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Abstract 
The IoT is becoming an increasing producer of big data. Big data can be 

used to optimize operations, realizing this depends on being able to 

extract useful information from big data. With the use of neural networks 

and machine learning this can be achieved and can enable smart 

applications that use this information. This thesis focuses on answering 

the question how good are neural networks at predicting sensor values 

and is the predictions reliable and useful in a real-life application? 

Sensory boxes were used to gather data from rooms, and several neural 

networks based on LSTM were used to predict the future values of the 

sensors. The absolute mean error of the predictions along with the 

standard deviation was calculated. The time needed to produce a 

prediction was measured as an absolute mean values with standard 

deviation. The LSTM models were then evaluated based on their 

performance and prediction accuracy. The single-step model, which only 

predicts the next timestep was the most accurate. The models loose 

accuracy when they need to predict longer periods of time. The results 

shows that simple models can predict the sensory values with some 

accuracy, while they may not be useful in areas where exact climate 

control is needed the models can be applicable in work areas such as 

schools or offices. 

Keywords: Machine Learning, Neural Network, predictions, sensory 

data, smart building. 
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Sammanfattning 
IoT har blivit en stor producent av big data. Big data kan användas för 

att optimera operationer, för att kunna göra det så måste man kunna 

extrahera användbar information från big data. Detta kan göras med 

hjälp av neurala nätverk och maskininlärning, vilket kan leda till nya 

typer av smarta applikationer. Den här rapporten fokuserar på att 

besvara frågan hur bra är neurala nätverk på att förutspå sensor värden 

och hur pålitliga är förutsägelserna och om dom kan användas i verkliga 

applikationer. Sensorlådor användes för att samla data från olika rum 

och olika neurala nätverksmodeller baserade på LSTM nätverk användes 

för att förutspå framtida värden. Dessa värden jämfördes sedan med 

dom riktiga värdena och absoluta medelfelet och standardavvikelsen 

beräknades. Tiden som behövdes för att producera en förutsägelse 

mättes och medelvärde och standardavvikelsen beräknades även där. 

LSTM modellerna utvärderades utifrån deras prestanda och 

träffsäkerhet. Modellen som endast förutspådde ett värde hade bäst 

träffsäkerhet, och modellerna tappade träffsäkerheten desto längre in i 

framtiden dom försökte förutspå. Resultaten visar att även dom enkla 

modellerna som skapades i detta projekt kan med säkerhet förutspå 

värden och därför användas i olika applikationer där extremt bra 

förutsägelser inte behövs. 

Nyckelord: Maskininlärning, Neurala nätverk, förutsägelser, sensor data, 

smart byggnad 
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Terminology 
These are the abbreviations that are often used in this thesis to shorten 

the text. 

Acronyms/Abbreviations 

AI Artificial Intelligence 

IoT Internet of Things 

LSTM Long Short-Term Memory 

mbar Millibar 

ML Machine Learning 

NN Neural Networks 

ppm part per million 

RNN Recurrent Neural Network 

Stdev Standard deviation 

VOC volatile organic compound
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1 Introduction 
This is a bachelor thesis for computer engineering where machine 

learning is investigated on its ability to predict values for environmental 

sensors. This chapter introduces the project and explains its background 

and why it was conducted. 

1.1 Background and problem motivation 

Many products of the future will be devices embedded with sensors and 

actuators, enabling new types of smart applications. All these smart 

devices connected and collaborating form the IoT. The number of devices 

connected to the IoT at the end of 2018 was an estimated 12 billion and is 

expected to reach 31 billion by 2025 [1]. IoT devices will therefore be a 

big part future development. With 5G enabling faster communications 

between devices and sensor becoming more and more available, IoT 

devices are major producers of big data, due to the volume and speed of 

data being produced. Big data can be used to optimize processes, 

empower insight discovery, and improve decision making. Realizing the 

potential of big data relies on being able to extract value from the amount 

of data through data analytics [2]. Neural networks and artificial 

intelligence are great at these sorts of tasks. 

In recent years, deep learning technology, artificial intelligence, and 

neural networks have become a very interesting research topic for the 

IoT. This is due to its ability to learn from data and provide data driven 

insight, decision making, and predictions. AI’s ability to analyse and 

extract valuable information from big data is one of the main drivers for 

why it has become popular when researching the IoT. 

1.2 Overall aim 

The overall aim of the project is to investigate if machine learning can be 

used to predict sensor values, by analysing the big data being produced 

by environmental sensors and predicting the future. As well as 

deepening the knowledge of prediction reliability and accuracy. The 

predicted values can be used in different kinds of smart applications, 

such as an adaptive air conditioning system. This will allow for AI 

controlled smart application where sensors and actuators are used to 

analyse operations. 
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1.3 Problem statement 

Based on this overall aim, the problem investigated in this thesis is to 

evaluate how good neural networks are at predicting sensor values and 

how reliable the predicted values are in real world applications. Without 

this knowledge it is difficult to understand how and where deep learning 

can be implemented in smart applications. This thesis aims to achieve a 

deeper understanding on how ML can be used in the development of 

smart applications relaying on sensor values. 

1.4 Scientific goal 

The scientific goal of the project is to determine how suitable neural 

networks are at predicting sensor values for environmental sensors 

based on the prediction’s accuracy and consistency.  

1.5 Scope 

This thesis will focus on sensors that measures the environmental quality 

in buildings, therefor other kinds of sensors will be out of scope. Sensors 

such as distance and noise will be out of scope. This work will only focus 

on the ML algorithm LSTM, and because of this other ML algorithms will 

not be evaluated in this thesis. The focus will also be on understanding 

what NN can be used for and not completely optimizing the models for 

their problems, optimization of the NN will therefore be out of scope. 

1.6 Outline 

The report will have the following outline. Chapter 2 describes the theory 

used in this thesis; this is important to understand how the different parts 

of the report works. Chapter 3 show the methodology of the work, it 

describes how the different parts of the work was executed. In chapter 4 

the implementation of the methodology is explained. Chapter 5 shows 

the results obtained for the measurements from chapter 3. In chapter 6 

the results from chapter 5, as well as the project are discussed and 

analyzed. Chapter 7 draws conclusions from chapter 5 and 6. 
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2 Theory 
This thesis requires some theory to completely understand. This chapter 

will therefor introduce the necessary theory behind IoT, which is what 

the system used here is based on. The most important part is to 

understand what neural networks are and how they work. This will be 

explained in chapter 2.2 and the implementation of it in chapter 2.3. 

2.1 Internet of Things 

The Internet of Things (IoT) is a concept where different devices 

wirelessly communicate with each other without the need of human 

intervention.  

The first Internet device was created in 1990, it was a toaster which could 

be turned on and off via the Internet. Although connecting devices began 

when Internet first was created in 1989 [3]. The term IoT was formalized 

in 1999, by Kevin Ashton at MIT Auto-ID Centre. The Auto-ID Labs are 

a world-wide network of academic research laboratories, who focus on 

RFID. They developed the Electronic Product Code to support the spread 

use of Radio-Frequency IDentification (RFID) in modern trading 

networks [4]. RFID tags were the first things in an IoT system. 

The IoT has developed with the Internet since the first Internet device in 

1990. Wireless communication technologies have enabled a wider 

development and use of the IoT. Where RFID tags have also been a key 

component when communicating wirelessly. 

2.2 Neural networks and machine learning 

Machine Learning (ML) have been used in a wide variety of areas such 

as pattern recognition, natural language processing, and computational 

learning. ML allows computers to act without being explicitly 

programmed. ML has made its way into the modern everyday life, with 

everything from autocomplete searches to facial recognition.  

Neural networks are often called Artificial Neural Network (ANN) and 

are inspired by biological neural networks, such as the brain. Neural 

networks use connected artificial neurons, called nodes. Each node has 

an input called signal, which is a real number, and an output which is 

computed using a non-linear function and the input number. 
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The nodes are connected by edges. Edges and nodes are weighted, and 

the weight is adjusted during the training of the NN. The weight of the 

edges is what makes the NN behave as expected. When training a NN 

using a training set that is too small, the model can be overfitted to the 

problem making it good at predicting the data from the training set, but 

bad at predicting other data. [5] 

During training, a NN learns the output, when learning the weights of 

the edges and nodes are adjusted. NN have a learning rate which defines 

the size of the corrective steps during training. A small learning rate is 

often used because it gives a higher accuracy, but small learning rates 

increase the training time of the NN. A cost function is used during 

training which is used to measure how well a NN did with respect to the 

given training input. 

When training a NN there are different paradigms which can be used. A 

major paradigm is supervised learning, which is what this thesis will be 

using. In supervised learning each input is pair with the desired output. 

A commonly used cost function when using supervised training is mean-

squared error, this is also used in this thesis. 

Some other major training paradigms are unsupervised learning where 

the input data is given along with a cost function dependent on the task. 

Another is reinforcement learning which is often used when training a 

NN to perform certain task, such as completing a video game. When 

using reinforcement learning, some actions are awarded with a score, 

and the NN is weighted to perform task that rewards high scores. 

A problem in training methods that are gradient-based or use 

backpropagation, the gradient can become vanishingly small. This 

would stop the weight from being changed, effectively halting training. 

When first training a NN using supervised learning, it had little effect. 

The failure of this was later found to be the vanishing gradient problem. 

2.2.1 Recurrent neural networks 

A Recurrent Neural Network (RNN) is a class of neural network 

architecture. In RNN connections between nodes form a directed cycle. 

This gives RNNs an internal state(memory) which allows them to behave 

dynamically. RNNs can use their internal memory to process and work 
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on input sequences [6]. This class of neural network is dominating 

difficult machine learning problems. 

RNNs are derived from feedforward neural networks (FNN). In RNN 

were fitted with memory to overcome a limitation in FNN, which was 

that it was limited to make predictions on the input alone. With the 

memory the model could predict using both input and memory. RNN 

can therefore handle arbitrary input lengths. [7] 

There are many kinds of RNN such as the Elman networks and Jordan 

networks. The one used in this thesis is the Long Short-Term Memory. 

2.2.2 Long Short-Term Memory 

LSTM was proposed by Sepp Hochreiter and Jürgeb Schmidhuber in 

1997. The goal of a LSTM network was to overcome the error backflow 

problems. When using backpropagation through time (BBTT) or real-

time recurrent learning (RTRL) error signal flowing backward in time 

tend to either blow up or vanish. If the error blows up and becomes large, 

the weights in the NN can oscillate. If the error vanishes the training 

takes long time or does not work at all. [8] 

To allow constant error flow the LSTM network was fitted with 

additional features, these were the input gate, the output gate and a 

memory cell. The input gate is meant to protect memory contents in the 

memory cell perturbation by irrelevant inputs. The output gate is meant 

to protect the other units from irrelevant memory contents stored in the 

unit’s memory cell. [8] 

2.3 Software for machine learning  

The NN created in this thesis were created using Python with primarily 

one library. TensorFlow was what enabled the creation and training. 

2.3.1 TensorFlow 

TensorFlow is a free open-source library for ML. It was developed by the 

Google Brain team for internal Google use. TensorFlow can run on 

multiple CPUs and GPUs, it is also possible to run it on CUDA cores on 

a compatible GPU making training a lot faster than running it on the CPU. 

The GitHub repository for TensorFlow has over 156,000 stars [9], which 

means it is a very popular ML framework. [10] 
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2.3.2 Keras 

Keras is an API written in Python, which runs on TensorFlow. Keras 

high-level and therefor provides abstractions and building blocks for 

developing ML. Keras was created to be user friendly and easy to extend. 

Keras is backed by Google, and has been adopted for use in TensorFlow 

2.0 

An important note is that when using the Keras’ sequential model with 

TensorFlow there are some prediction methods used in this thesis. The 

simplest is to use the predict method directly and get a single value in 

return from the predict method. Another is to increase the units in the 

Dense layer, which controls how many values are outputted. This 

method is used in all models, with different number of units in the Dense 

layer. [11] 

2.4 Related work 

The field of ML and NN are popular research areas so there are a great 

number of related works available. Here two of them are compared to 

this report and how they are similar and how they differ is brought up 

below. 

2.4.1 Multi-step Data Prediction in Wireless Sensor Networks Based on 
One-Dimensional CNN and Bidirectional LSTM 

This work is about multi-step prediction on sensor data, using a one-

dimensional CNN and a bidirectional LSTM network. While this work 

uses a NN model that combines a CNN and LSTM, this thesis uses purely 

LSTM networks for predictions. The work focuses on only multi-step 

predictions on sensory data, while this thesis will use both single-step 

and multi-step predictions. The work also only uses the regressive 

prediction technique while this thesis will include the single-shot 

prediction technique as well. [12] 

2.4.2 An LSTM network for highway trajectory prediction 

This work focuses on predicting vehicle trajectory using a LSTM network. 

While both the work and this thesis use LSTM networks, the work uses 

it for highway traffic predictions while this thesis focuses on 

environmental sensor predictions. The work also focuses on predicting 



Title – Subtitle 

Author         2020-04-15 
 

7 

 

the future position of vehicles and not the future values of all the input 

data features, which this thesis is focusing on. [13] 
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3 Methodology 
This thesis uses a quantitative method for measurements of the real-

world implementation of sensor. The sensors will be doing real-world 

measurements and a neural network will be implemented and 

processing the sensor values. The methodology chapter explains how the 

project was executed. 

3.1 Project method description 

This project will have five milestones to achieve its scientific goal. The 

first milestone is to find a suitable and common ML method used to 

predict sensor values. Google Scholar will be used to find three common 

ML algorithms and chose the one best suited for this thesis. The 

algorithm will be evaluated on implementation difficulty, available 

guides for implementation, and how commonly it is used. The method 

to be used in this thesis will be the LSTM algorithm, because it has a lot 

of available guides, it is commonly used for hobby projects as well as by 

bigger companies. LSTM can be easily implemented in python using 

TensorFlow and Keras library. 

The second milestone is to design a system, scenario, and measurement 

setup for predicting the future based on sensor values. The scenario will 

be smart building applications, and Raspberry Pi units will be used to 

measure values from the rooms, such as temperature, CO2 levels, particle 

levels, and humidity. The Raspberry Pi units will upload the 

measurements to a Grafana server. That server will be used to store the 

measurements. This was chosen because the sensors were setup in a 

university before the thesis was written. 

Milestone 3 is related to implementing the system in the chosen scenario. 

The implementation of the neural network that uses the chosen ML 

method will be implemented in Python using a library that simplifies the 

implementation of the neural network. The data from the sensors will be 

read and stored in an object. The data will be preprocessed to make it 

work with the neural network. The neural network model will be fitted 

and trained on most of the sensor values. Multiple models, using 

different prediction methods will be implemented. 

The fourth milestone is to measure the performance of the neural 

network. Several aspects of the neural network will be measured. The 
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time taken to produce a prediction will be measured and the error of the 

value. The absolute mean value of the error will be measured, as well as 

the Stdev of the errors to see if the errors are consistent. The measured 

values will be used in the final goal to evaluate the neural network. 

The final milestone is then to evaluate the predicted values and the 

chosen method. The chosen method will be evaluated in terms of 

implementation difficulties, limitations in the implementation, and 

prediction accuracy. The predicted values will be judged based on how 

close they are to the actual values and how consistent they are. Based on 

this the predictions will be evaluated on how useful they are. 

3.2 Scientific method description 

The first scientific goal was to learn how well neural networks are at 

predicting sensor values. This will be achieved by judging the predicted 

values based on how close they are to the actual values, the time it takes 

to produce a predicted value and how many successful predictions it can 

produce ahead of time. 

The second scientific goal was to learn how reliable the predicted values 

are. This will be achieved by seeing how accurate the values are, if the 

accuracy of the predictions is consistent. The predicted values will be 

evaluated to see if they can still be used for smart buildings applications 

even if they differ from the actual values. 

3.3 Evaluation method 

The method will be evaluated based on how well the project went overall 

and if the method could have been changed to make the results better or 

the work easier. The chosen language will be evaluated on how easy the 

implementation was and how the online guides were, and if another 

language could have been a better choice. The implementation will be 

evaluated to see if anything were left out that could have affected the 

performance of the neural network. The results will be analysed and 

evaluated on their accuracy and how useful they are based on accuracy 

and consistency. 
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4 Implementation 
The sensor and the Grafana server were already running before the 

project started. The values were downloaded from the Grafana server 

and preprocessed to make the data useable. The values were then fed to 

one of the LSTM network models for training, and then the model 

produced predicted values. An overview of the whole implementation 

can be seen in Figure 4.1. 

 

Figure 4.1, overview image of the project setup. 

4.1 Sensors/Grafana 

The sensor nodes are Raspberry Pi units with several sensors measuring 

the air quality. They measure the temperature in °C, CO2 levels in ppm, 

humidity in %, pressure in millibar (mbar), luminescence in lux, and 

amount of volatile organic compounds in ‰. The sensors were not 

created during this project. 

The Grafana server was not set up during this project. It is the host site 

where the sensor values are uploaded. The values are downloaded into 

a csv file from this server, for later use in the neural network. 

4.2 Preprocessing 

Before the data could be used to train the LSTM model, it needed some 

work to be useful. The data needed to be changed to fit a format that will 

work with the neural network. Since the sensors did not upload all 

readings as one object, each row in the csv file only had one reading. The 

six different sensor values needed to be combined. Figure 4.2.1 shows the 

flowchart of the code used to change the csv file.  
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Figure 4.2.1, flowchart for the preprocessing script. 

The script reads the csv file to a DataFrame object, then selects six rows 

at a time and creates a temporary DataFrame containing the selected 

rows. Then using the pandas max() method to get the max values for each 

column. Combined with the to_frame() and transpose() methods the 

DataFrame is compressed into a single row. The new object was 

appended to a master DataFrame to save it. This iterates through the 

entire csv file. When all values were handle, they were sliced so every 

10th element was kept. 

Some faulty values needed to be removed from the csv file. These were 

test values, sent to the server when the sensors were setup and tested. A 

block of values was removed from the csv file, because most of the values 
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were missing. This was achieved using the pandas method 

DataFrame.iloc on the master DataFrame. Finally, the method fillna() 

was used to fill all missing values. All missing values were replaced with 

the most recent previous value, be making fillna() use the forward-fill 

method. The master DataFrame was saved to the csv file. The source code 

used to achieve this can be found in Appendix A. 

4.3 LSTM network 

The LSTM network is working with the new csv file created in chapter 

4.2. Those values are loaded into a DataFrame object. The DataFrame 

object was split into different datasets that were used for training, 

validation, and predicting. The datasets were reformatted into moving-

window batches for training and validation, and a single window was 

made for predicting. This was done differently for the different models. 

4.3.1 Single-step prediction 

In the single-step prediction model, the data batches were created by 

splitting the dataset into a training batch which consisted of 80% of the 

values from the DataFrame object, and a validation batch which 

contained the remaining 20%. The window size for the data batches were 

432 timesteps, which corresponds to three days of sensor values. The 

same was done with the validation batch. Each data batch had a 

corresponding target, in this model the target was a single timestep and 

the target was the next timestep. So, the first window in the training batch 

contained timesteps 0-431 and its target was the 432nd timestep. The 

flowchart, see figure 4.3.1, shows how the script works. 
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Figure 4.3.1, flowchart for the creation and training of LSTM models. 

The LSTM model is then designed. This model is a sequential 

TensorFlow model with one LSTM layer with 32 LSTM units in it, and a 

Dense layer with 6 units. The number of units in the LSTM layer is how 

many nodes the layer has. The number of units in the Dense layer 

describes how many features the predicted timestep will have. The 

model is then compiled with the adam optimizer which optimizes the 

input weights by comparing the prediction and the loss function. The 

loss function is selected as the mean squared error. 

After the model was compiled, it was trained using Keras fit() method, 

here the training batch as given as input and the validation batch as 

validation. The training was done for 10 epochs which means it iterates 
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over the entire training batch 10 times. The batch size was selected as 32, 

which means it will train on 32 samples before per gradient update. 

Finally, the model was saved for later use. 

The actual prediction was done by another script, which started by 

loading the csv file and the saved LSTM model. The values from the csv 

file were scaled to -1 and 1. The values were then reformed into a similar 

batch as the validation batch, but this time it did not have a target value, 

this was called the predict batch. The Keras method predict() was then 

used to predict the target values, by giving it the predict batch as input. 

The flowchart for this is found in figure 4.3.2. The main script along with 

the prediction and evaluation script can be found in Appendix B. 

 

Figure 4.3.2, flowchart for predicting values in the single-step model. 

4.3.2 Multi-step, single shot prediction 

The multi-step single shot model was implemented a little different from 

the single-step model. The data was split into train and validation 
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batches, but the last 10% of the values were left for prediction later. The 

values were then scaled to the range -1 and 1. The data batches created 

had several time steps as targets, to train the network to predict multiple 

timesteps in one prediction. The batches were made infinite with the 

repeat() method, to allow longer training since this kind of model is more 

advanced. 

The input values of the batches were the same as previously, 432 

timesteps, and the target was set to different amounts of timesteps to 

predict different hours into the future. When predicting the next hour, 

the targets was 6 timesteps, since there is one reading every 10 minutes. 

To predict three, six, 12, and 24 hours respectively the target consisted of 

18, 36, 72 and 144 timesteps. 

The actual model was a created differently to be more complex than the 

single-step model. This model has two LSTM layers, both with 32 units. 

Between the LSTM layers there is a Dropout layer, which drops some 

values if they are too low. The Dropout layer was added to prevent over 

fitting the model, since it trains a lot more on repeated data than the 

single-step model.  

The model had a Dense layer and a Reshape layer, both had to be 

changed depending on how many timesteps to predict. The one-hour 

model had 36 units in the Dense layer, because it had to predict 6 

timesteps each with 6 features. The Reshape layer would then reshape 

the output array into a 2-dimensionall array, by setting the target shape 

to be (6, 6). The first dimension is the number of timesteps and the second 

is the number of features in each timestep. The three-hour model had 108 

units in the Dense layer, and the Reshape layer had the target shape of 

(18, 6). The six-hour model had 216 units in the Dense layer, and 

Reshapes target shape as (36, 6). The 12 and 24-hour models had 432 units 

respectively 864 units in the Dense layer. The 12-hour models target 

shape was (72, 6) and the 24-hour model had (144, 6). 

The model was compiled with the compile() method and the loss was set 

to be mean squared error and the optimizer used was the adam optimizer, 

same as the single-step model. 

The training done with the fit() method, but it works differently now. 

Since this model must be better trained it has more epochs in the training, 
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this time 100 epochs. And the batch size was kept as 32. Since both the 

train batch and validation batch were made infinite, the number of steps 

per epoch and validation steps must be explicitly stated. The number of 

epoch steps was set to 1000 and the number of validation steps was set 

to 100. This time the shuffle parameter was set to true, so the sequence of 

picked timesteps would not repeat. 

The prediction was still made using a predict batch, which did not have 

a set target, and consisted of the last 10% of the values not used during 

training. The values were scaled using the MinMaxScalers transform() 

method. The prediction was made using the predict() method and had 

the predict batch as input. All scripts involving the multi-step single-shot 

model can be found in Appendix C. 

4.3.3 Multi-step, regressive prediction 

The regressive prediction model works as the single step model does. It 

generates a single predicted timestep, but that timestep is then treated as 

an observed value and is used to predict the next value. 

The regressive model used for this was the same as the one used in 

chapter 4.3.2. It was trained using infinite data batches and the target for 

the batches was only a single timestep. 

This model differs in how it predicts multiple timesteps. As previously 

mentioned, it only predicts a single timestep and then uses that timestep 

as an observed value, to predict a new timestep. This works by first 

getting it to predict a value using the observed values as input. That 

prediction is then stored to an array and added to the end of the input. 

The first value of the input was removed to keep the length consistent. 

This process was looped several times depending on how far into the 

future the model needed to predict. To predict one hour of values, the 

number of iterations was set to six. For three hours, 18 iterations were 

used. For every hour to predict six iterations were added. The flowchart 

for the predict script can be found in figure 4.3.3. All scripts using the 

regressive model can be found in Appendix D. 
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Figure 4.3.3, flowchart describing the prediction script of the multi-step 

regressive model. 

4.4 Measurement setup 

Measuring the time it takes for the models to produce a prediction was 

achieved using the Python time library. The method time() was used 

right before the prediction to store the start time and then right after the 

prediction to get the stop time. The difference was then stored in an array 

and a new time measurement was performed. When 100 time values had 

been measured, the mean of the values was calculated along with the 

standard deviation. 
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The single-step model was evaluated by predicting all values in the 

validation dataset. The absolute value of the difference between each 

timestep and its corresponding prediction was stored in an array. The 

mean value and standard deviation of that array was calculated using 

the numpy library’s mean() method and std() method, both taking the 

error array as input. This was calculated for every feature independently. 

The multi-step, single-shot model was evaluated in a similar way, but the 

last 10% of the entire dataset was used when predicting. The last 10% 

was used for prediction and left out when training, to avoid overtraining 

on these values since infinite training sets were used. All values were 

given as input to the model, and the difference was stored. But since 

these models output several timesteps in one prediction, the predictions 

will overlap resulting in more values and differences calculated. The 

mean and Stdev were calculated as previously. 

The regressive version of the multi-step model was evaluated in the same 

way as the multi-step single-shot model. This model differs in how the 

time was measured. The time measurement was not for the predict 

method alone, but also included the for-loop used to iterate the 

prediction process along with the input changing. This was measured 

because it is part of the prediction method and is what is unique for this 

model. The evaluation scripts can be found in their corresponding model 

Appendix. 
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5 Results 
The result from this project is three different neural network models that 

can predict the future values of the environmental sensors, figure 5.1 

shows the output during the training of one of the models. The results 

presented are used to evaluate the models’ performance. The time taken 

to produce predictions are measured, as well as the error of the 

predictions. 

 

Figure 5.1, screenshot of the output during training of a LSTM model. 

5.1 Single-step prediction 

When predicting values using the single-step model, the resulting graph 

was created, see figure 5.1.1. The figure shows all predicted values as the 

red line, and their corresponding actual observed value as the blue line. 
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Figure 5.1.1, prediction graph for single-step model. X axis is the 

timesteps and the Y axis is the value of that reading. 

The results from the evaluation of the single-step model are shown in the 

table below, see table 1. Keep in mind that all values, except for time, is 

the error of the prediction and not the actual predicted values. 

Table 1, evaluation table for single-step model. 

 Mean Stdev 

Time 0.0402 s 0.0329 s 

Temperature 0.248 °C 0.172 °C 

Humidity 1.42 % 1.11 % 

Pressure 3.81 mbar 2.61 mbar 

VOC 51.7 ‰ 27.0 ‰ 

Light 7.78 lux 8.30 lux 

CO2 43.0 ppm 33.5 ppm 
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5.2 Multi-step, single shot prediction 

The multi-step, single-shot model has a few different graphs and 

evaluation tables. This is because different amounts of timesteps were 

predicted. 

The one-hour prediction is shown in figure 5.2.1. The graph is only 

showing one prediction, containing six values. The predicted values are 

represented as red dots, while the actual values remain as a blue line. 

 

Figure 5.2.1, graphs showing the predictions of the single-shot one-hour 

model. X axis is the timesteps and Y axis is the sensor values. 

The evaluation table for the one-hour model can be seen in the table 

below, see table 2. A lot of values remain the same as for the single-step 

model. The VOC prediction has decreased in accuracy which can be seen 

in figure 8 where the prediction of VOC has a bigger error than the other 

values. The CO2 mean and Stdev has also increased. 
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Table 2, measurements of one-hour single-shot prediction. 

 Mean Stdev 

Time 0.0368 s 0.0409 s 

Temperature 0.224 °C 0.281 °C 

Humidity 1.09 % 0.819 % 

Pressure 3.10 mbar 2.69 mbar 

VOC 168 ‰ 129 ‰ 

Light 6.65 lux 12.7 lux 

CO2 51.4 ppm 83.1 ppm 

 

The three-hour version of the model has 18 timesteps in its predictions. 

A single prediction can be found in figure 5.2.2. 

 

Figure 5.2.2, prediction graphs created by the three-hour single-shot 

model. 
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And then evaluation for the three-hour model is shown in table 3. This 

shows an overall slight increase in the deviation of the errors, with some 

mean values increasing as well. The biggest increase is the gas/1000 

measurement. 

Table 3, measurements taken on the three-hour prediction by the single-

shot model. 

 Mean Stdev 

Time 0.0424 s 0.0827 s 

Temperature 0.290 °C 0.267 °C 

Humidity 1.27 % 1.14 % 

Pressure 3.54 mb 2.92 mb 

VOC 250 ‰ 156 ‰ 

Light 5.82 lux 11.7 lux 

CO2 53.5 ppm 81.1 ppm 

The six-hour version contains 36 timesteps in one prediction. One 

prediction can be seen in the figure 5.2.3. 
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Figure 5.2.3, predictions for six hours by the single-shot model. 

The evaluation of the six-hour predictions is shown in table 4. The 

measurements see another slight increase in all fields, with some 

increasing more and other just slightly. 

Table 4, evaluation table for six-hour predictions by the single-shot 

model. 

 Mean Stdev 

Time 0.0368 s 0.0410 s 

Temperature 0.400 °C 0.331 °C 

Humidity 1.81 % 1.70 % 

Pressure 3.56 mb 2.53 mb 

VOC 278 ‰ 166 ‰ 

Light 6.96 lux 11.5 lux 

CO2 65.9 ppm 81.9 ppm 
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The 12-hour model contains 72 timesteps and a prediction along with its 

corresponding observed values can be seen in the figure 5.2.4. The 

predicted values form a relatively flat line. 

 

Figure 5.2.4, prediction graphs showing 12-hour predictions by the 

single-shot model. 

The evaluation table, table 5, shows the measurements of the predictions. 

Table 5 the decreasing accuracy of the predictions with increasing mean 

errors and Stdev values when compared to the 6-hour predictions. 
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Table 5, measurements on the single-shot model when predicting 12 

hours. 

 Mean Stdev 

Time 0.0364 s 0.0402 s 

Temperature 0.401 °C 0.351 °C 

Humidity 2.24 % 1.75 % 

Pressure 5.49 mb 4.82 mb 

VOC 307 ‰ 179 ‰ 

Light 6.06 lux 11.3 lux 

CO2 59.1 ppm 86.4 ppm 

The 24-hour model is the biggest with 144 timesteps in each prediction. 

The figure 5.2.5, shows a prediction made by this model. 

 

Figure 5.2.5, the graphs show 24-hour predictions by the single-shot 

model. 
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The table below, table 6, shows the values measured when evaluation 

this model. The gas/1000 predictions show an increase in the Stdev of the 

errors, while other values remain mostly the same. 

Table 6, measurements on the 24-hour predictions on the single-shot 

model. 

 Mean Stdev 

Time 0.0362 s 0.0411 s 

Temperature 0.449 °C 0.322 °C 

Humidity 2.80 % 2.04 % 

Pressure 9.50 mb 7.28 mb 

VOC 312 ‰ 190 ‰ 

Light 6.05 lux 11.4 lux 

CO2 64.3 ppm 88.9 ppm 
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5.3 Multi-step, regressive prediction 

The multi-step, regressive model contains several prediction graphs and 

evaluation tables, just like the multi-step single-shot model. 

When prediction one hour the following graph was created, see figure 

5.3.1. 

 

Figure 5.3.1, one-hour prediction graph by the autoregressive model. 

The evaluation measurements for this prediction can be found in the 

table below. See table 7. Compared to the multi-step single-shot model, 

the errors see a decrease in both mean and Stdev. 
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Table 7, evaluation table for one-hour predictions by the regressive 

model. 

 Mean Stdev 

Time 0.234 s 0.112 s 

Temperature 0.194 °C 0.239 °C 

Humidity 1.03 % 0.660 % 

Pressure 2.15 mb 1.28 mb 

VOC 68.9 ‰ 110 ‰ 

Light 9.38 lux 11.6 lux 

CO2 57.8 ppm 74.6 ppm 

For three-hour predictions, a graph was created, see figure 5.3.2. While 

some predictions are accurate, most values diverge from the observed 

values.  

 

Figure 5.3.2, prediction graphs for the three-hour predictions by the 

autoregressive model. 
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The measurements for this prediction can be seen in the table below, see 

table 8. Here it is another overall increase when compared to the previous 

1-hour prediction. When compared to the three-hour single-shot 

prediction the mean errors are smaller, except for the lux and CO2 errors 

that are larger. 

Table 8, evaluation table for the three-hour regressive model. 

 Mean Stdev 

Time 0.686 s 0.131 s 

Temperature 0.245 °C 0.346 °C 

Humidity 1.05 % 0.874 % 

Pressure 2.17 mb 1.56 mb 

VOC 125 ‰ 201 ‰ 

Light 10.1 lux 13.0 lux 

CO2 65.8 ppm 87.0 ppm 

 

Figure 5.3.3, the graphs show the prediction for six hours by the 

regressive model. 
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The six-hour prediction shown in figure 5.3.3 has the following 

evaluation measurements, see table 9. When comparing the graphs from 

figure 14 to those in figure 15, the curves created by the predicted values 

show the same curvature in the beginning of the graph. The 

measurements in table 9 have another increase compared to the three-

hour predictions. 

Table 9, measurements on the six-hour predictions by the autoregressive 

model. 

 Mean Stdev 

Time 1.31 s 0.155 s 

Temperature 0.336 °C 0.475 °C 

Humidity 1.14 % 1.08 % 

Pressure 2.44 mb 1.92 mb 

VOC 192 ‰ 259 ‰ 

Light 11.6 lux 14.9 lux 

CO2 81.5 ppm 106 ppm 

When prediction 12 hours the curves flatten out at some point and stay 

near one value. This is shown in the figure below, see figure 5.3.4. 
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Figure 5.3.4, 12-hour predictions by the regressive model. 

The beginning of the curves remains the same compared to previous 

predictions graphs. The evaluation of the 12-hour predictions can be 

found in table 10. The mean value for time has increased further and 

most of the Stdev values have increased. 

Table 10, measurements on the 12-hour predictions produced by the 

regressive model. 

 Mean Stdev 

Time 2.59 s 0.175 s 

Temperature 0.418 °C 0.536 °C 

Humidity 1.39 % 1.38 % 

Pressure 3.34 mb 2.54 mb 

VOC 265 ‰ 295 ‰ 

Light 13.0 lux 15.8 lux 

CO2 91.7 ppm 119 ppm 
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The 24-hour prediction shows the same trend as the 12-hour prediction, 

looking similar in the beginning then flattening out at around timestep 

40. Figure 5.3.5 shows the prediction graph for a 24-hour prediction 

 

Figure 5.3.5, prediction graphs of the 24-hour predictions by the 

regressive model. 

In the evaluation table, table 11, time mean value has increased compared 

to previously. And the Stdev values have slight increases as well. 
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Table 11, evaluation table for the 24-hour predictions by the regressive 

model. 

 Mean Stdev 

Time 5.48 s 0.216 s 

Temperature 0.434 °C 0.533 °C 

Humidity 2.13 % 1.92 % 

Pressure 4.87 mb 3.71 mb 

VOC 291 ‰ 312 ‰ 

Light 13.3 lux 16.3 lux 

CO2 95.9 ppm 121 ppm 
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6 Discussion 
This chapter will analyze the result shown in chapter 5 and discuss how 

it was and possible reasons to why it is like this. The project will also be 

analyzed and discussed. Could anything had been done different, or 

could it have been better? A discussion about the scientific knowledge 

gained from this will also be made, and how this work affects people 

socially and ethically. 

6.1 Analysis and discussion of Results 

The final models used in this thesis worked better than expected since 

the amount of data was very limited. The data was supposed to be 

continuous and therefore it would be more to train the network on. 

However, the sensor boxes stopped feeding data, leaving only about 

three months’ worth of data. This amount worked well for the single-step 

model since it can be a very simple model and still work well. When 

using the data in the same way for the multi-step models the training 

became insufficient, making the predictions very inaccurate. This 

problem was fixed by making the training dataset infinite, but because 

of the infinite dataset a separate prediction batch was needed, so the 

model would not train a lot of times and learn the exact targeted output. 

The single-step model measurements were as expected. When using a 

sliding window input it is not difficult for the computer to predict the 

next timestep when it is given three days’ worth of timesteps. But since 

it only produces a single timestep, this model can be less applicable in 

real life application. If this model were implemented in a system, with 

how the data was set up, it could predict the future value for the next 10-

minute reading. But in systems where no more expected values are 

needed this model should do a really good job at predicting the next 

value. 

The multi-step single-shot model performed a lot better when changing 

the training and validation batches to be infinite. Time remained 

consistent through all predictions, no matter the amount of timesteps in 

the input. This means that the shape of the output array does not affect 

the time it takes to produces a prediction. The measurements preformed 

on the predictions showed that the multi-step single-shot model was 

good at predicting the values, but when looking at the graphs that were 

created it shows that the model has some difficulties predicting the 
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sudden increases in the data. The sensory data also appears to be around 

the same value all the time, this allows the model to get low mean errors. 

The multi-step single-shot model shows that some values are easier to 

predict than others. This is seen in the tables in chapter 5.1.2. The 

prediction with the biggest Stdev is gas/1000, CO2, and lux 

measurements. While they appear to show the most regularity in their 

graphs, as seen in figure 7, they do have the biggest span of values. The 

model regularly picks the base value for these features and creates a flat 

line for these. 

The consistency in the regressive model shows that when the model is 

trained, given the same input multiple times will consistently produce 

the same output. This model is the slowest out of the ones used in this 

thesis, and this is due to how it predicts multiple values. It accumulates 

time by using the predict() method several times, as well as handling the 

output and input arrays. This model also has the highest values for the 

Stdev measurements. This method of prediction has a problem when 

using it. All errors accumulate, meaning that when producing the first 

value it should be as accurate as the single-step model. But that tiny error 

is then used when predicting the next value, giving that prediction a 

larger error. Therefore, most predictions using this model showed a 

tendency of drifting away from the actual value. 

During the preprocessing, when trying to fix the problem of missing 

readings, the first method was to replace all missing values with zero. 

This resulted in a problem when training the NN on that data. A NN 

trained on that data would also try and predict the replaced values, 

meaning that some values in the prediction would be zero. When 

changing this to replace missing values with the last observed value, the 

NN became more accurate because it would not predict random zero 

values.  

6.2 Project method discussion 

The chosen method used in this thesis was overall good. By first 

researching different kinds of ML techniques and finding the most 

suitable one allowed for a good foundation for the implementation. 

When choosing the type of network to use, LSTM was a clear choice 

because it is good at handling timeseries data. LSTM networks also do 

not have the vanishing gradient problem. Another network type which 
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would have fitted well here would have been a GRU network. The GRU 

networks work similarly to LSTM but without the memory gate. 

Performance wise, the two NN types are similar, but a GRU network is 

less computation heavy [14]. So would processing limitations have been 

a factor, then a GRU could have been chosen instead of a LSTM network. 

The implementation of the NN was made simple using the TensorFlow 

library. This made the creation of the NN simple and the compilation and 

training of it easier as well. TensorFlow is so powerful when using it for 

NN that the most challenging part was the preprocessing of the data and 

getting it into the right shape. 

The metrics used in this thesis for the evaluation of the NN and its 

predictions were well suited for their purpose. By calculating the 

absolute mean value and the Stdev on the errors instead of the predicted 

values gave a better view on the actual performance of the NN. One can 

look at the values and determine its accuracy, the lower the values the 

better.  

By calculating the mean of the error using the absolute value of the error 

is like calculate the Mean Absolute Error (MAE) of the predictions and 

the observed values. MAE is commonly used for when evaluating NN 

predictions, because it gives a good value representing the overall error 

when predicting values. Root Mean Squared Error (RMSE) could have 

been used which is like MAE. RMSE gives high weight to large errors 

since the errors are squared before calculating the average and then 

taking the square root of that value. A RMSE measurements would have 

shown both a combined value of mean error and deviation. Standard 

deviation was chosen instead of RMSE, because when combined with the 

mean value gives a better view of the errors in my opinion. 

6.3 Scientific discussion 

What can be learnt from this thesis is the knowledge that RNN, especially 

LSTM networks, can be used to predict future values of sensory data. The 

knowledge gained from this thesis alone shows that RNNs can be used 

in smart building application, especially in cases where temperature, 

humidity, or pressure are in great interest. And while not being 

completely accurate, a RNN can be used for smart building application 

where the climate in the room is not of vital importance. For example, it 

could be applicable in schools, or other workplaces. 
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When using the knowledge gained from the related works, different 

kinds of NN could be applicable in smart building applications. The first 

related work showed that CNN models could be used for predictions on 

sensory data. The second related work shows that LSTM networks could 

also be applicable in other scenarios, such as the second related work 

where LSTM was used for highway traffic predictions. NN can therefore 

be used in different kinds of smart applications, and NN can be used to 

optimize their operations.  

6.4 Ethical and societal discussion 

The sensory boxes that collect the data used in this thesis are places in a 

classroom at the university. And with the amount of data collected from 

the room, the readings can be used to determine whether there are people 

in the room. But since no personal data can be collected there are no 

privacy issues with the collected data, no images or voice recordings 

were collected. 

If a form of smart application were connected to this system, for 

example a smart air conditioning system, the work environment in the 

room would be changed. This would affect the people using the room. 

If the system would work as intended, the work environment would 

improve by improving the air quality. If the system would be faulty 

and not work correctly, then the air quality in the room could be wrong, 

making it too cold or too hot for example. This would negatively affect 

the people in the room and worsen the environment in the room. 
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7 Conclusions 
The thesis achieved all the implementation goals stated in chapter 1, and 

both goals and the problem statement could be answered after this work 

was done. This will be discussed further in this chapter. 

7.1 Project summary 

The first milestone was to find the most suitable and common ML 

method for predicting sensor values. This milestone was met by finding 

LSTM networks, which are common and well suited for handling 

timeseries data. Since this thesis used exclusively timeseries data, LSTM 

was a good choice. 

The second milestone was to design a system, scenario, and 

measurement setup for predicting future values. This was achieved 

when the smart building scenario was chosen. The system and 

measurement setup were met thanks to the sensory boxes and Grafana 

server. 

Milestone three was to implement the chosen ML method in the chosen 

scenario. This milestone was met by implementing the LSTM network 

and training it on the sensor values from the Grafana server and making 

it predict values. 

Milestone four was to perform measurements on the NNs performance 

which was achieved by measuring the time it took to produce predicted 

values and comparing them to the corresponding observed values. By 

calculating the mean error and the Stdev for the errors was also part of 

completing the fourth milestone. 

The fifth and final milestone was to evaluate the predicted values and 

the chosen ML method, in terms of implementation difficulties, 

limitations in the implementation, and prediction accuracy. This goal 

was met by the discussion in chapter 6, mostly chapter 6.1 and 6.2. The 

implementation was not very difficult, because TensorFlow/Keras made 

it easy and there were many tutorials and examples found on the Internet. 

The limitations of the NN models were in the form of training, the multi-

step models needed a lot more training than the single-step model, which 

was a slight problem due to the limited amount of data available from 

the Grafana server. The prediction accuracy was discussed in chapter 6.1. 
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7.2 Scientific conclusions 

The scientific goal for this thesis was to determine how suitable NNs are 

at predicting sensor values for environmental sensors based on the 

prediction’s accuracy and consistency. The conclusion for this goal is that 

NNs are very suitable for predicting sensor values. All models created in 

this thesis can be applicable to smart building applications, while the 

multi-step models have more value due to them being able to predict 

longer periods of time with mostly good accuracy and consistency. Some 

error occurs in the predictions, but they are still useful when the 

extremely accurate predictions are not necessary. 

NNs are suitable because the accuracy of the predictions is very good 

with small error values and small deviation values. Some features of the 

sensory data were harder to predict than others, as discussed in chapter 

6.1. The consistency of the predictions is also very good, as shown when 

measuring the multi-step, regressive model. When the model was given 

the same input multiple times it produced the same prediction every 

time. 

Based on the scientific goal’s conclusions, a conclusion can be drawn for 

the problem statement, which was to investigate how good NNs are at 

predicting sensor values and how reliable the predicted values are. This 

thesis shows that NN are very good at predicting sensor values, and that 

the reliability of the predictions is good enough to use in most 

applications. If provided with more data and a more complex model, this 

could be applicable in scenarios where the climate is of great importance, 

such as in laboratories. The models created for this thesis could be used 

for applications where the goal is to improve air quality, not keep it at a 

perfect level. These models could be used for smart homes, office, or 

school buildings. 

This thesis shows that NN, specifically LSTM networks, can be used for 

predicting environmental sensory values with some accuracy. 

Combining this knowledge with that gained from the related works 

show that other kinds of NN can be used for the same goal, and that 

LSTM networks have a wide range of applications. NN can be used in 

smart applications where future values are needed to be able to predict 

needed operations. 
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7.3 Future Work 

While this thesis achieved all which it set out to investigate, there are 

some future work which can be made to gain deeper understanding of 

NN and their applications. 

7.3.1 Optimize the models 

A future possibility is to further optimize the network models used in 

this thesis. This can be done to investigate how well suited NN are when 

the future values cannot afford errors. This can be done by making the 

models deeper, with more layers and more units per layer. The amount 

of data used for training can also be increased to make to models perform 

better. 

7.3.2 Comparing different NN 

While we know that different kinds of NN work for predicting sensory 

data, it would be of interest to compare them to each other. This would 

allow to find which is most suitable for this kind of work and if different 

applications call for different kinds of NN. Examples of different 

networks to compare could be LSTM, GRU, and CNN. Here different 

aspects of them could be compared such as accuracy, training time 

needed, and computation load. 

7.3.3 Application impact 

To further understand the impact this would have in smart building 

applications, a work environment could be fitted with climate control 

which works with a NN to optimize its operations. The sensory values of 

the environment could then be compared by measuring before and after 

the NN was implemented. This would deepen the understanding of how 

such an application would impact the environment in that area. 
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Appendix A: CSV changer 
The script for changing the .csv file can be found by the following link: 

https://github.com/jander589/csv_changer 

https://github.com/jander589/csv_changer
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Appendix B: Single-step model 
scripts 
The scripts that involve the single-step model: 

https://github.com/jander589/single-step_model 

https://github.com/jander589/single-step_model
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Appendix C: Multi-step single-shot 
model scripts 
The scripts that involve the multi-step single-shot model can be found 

here: https://github.com/jander589/multistep_singleshot_model 

https://github.com/jander589/multistep_singleshot_model
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Appendix D: Multi-step regressive 
model 
The scripts used for the multi-steps autoregressive model: 

https://github.com/jander589/multistep_autoregressive_model/upload 

https://github.com/jander589/multistep_autoregressive_model/upload

