous results only works if the user has already uploaded

information to the web page.

The website also reacts to the user being online.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

32

Figure 19: start page.

By following the website, the user gets to the page where the data should

be uploaded.

Figure 20: user uploads data

When the user presses upload the functions built into the website

uploads it into the database in a structured, clean, and functional way.

This data is bound to the user that uploaded the file to the website.

Figure 21: data in the database

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

33

The website can now present this to the user. The data is sorted by the

course code and then presented to the user on the results page. By

knowing how many times a course exists in the database it is possible to

calculate how many hours the student or professor needs to attend to

that course over the period or week, depending on how long a time frame

the data has been scraped from.

Figure 22: the data presented to the user.

5.3 Analysis of results and developed program

This project set out to build a platform where students and professors

could evaluate the number of hours that had been scheduled and see if

this stands in relation to how many hours should be worked every week.

The result of this could in the long term give the opportunity to plan

better, work ahead and help schedulers divide the time in a better way.

The developed platform can do this – but it does have some drawbacks

listed below.

5.3.1 Analysis of the web scraper

A web scraper is very practical in theory but has some major drawbacks

in practice. The TimeEdit website is dynamic, and a lot of information is

being done server-side where it is not possible for the user to inspect the

code. Therefore, different classes can have the same name when

inspecting the website, as the code run in the background fetches

information to put into that class from the back end.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

34

Because of this the web scraper designed to scrape TimeEdit is not as

powerful as it could have been.

The web scraper also has a hard time adapting to changes on the website.

If TimeEdit changes or if the classes change names the python code has

to be updated to match the new updated website which in practice makes

the web scraper obsolete very quickly and in need of constant updates.

TimeEdit also uses a third-party log in system bound to Mid Sweden

University. Because of how this system is designed the web scraper

cannot scrape personalized schedules. The web scraper works around

this by scraping the entire course schedule for that program, but this

means that a student with a personalized schedule will not be able to use

the program.

The user must put the link that needs to be scraped directly into the

source code, a task that can be seen as very easy by a developer. Tests of

the system show that this is a major drawback as someone unfamiliar to

code have a hard time understanding how to get started.

The reason for the web link having to be hard coded is because the

program got stuck in a loop when the user input the link. Just as with the

time variable it did on occasion work, however, the scraper returned

empty data most of the time. The program did not know how to handle

this and crashed/could not find a website to scrape.

The working theory on this is that the TimeEdit link sometimes change,

or that the program could not handle all the signs that are contained

inside a website link. This problem was never resolved, and the link was

hard coded to the project could continue.

The web scraper can scrape the information that is needed from the

website for this project despite the drawbacks of the functions included.

A total of three clicks are needed to start the web scraper for a user.

Additionally clicks are needed to add the link into the code.

5.3.2 Analysis of the website

The web site developed to analyze the scraped data works above

expectations set in this project. A user can log in, upload the file scraped

from the web scraper and see the results presented in a visually pleasing

manner.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

35

The website handles the .txt file without issues as the file is converted

into a random name. The contents of the file are automatically extracted

and uploaded into the database that is behind the website. The extracted

content is then bound to the user by the unique ID generated in the sign-

up process.

The website is user friendly and easy to navigate and short user tests

during development shows that a user can quickly learn how to find

results and upload the scraped data to the website.

The data is protected as the password for the users is hashed and securely

stored inside the database.

A total of five clicks are needed to upload the web scraped file to the

website. The result is a user-friendly website where five clicks are needed

to upload the scraped file leading to a very efficient platform.

5.4 Results from evaluation of efficiency

As the test only included one shown week on TimeEdit it was inherently

favored towards the old system. The web scraper does not take longer or

shorter to show the results based on a given amount of time scrapes, and

gives the same over two weeks, four weeks, a period, a term, or a year.

This is not the case with hand counting. Counting a period of a week is

faster than counting a period of a month.

5.4.1 Results from developed system

Table 4 shows the result of the test done on the developed system. The

test shows that it took a total of 2 minutes and 20 seconds to complete the

entire process and get a result of how many hours the user was scheduled

the scraped week.

Table 4 and table 5 show that the new system is 59% faster in terms of

reaching the goal of knowing how many hours the user is scheduled that

week, but that the user needs to do more clicks to get the same work done.

This result, however, shows that the new system is measurably more

efficient than the old one.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

36

Table 4: Clicks and time from developed solution.

5.4.2 Results from the old system

Figure 28 shows the results of the test done on the old system, counting by
händ. The test shows thät it took 5 minutes änd 44 seconds do the entire
process.

Table 5: Clicks and time from old system, counting by hand.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

37

6 Conclusions / Discussion
In chapter 6, conclusion, the result, and conclusion of the work done in

this project will be discussed if the goals set out in the start of the project

were reached.

6.1 Methods chosen

The biggest methods chosen for this project was an agile workflow which

includes methods like doing a solid pre study, creating requirement and

function specifications with the help of user stories and being able to

adapt development to the responses.

Having an agile workflow was paramount for the development of this

project and made it possible to change how the platform worked based

on problems that were found along the way.

By doing a pre study where a lot of information was gathered it was

easier to invest time in the areas where this was needed. The pre study

showed that build the web scraper in pure code was feasible, but a lot of

time had to be spent on analyzing how TimeEdit works and how to

scrape the correct information.

The pre study showed what type of data was scraped, how to scrape it

and what the general philosophy behind web scrapers are. This led to a

faster development period where the developing could be more focused

on the pain points.

By constantly iterating based on the problems encountered it was

possible to build the entire platform despite having to accept some

drawbacks. If further development is done in this project continuing

development in an agile environment is highly recommended.

6.2 Working with Python

Python is a highly competent programming language, but it is not a

language heavily used during the Master of Science, computer science,

program at Mid Sweden University. Despite having almost no previous

knowledge about the language it was easy to understand and start

working with.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

38

The biggest benefit with using python during this project is the

competent libraries that exist. Build a web scraper using the beautiful

soup library allows for much faster development as the actual functions

already exist and only needs to be implemented.

The conclusion from this project is that Python is a strong language to

use for this type of web scraper due to its ease of use and if future

development of the web scraper is done Python is recommended because

of the libraries connected to it.

6.3 Concrete and verifiable goals

At the start of this project five different goals were set out to be fulfilled.

During the project the focus has been on achieving all these goals.

1: Build a python-based web scraper that can scrape information from

TimeEdit’s scheduling platform.

The first goal has been achieved as the web scraper is more than capable

to scrape information from TimeEdit. The web scraper has some

drawbacks to it, some specific to this web scraper and some specific to

web scraping in general.

The research value from this goal is that web scrapers are good tools for

collecting data, but that they need to be constantly updated and

developed if websites change. They have some drawbacks, such as

dynamic websites where it’s not always clear what classes can be scraped,

however, with the right development web scrapers are competent tools

to gather and structure data.

The goal could be improved upon by building a web scraper where the

user can scrape data from a personal schedule, or where the user can

input the link directly to the schedule into the program.

2: Build a dynamic and scalable website where the scraped data can be

uploaded by the user into a database.

The second goal has also been achieved. This was done using a lot of

knowledge gained from previous courses at Mid Sweden University and

working with tokens, php and SQL was not new.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

39

The website does what the goal set out for it to do, and the user can

upload data from the scraped .txt file directly into the database.

3: Build functions to sort and present data in a user-friendly way for

every unique user

Goal three was achieved. The website can display the data that the user

uploads in a user-friendly way with the help of easy-to-understand

graphs. The graphs display the raw data in numbers and percentages so

the user in very little time can see how big percentage a course is for a

given period, see figure 22.

4: Implement all three parts of the system so they work together.

Goal four was achieved. During the project a web scraper that can scrape

data from TimeEdit was developed together with a website where the

user can upload the data to a database and then get it presented in a

visually pleasing way. All three parts of the system were implemented

so that they work together and the goal was achieved.

5: Evaluate if the new system us more efficient than the old one.

5b: Evaluate the number of clicks needed for the user to display data.

During the project goal 5 and 5b were done. The new system is faster

than the old one, see chapter 5.4. It did require more clicks but the timer

per click is a lot lower. The new system also scales better than the old one,

where it takes the same amount of time to scrape one week as one year

with the new system, it takes a linear amount of more time to count 1

week and 1 year by hand.

6.3.1 Summary of goals

All the goals set out in this project has been fulfilled or partly fulfilled.

The project has opened interesting questions regarding future research,

read more about this in chapter 6.4, and the developed project is usable

today.

The new system is more efficient than the old one.

6.4 Ethical and societal aspects

The platform handles user data, and that user data is saved to a database

hosted in Europe. The biggest ethical aspect this project handles is the

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

40

use of personal data, especially with the new European law GDPR.

Another ethical aspect to be considered is how the data is stored. Even

without GDPR it is important that the data is stored in a way such that it

does not leak. Different users should not be able to see each other’s data.

It is also important that data generated during user test is anonymous

such that no GDPR laws apply.

When working with a tool that is meant to make it less stressful for

students it is also important to try to deliver on this. If the system does

not work correctly this can lead or displays the wrong information for

the user, this can lead to unnecessary stress.

6.5 Future work

Ä lot of future work cän be done in this äreä. Developers äre just now
discovering the potentiäl behind web scräpers änd the one developed for
this project is very simple.

Future work cän be done on building än äutomäted web scräper where you
user cän press whät they wänt to scräpe from the website. Ä user interfäce
cän älso be developed for the web scräper so thät the user cän eäsily
underständ how the web scräper work.

The scräper cän älso be developed further internälly, by ädding more things
to scräpe änd mäking sure thät it händles the different types of dätä thät
exists on TimeEdit.

Future reseärch cän be done on how dätä mining methods cän be äpplied to
the dätäset. If more dätä wäs scräped, or dätä over än entire yeär, different
dätä mining methods cän be äpplied to änälyze the dätä set.

Reseärch in this äreä could show where students succeed or fäil änd how
different ärrängement of courses äffect the students. With the help of web
scräping änd dätä mining good stätistics cän be produces änd these
stätistics cän be used to further develop the progräm.

Perhäps, developing ä website where the user cän ädd ä link which then gets
web scräped by ä Python script in the bäckground is ä good stärt for future
work. This project shows thät the potentiäl upsides of web scräping is
mässive but thät more reseärch cän be done on how to implement it.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

41

6.6 Problems during development

During the development of this project a lot of different problems

occurred. Quite a few of these problems came down to how web scraping

works. Web scraping in nature is a bit tricky as it relies on the website

being designed and built in a way such that it is possible to scrape data

from it.

TimeEdit uses a third-party log in system that redirects the user several

times before the actual schedule is presented. You can reach this log in

system through different routes, (University website, TimeEdit or the link

directly), making it hard to design a program where the scraper

understands how to scrape the website.

TimeEdit also uses the same class name for different types of information

that is being displayed, and this information is being generated in the

back end. As web scraping centers around looking for class names in the

HTML code this becomes tricky.

The same types of problem apply when hard coding the link. When using

a user input the program understands it some of the time, but not all

times. The problem seems intermittent in a way. This comes down to the

program not always understanding the URL that the user posted to the

input.

Work arounds to all the above problems could have been developed with

more time. The scope of this project in its infancy did not sound or feel

too big, however, due to all the moving parts and the nature of how web

scraping works the time had to be split between functions and goals.

Because of this, compromises had to be taken and not all functions

worked as first set out, or with the user friendliness desired. Even if the

argument can be made that the goals have been fulfilled, they could have

been so in a better and cleaner way.

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

42

References
[1] Wikipediä [www]. St. Petersburg (FL): Wikimediä Foundätion, Inc;

2001. TimeEdit; [revised 2017-10-29; cited2021-07-25]. Äväiläble
from: https://sv.wikipediä.org/wiki/TimeEdit

[2] Siteefy, ”How many websites are there” [www]
https://siteefy.com/how-mäny-websites-äre-there/
Updäted 2021-08-19. Reäd 2021-07-25

[3] Stätistä, ”Digital Population Worldwide” [www]
https://www.stätistä.com/stätistics/617136/digitäl-populätion-
worldwide/
Published 2021-01. Reäd 2021-07-26

[4] Twitter, “Twitter-Api” [www]
https://developer.twitter.com/en/docs/twitter-äpi,
Reäd 2021-07-26

[5] Zdnet, “Programming language pythons’ popularity ahead of java for
the first time but still trailing c” [www]
https://www.zdnet.com/ärticle/progrämming-länguäge-pythons-
populärity-äheäd-of-jävä-for-first-time-but-still-träiling-c/
Published: 2020-11-04. Reäd: 2021-07-26

[6] Python, “Why python is a dynamic language and also a strongly
typed language” [www]
https://wiki.python.org/moin/Why%20is%20Python%20ä%20dy
nämic%20länguäge%20änd%20älso%20ä%20strongly%20typed
%20länguäge
Reäd: 2021-07-26

[7] Python, “The Python Wiki”, [www]
https://wiki.python.org/moin/FrontPäge
Reäd: 2021-07-27

[8] Crummy, “Making the soup” [www]
https://www.crummy.com/softwäre/BeäutifulSoup/bs4/doc/#mä
king-the-soup
Reäd: 2021-07-26

[9] Elite Data Science, “5 Tasty Python Web Scrping Libraries” [www]

https://elitedatascience.com/python-web-scraping-libraries

Read: 2021-09-12

https://sv.wikipedia.org/wiki/TimeEdit
https://siteefy.com/how-many-websites-are-there/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://developer.twitter.com/en/docs/twitter-api
https://www.zdnet.com/article/programming-language-pythons-popularity-ahead-of-java-for-first-time-but-still-trailing-c/
https://www.zdnet.com/article/programming-language-pythons-popularity-ahead-of-java-for-first-time-but-still-trailing-c/
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://wiki.python.org/moin/FrontPage
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#making-the-soup
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#making-the-soup
https://elitedatascience.com/python-web-scraping-libraries

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

43

[10] Php, “What is php?” [www]
https://www.php.net/mänuäl/en/intro-whätis.php
Reäd 2021-07-29

[11] Sqlcourse, “What is SQL?” [www]
http://www.sqlcourse.com/intro.html
Reäd 2021-07-29

[12] Phpmyädmin, “Bringing MySql to the web” [www]
https://www.phpmyädmin.net/
Reäd 2021-07-30

[13] Ätlässiän, “User Stories with Examples and Template” [www]
https://www.ätlässiän.com/ägile/project-mänägement/user-
stories
Reäd: 2021-09-12

[14] Projektleding, “Krävspecifikätion”, [www]
https://projektledning.se/krävspecifikätion
Reäd: 2021-09-12, Published: 2018-05-10

[15] LinkFäng, ”Funktionsänälys (Teknik)”, [www]
https://sv.linkfäng.org/wiki/Funktionsänälys_%28teknik%29
Reäd: 2021-09-13

[16] Säurkär, Ä. S., Päthäre, K. P, & Gode, S. G. (2018). [ärticle]
Än Overview On Web Scräping Techniques Änd Tools.
International Journal On Future Revolution In Computer Science &
Communication Engineer, 4(4), 363 – 367.
http://www.ijfrcsce.org/index.php/ijfrcsce/ärticle/view/1529/15
29

[17] SCM de S Sirisuriyä, (2015). [ärticle]
Ä Compärätive Study on Web Scräping.
General Sir John Kotelawala Defence University, Proceedings of 8th
International Research Conference, 2015, 6 pages.
http://ir.kdu.äc.lk/bitstreäm/händle/345/1051/com-
059.pdf?sequence=1&isÄllowed=y

[18] Project Mänäger “The ultimate guide to a gant chart” [www]
https://www.projectmänäger.com/gäntt-chärt,
Reäd: 2021-08-05

[19] Intersoft consulting, “General Data Protection Regulation”, [www]
https://gdpr-info.eu/,
Reäd 2021-08-06

https://www.php.net/manual/en/intro-whatis.php
http://www.sqlcourse.com/intro.html
https://www.phpmyadmin.net/
https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://projektledning.se/kravspecifikation
https://sv.linkfang.org/wiki/Funktionsanalys_%28teknik%29
http://www.ijfrcsce.org/index.php/ijfrcsce/article/view/1529/1529
http://www.ijfrcsce.org/index.php/ijfrcsce/article/view/1529/1529
http://ir.kdu.ac.lk/bitstream/handle/345/1051/com-059.pdf?sequence=1&isAllowed=y
http://ir.kdu.ac.lk/bitstream/handle/345/1051/com-059.pdf?sequence=1&isAllowed=y
https://www.projectmanager.com/gantt-chart
https://gdpr-info.eu/

Developing a Python based web scraper – A study on the development

of a web scraper for TimeEdit

Pontus Andersson 2021-09-13

44

[20] United Nätions, “The Paris Agreement” [www]
https://unfccc.int/process-änd-meetings/the-päris-
ägreement/the-päris-ägreement Reäd 2021-08-06
Reäd 2021-08-06

[21] Crummy, “find_parents() and find_parent()” [www]
https://www.crummy.com/softwäre/BeäutifulSoup/bs4/doc/#fin
d-pärents-änd-find-pärent,
Reäd: 2021-08-26

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement%20Read%202021-08-06
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement%20Read%202021-08-06
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-parents-and-find-parent
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-parents-and-find-parent

