
Mitigating garbage collection in Java
microservices
How garbage collection affects Java microservices and
how it can be handled

Amanda Ericson

MID SWEDEN UNIVERSITY
Department of Information Systems and Technology

Examiner: Tingting Zhang, tingting.zhang@miun.se
Supervisor: Martin Kjellqvist, martin.kjellqvist@miun.se
Author: Amanda Ericson, amer1501@student.miun.se
Program: Master of Science in Computer Engineering, 300 credits
Course: DT005A Final Project, 30 credits
Area: Computer science
Term, year: Spring, 2021

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Abstract

Java is one of the more recent programming languages that in runtime free
applications from manual memory management by using automatic Garbage
collector (GC) threads. Although, at the cost of stop-the-world pauses that
pauses the whole application. Since the initial GC algorithms new collectors
has been developed to improve the performance of Java applications. Still,
memory related errors occurs and developers struggle to pick the correct GC
for each specific case. Since the concept of microservices were established
the benefits of using it over a monolith system has been brought to attention
but there are still problems to solve, some associated to garbage collectors.
In this study the performance of garbage collectors are evaluated and com-
pared in a microservice environment. The measurements were conducted
in a Java SpringBoot application using Docker and a docker compose file to
simulate a microservice environment. The application outputted log files that
were parsed into reports which were used as a basis for the analysis. The
tests were conducted both with and without a database connection. Final
evaluations show that one GC does not fit all application environments. ZGC
and Shenandoah GC was proven to perform very good regarding lowering
latency, although not being able to handle the a microservice environment as
good as CMS. ZGC were not able to handle the database connection tests at
all while CMS performed unexpectedly well. Finally, the study enlightens
the importance of balancing between memory and hardware usage when
choosing what GC to use for each specific case.

Keywords: Garbage collector, Microservice, Docker, docker-compose, CMS,
G1GC, Shenandoah GC, ZGC

iii

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Acknowledgements

I would like to express my very great appreciation to the company Knightec
in Sundsvall who gave me the opportunity to perform this study and pro-
vide great assistance along the way. A special thanks to Gabriel Uppegård
and Ludvig Åberg at Knightec who has given great assistance throughout
the whole project and with dedication has helped with any questions and
difficulties along the way.

I also wish to acknowledge the help provided by my supervisor at Mid
Sweden University, Martin Kjellqvist for great advice and suggestions during
this research work.

iv

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table of Contents

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables x

Terminology xi

1 Introduction 1
1.1 Overall aim . 3
1.2 Concrete and verifiable goals 4
1.3 Scope . 4
1.4 Outline . 5
1.5 Contribution . 5

2 Theory 6
2.1 Java heap . 6

2.1.1 Java object types . 7
2.2 JVM . 8

2.2.1 HotSpotVM . 8
2.2.2 GraalVM . 8

2.3 Garbage collector . 9
2.3.1 Collector types . 10
2.3.2 G1 . 11
2.3.3 ZGC . 12
2.3.4 Shenandoah GC . 13
2.3.5 Epsilon . 14

2.4 Microservice . 14

v

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.5 Docker . 15
2.5.1 Container . 15
2.5.2 Docker compose . 16
2.5.3 WORA . 16
2.5.4 PODA . 17

3 Method 18
3.1 Research method . 18
3.2 Phase 1: Defining the project scope 19
3.3 Phase 2: Implementation and testing 19
3.4 Phase 3: Evaluation of results 19

3.4.1 Latency . 20
3.4.2 Memory management 20

4 Implementation 21
4.1 Stage 1: Initial GC testing . 21
4.2 Stage 2: GC characteristics . 22
4.3 Stage 3: Microservice GC test 23
4.4 Stage 4: Microservice with Database connection 25
4.5 Configurations . 26

5 Result 28
5.1 Stage 1: Initial GC testing . 28
5.2 Stage 2: GC characteristics . 28

5.2.1 GC log format . 29
5.3 Stage 3: Microservice GC test 30

5.3.1 Environment settings . 30
5.3.2 Microservice tree test . 31
5.3.3 Heap usage . 36
5.3.4 Scenario performance 39

5.4 Stage 4: Microservice with Database connection 39
5.4.1 Heap usage . 43

vi

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

6 Discussion 46
6.1 Stage 1: Initial GC testing . 46
6.2 Stage 2: GC characteristics . 46
6.3 Stage 3: Microservice GC test 47
6.4 Stage 4: Microservice with Database connection 49

7 Conclusion 50
7.1 Ethical aspects . 51
7.2 Future work . 52

Appendices 58

A GC log example 59
A.0.1 CMS . 59
A.0.2 G1GC . 60
A.0.3 Shenandoah GC . 61
A.0.4 ZGC . 62

B GC report example 63

vii

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

List of Figures

2.1 The Java heap structure . 7
2.2 The GC compacting step . 10
2.3 GC algorithms thread usage . 11
2.4 G1GC heap allocation . 12
2.5 System architectures . 15
2.6 Write Once Run Anywhere using Java 16
2.7 Package Once Deploy Anywhere using Java 17

3.1 Illustrated research method . 18

4.1 A flowchart of the application manually calling the GC 21
4.2 Microservice architecture created with Docker compose 24
4.3 Test environment overview . 25

5.1 A generated Java outOfMemory exception 28
5.2 GC characteristics . 29
5.3 A row in a G1GC log file generated by the JVM 30
5.4 A JSON object created from the G1GC log file 30
5.5 Average GC times . 33
5.6 CMS pause and concurrent times 34
5.7 G1GC pause and concurrent times 35
5.8 Shenandoah GC pause and concurrent times 35
5.9 ZGC pause and concurrent times 36
5.10 CMS heap usage . 37
5.11 G1GC heap usage . 37
5.12 Shenandoah GC heap usage . 38
5.13 ZGC heap usage . 38
5.14 Average GC times with DB connection 41
5.15 CMS pause and concurrent times 42

viii

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

5.16 G1GC pause and concurrent times 42
5.17 Shenandoah GC pause and concurrent times 43
5.18 CMS heap usage with DB connection 44
5.19 G1GC heap usage with DB connection 44
5.20 Shenandoah GC heap usage with DB connection 45

ix

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

List of Tables

4.1 Enable GC . 26
4.2 JVM configurations . 27

5.1 No. of manageable instances for each GC 31
5.2 Docker image size for services 32
5.3 Elapsed time for 10 GET requests 32
5.4 No. of GC collection phases . 33
5.5 Total GC stats . 34
5.6 Worst case GC pause time . 39
5.7 Elapsed time for 10 GET requests with DB connection 40
5.8 Docker image size with DB connection 40
5.9 No. of GC collection phases . 41

x

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Terminology

API Application Programming Interface
CMS Concurrent Mark Sweep
CPU Central Processing Unit
CRUD Create, Read, Update, and Delete
DB Database
G1GC Garbage First Garbage Collector
GC Garbage Collector
JDK Java Development Kit
JIT Just-In-Time
JPA Java Persistence API
JSON JavaScript Object Notation
JVM Java Virtual Machine
OS Operating System
PDF Portable Document Format
PODA Package Once Deploy Anywhere
RAM Random Access Memory
Regex Regular expression
REST Representational State Transfer
SOA Service-Oriented-Architechture
STW Stop-The-World
VM Virtual Machine
WORA Write Once Run Anywhere
ZGC Z Garbage Collector

xi

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

1 Introduction

In the early development of new programming languages, memory was
handled manually by the programmer. By example in C++, released in 1983,
memory was (and still are) allocated with a ”new” statement and then freed
using destructors. In newer programming languages such as Java, initially
released in 1996[1], the memory management is automatic – using a daemon
thread referred to as the Garbage collector (GC).

The implementation of GCs is initially based on the hypothesis” Most objects
will soon become unreachable”, with the main goal being to constantly watch
the memory and free space from removing objects that are out of scope or
unnecessary to keep in the heap, enabling new objects to be allocated in
the memory. The GC thread hence works as a helping mechanism for the
programmer with the main mission to constantly prevent the heap from
becoming full. [2]

Although the GC is said to be an automatic memory handler it has its faults.
Sometimes the GC thread fails to remove enough data from the heap so that
it becomes full – resulting in applications to crash. Also, since the initial GC
algorithms many new GCs are offered by the JVM. GCs available in Java 13
are the Serial GC, Parallel GC, Concurrent Mark Sweep GC, Garbage First GC
(G1GC), Shenandoah GC, and Z Garbage Collector (ZGC). Out of these G1GC
is the default collector for Java 13 and 15 and Shenandoah GC and ZGC are
the latest released GCs.

Today, microservices are becoming more popular and monolith systems are
more and more likely to be exchanged to microservice systems. The reason
being that microservices allows for a lot of benefits such as a more flexible
system, better scalability and easier understanding because of each unit of the
program is contained and handled one by one. However, there are problems
within the fundamentals of Java which appears more frequently when using a

1

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

microservice architecture versus using a monolithic architecture. One of these
problems is related to Javas garbage collection.

The GC thread generally has big impact on an applications performance,
reliability and efficiency which is one of the good reasons to study GCs. Com-
monly, when evaluating the performance of a GC, the latency and throughput
are considered. Latency being the responsiveness of an application, also de-
scribed as the delay experienced by a user due to GC activity. The GC latency
is based of operations where the GC needs to use all application threads to
perform an operation, known as a Stop-The-World (STW) event. Throughput
is instead a measurement of the workload managed by an application within a
specific unit of time. To improve latency either the number of times these STW
events occur needs to be reduced or the length of them. To improve through-
put the workload per time unit is prioritized. Both Shenandoah GC and ZGC
are experimental collectors implemented with the purpose of optimizing these
parameters, in separate ways.

In 2017 a study made by Akamai it was found that every 100ms delay for a
user in a web-page can decrease conversion rates by 7%, and 53% of mobile
visitors will leave a page that takes more than 3 seconds to load. [3] [4] The
core of all studies is that the less interactive a site becomes, the more unlikely
users are to stay on the site. The interactivity of a site is highly dependent
on the latency and by improving GCs the latency time can be improved. The
currently used default GC in Java 13 is the G1 collector. [5] In Java 9 the
motivation for changing GC were,

“Limiting GC pause times is, in general, more important than maximizing through-
put. Switching to a low-pause collector such as G1 should provide a better overall
experience, for most users, than a throughput-oriented collector such as the Parallel
GC, which is currently the default.” [6]

Hence, already at that point the benefits of using a low-latency collector were
identified. Although, the performance of GCs has not been broadly compared
or evaluated other than the manufacturers own evaluations. Moreover, the

2

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

evaluations made by manufacturers can often be beneficial for their own im-
plementation, example by having a test environment favoring one of the GCs.
Thus, an evaluation with equal conditions for all GCs is of great interest to fill
the gap in current research, especially for the new experimental collectors in
Java version 15. Also, with the current growth of microservice based systems,
the need of an evaluation in a microservice environment is needed to ensure
good performance, efficiency and reliability, but also for developers to be able
to make reasonable decisions when choosing a GC for their purpose.

The company Knightec in Sundsvall aims to decide the best GC for a scenario
including a microservice environment. This thesis aims to collect the current
state-of-art regarding GCs and collect important information about GCs and
what differs them from each other. Also, to test GCs in a microservice based
application, in that test environment determine what may affect the perfor-
mance of a GC and lastly provide a recommendation of what GC best fit in a
microservice environment.

1.1 Overall aim

GC algorithms have been researched for a large extent of time, especially
the Serial GC, Parallel GC and CMS GC. Lately G1GC has also been widely
tested and has managed to be exchanged against the former default collector
CMS since JDK13.[5] On the other hand, both ZGC and Shenandoah GC are
still considered experimental collectors since they were recently released and
has thus not been involved in a lot of research yet. This research aims to
provide insight into these two experimental collectors compared to CMS and
G1GC in a microservice environment setting. The contributions of this work
also involves a recommendation of what GC works best in a microservice
environment at various prerequisites.

3

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

1.2 Concrete and verifiable goals

The main goal of this research is to test and compare some of the most recent
GC in a microservice environment in terms of performance, latency and
throughput to determine the best option for a microservice architecture in
different aspects.

Specifically, the project aims to answer the following questions,

1. Can GC be mitigated by using scheduled garbage collection and what
are the trade offs of doing that?

2. How do different garbage collectors characteristics compare to each
other (Serial, parallel, CMS, G1GC, Shenandoah GC, ZGC)? Specifically
regarding availability in Java versions, JVM and other basic information
beneficial for tests.

3. In a microservice tree with depth N, how do different garbage collectors
perform compared to each other? (Serial, parallel, CMS, G1GC, Shenan-
doah GC, ZGC) and why? What is the worst case scenario (GC triggered
everywhere) and how would this affect the application?

4. Does the presence of a database connection make a significant difference
on GC performance?

1.3 Scope

The ways of tweaking the behavior of GCs are massive, both by options
to the JVM but also since each GC has their own modifiable parameters,
programming-wise many operations may also highly affect the performance
in many ways. To limit this study a few configurations are chosen which
are seen as some of the most central. The database tests are limited to only
test the result of maintaining a connection to a database while running the
application structure and are hence not performing any operations to the

4

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

database. The research is also limited to a microservice structured application
in a SpringBoot framework and a computer using a RAM memory space of 8
GB.

1.4 Outline

The report is divided into seven chapters, following the process of the project.
Chapter 2 aims to provide the reader with essential information about garbage
collectors and its purpose and by that achieve a sense of understanding of
the reports content. Chapter 3 presents the methodology used to achieve the
results and how they were evaluated. Chapter 4 describes the implementation
stages of the project, divided into three sections. Chapter 5 presents the results
produced by the experiments. Chapter 6 discusses the given results and
providing answers to the research questions. Chapter 7 gives conclusions and
enlighten some ethical aspects of the project as well as proposes future work.

1.5 Contribution

This reports content is the result of a MSc thesis work accomplished at Mid
Sweden University. All implementations are performed from scratch by the
author of this report and the conclusions are a result of the tests performed in
the developed environment, also by the author of this report, along with stud-
ies done in the area of GCs. All other studies used as a basis for conclusions
etc. are credited in this report.

5

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2 Theory

The theory chapter provides the reader with useful information in order to
understand the content of the report. It mainly focuses on the concept of a
Java heap structure, it also briefly describes the four GCs later analyzed in
this report and lastly goes through the concept of a microservice architecture
and tools used in this report to achieve the results.

2.1 Java heap

The Java heap is arranged into two spaces, young generation and old gener-
ation, illustrated in figure 2.1. The young generation space takes care of all
newly created objects. It is divided into three segments, the Eden space, Sur-
vival 1 and Survival 2. A threshold cycle value is set which is the maximum
survival cycles for an object in the young heap. When an object has survived
for that amount of time in the heap it is moved to the second space in the heap
which is the Old generation heap space. By example, a method call object will
not survive long and will most probably never be moved to the old space,
while a created cache that should be around for the entire applications lifetime
will surely be moved to the old generation space at some time. [7]

6

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 2.1: The Java heap structure

2.1.1 Java object types

Java objects are allocated in the heap of the Java memory. The garbage collector
are interested in dividing the objects into the following types,

• Live objects
An active object in the application that can be referred to by another
object in the same application. E.g a class variable.

• Unreachable objects
An object that is created during a method call and when the method is
over the object becomes out of reach. [2] [8]

7

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.2 JVM

The Java Virtual Machine (JVM) is an abstract computing machine that trans-
lates the Java programming instructions into instructions and commands read-
able by the operating system. There exists a list of alternative JVM structures
today but two frequently used are described below.

2.2.1 HotSpotVM

HotSpotVM is a JVM alternative implementation that currently is used as a
standard in most Java systems. The architechture of HotSpotVM supports
scalability and the ability to achieve high performance on small as well as
large computer systems.[9]

From the perspective of tuning performance, there are three major components
of the Hotspot JVM concerned,

1. Heap

2. Garbage collector

3. Just-In-Time (JIT) compiler [10]

In newer versions of the JVM, the JIT rarely needs tuning and focus is instead
concentrated on the heap and the garbage collector. [9]

2.2.2 GraalVM

GraalVM is a project started by Oracle and its main mission were to become a
high performance JIT compiler. [11] Using GraalVM is supposedly beneficial
for microservice applications by providing 50x faster startup times and 5x
smaller memory footprint. [12]

8

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.3 Garbage collector

The garbage collector implementation is based on the hypothesis ”Most objects
will soon become unreachable”. The garbage collector works as a ’helper’
for the user. It constantly watches the memory and frees space e.g. from
removing objects that are out of scope, enabling new objects to be allocated in
the memory. The main mission of the garbage collector thread is to constantly
prevent the heap from becoming full. Because the garbage collector thread is
supposed to help the programmer - the garbage collector cannot be forced to
happen. [2]

The garbage collector usually takes the following steps,

1. Mark
The marking starts from the application root and walks through all the
objects in order. The GC marks objects that are reachable as live and the
other are left as they are.

2. Delete
In the second step the garbage collector deletes unreachable objects by
sweeping them of the heap memory and reclaim the memory space.

3. Compact
Some allocated memory may have become freed while allocating other
objects which leaves blank space in the memory. The compacting works
by arranging all the memory spaces in order, meaning the allocated
memory is located before the free space, shown in figure 2.2. The com-
pacting step is what takes the most time in the GC process because the
GC thread has to go through the complete heap step by step. [13]

9

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 2.2: The GC compacting step

2.3.1 Collector types

There are a few basic types of garbage collectors in Java that sets the base for
all new implemented versions of garbage collectors. Those are the following,

• Serial
A single threaded collector which requires the application to pause when
GC is working.

• Parallel
A multi threaded GC which like the singe threaded GC only runs when
its needed.Because of the GC running on multiple threads it is much
faster than single GC and hence has shorter pause times of the applica-
tion.

• Concurrent Mark Sweep (CMS)
Runs continuously alongside the application. Does not have any pauses
except for the mark and remark steps. [14]

All three collectors described above are illustrated in terms of functionality in
figure 2.3. It is by the figure visible how the pause time with a single thread
gives much longer pause times than with a multi-threaded GC. The CMS
has the shortest pause times out of the three methods because operations are
runned concurrently to the application threads and the only thing pausing
the application is the mark and remark steps. [15] [14]

10

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 2.3: GC algorithms thread usage

2.3.2 G1

Garbage First Garbage Collector (G1GC) is a JVM GC implementation avail-
able and widely used among systems today. It was set to the default collector
in Java version 13 and has been since. [16] G1GC is mainly designed for appli-
cations running on multi-processor machines with large memory space and is
said to replace the CMS collector since it is more performance efficient.[14]

The G1GC heap is divided into equal sized regions with ranges of virtual
memory. The collection process starts by doing a global marking phase to
determine what regions that have objects that are not in use and hence can be
freed. With this information G1 can start by concentrating on these areas to
reclaim memory space. Focusing on the marked areas first is the origin of the
G1 name. G1 also

11

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

performs heap targeting in an optimal and predictable manner using user-
defined acceptable delay times.[10] [17] The heap allocation principle of G1GC
is shown in figure 2.4

Figure 2.4: G1GC heap allocation

The goal of G1GC in the default configuration is not to maximize throughput
nor to have the lowest latency but instead to produce uniform, small pause
times. [16]

2.3.3 ZGC

ZGC is a GC which mainly focuses on providing low latency. The collector is
developed by Oracle and is suitable for large heap applications requiring high
responsiveness, e.g., a server application. [18] The low latency is achieved by
providing stop-the-world phases as short as possible, regardless the size of
the heap. [19]

As in most GC algorithms the first step in ZGC is marking, where objects
are marked as reachable or unreachable. Unlike other GC, ZGC stores the
reference state as the bits of the reference, referred to as reference coloring.
Although, when using this method multiple references can point to the same
object since no information about the object’s location is stored. A solution to

12

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

this is multimapping, where multiple ranges of the virtual memory is mapped
to the physical memory. [19]

Another important aspect in ZGC is to decrease memory fragmentation and
to do this compacting is used, see figure 2.2. Despite the fact that compacting
solves the memory fragmentation problem, it is very time consuming, which
is not wanted considering ZGCs goal is to decrease the pause times of the
application. To fix this problem the compacting is done on a separate thread
alongside the application thread, using the concept of parallel GC. [20]

Still, when performing parallel relocation of objects, sometimes the application
thread runs and tries to access the object in its old address. To solve this issue,
ZGC uses load barriers which is a piece of code that runs when a thread loads
a reference from the heap in order to access the correct object disregarding
any context switches. The load barriers check the metadata bits of each
reference. Some reprocessing of the object may occur in this stage and thus a
new reference may be produced, a process called remapping. [19]

2.3.4 Shenandoah GC

Shenandoah GC is an ultra-low pause time GC for OpenJDK, developed by
Red Hat. It runs on a concurrent GC thread and the main focus is on lowering
the response times. RedHat says that, ”Garbage collecting a 200 GB heap or a
2 GB heap should have the similar low pause behavior”[21]. Although ZGC
and Shenandoah GC have very similar goals of providing a low latency, high
responsiveness GC, the approaches of achieving that is very different. The
goal of the Shenandoah collector is to provide a GC with very low pause times
and by that reduce the overall pause times made by the GC. [22] Shenandoah
can in comparison to G1 relocate the objects in the memory heap without
pausing the application execution. Also, Shenandoah comes with more tuning
options than ZGC. [23]

13

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.3.5 Epsilon

Epsilon GC is another experimental GC implementation developed by . . .
. The GC is established to be a passive “no-op” GC, meaning it handles
memory allocation but does not recycle it when objects are out of use. Instead,
when the heap runs out of memory the JVM shuts down, and the application
will hence crash when no more memory is available. This approach may
seem useless since the purpose of a GC is often to prevent the application
from crashing. But a passive “no-op” GC is actually useful in the purpose
of measuring and managing application performance. In comparison to an
active GC that run alongside the application a passive GC runs isolated from
the application. By using a passive GC both overhead that can cause latency
and reduced throughput is reduced and the performance effects of the GC on
the application are removed. A passive GC like Epsilon can hence be used to
observe how GC affects an applications performance and also what memory
threshold there is by watching when it runs out. [22]

In a case where performance needs to be used to its full potential Epsilon GC
might be an option. If the applications memory and garbage usage is known
Epsilon can be considered as a viable option. [24]

2.4 Microservice

Microservices can be seen as a variation of an Service-Oriented-Architechture
(SOA) that builds an application out of many small independent services. [25]
Each communicating an individual task and together creating an application.
In comparison to monolithic architectures, microservices are easier to scale and
are also more reliable in the sense of if one service or node fails the complete
system does not have to shut down, which is the case in a monolithic system,
see figure 2.5. [26] [27] [28]

14

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 2.5: System architectures

2.5 Docker

Docker is an open platform to simplify the deployment, running and delivery
of applications. The delay between writing code and running it can be reduced
with Docker. Docker is often described as a set of tools that allows developers
to create, publish and run containers. [29]

2.5.1 Container

Containers is self-contained pieces of software containing all necessary li-
braries, system tools, code and run time (e.g Java), in short everything needed
to run a program. In comparison to a Virtual Machine (VM) environment
where each virtual space needs a guest OS, a container doesn’t and can by
that save both disk and processing space. [29]

15

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.5.2 Docker compose

Docker compose is a tool used to create applications. In a docker compose file
all services are defined and multiple containers can thus be executed at the
same time, forming a microservice architecture. [30]

2.5.3 WORA

Write Once Run Anywhere (WORA) is referred to as Javas promise of being
able to write an application once, compile it to byte code and then run it
anywhere as long as a JVM is available, see figure 2.6. Although, usually a
certain directory, library or system tool is needed which makes the transfer
between platforms somewhat difficult - with the goal of still preventing the
application from breaking. [31]

Figure 2.6: Write Once Run Anywhere using Java

16

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

2.5.4 PODA

Package Once Deploy Anywhere (PODA) is another promise saying that if
an application is put in a container with all its libraries, system tools etc. The
container can then be deployed anywhere as long as it is available, which is
the exact concept of a docker container, see figure 2.7. [31]

Figure 2.7: Package Once Deploy Anywhere using Java

17

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

3 Method

The following chapter presents the methods and choices made in the project.
The method were divided into three phases, individually explained.

3.1 Research method

The research methodology used follows an adaptation of the design process.
The adaptation was done because of the time span and project expectations,
and also to fit the overall scope of the project. Figure 3.1 visualizes the research
method steps. The colors of the figure defines three phases of the project where
the orange color defines the first phase, yellow the second phase and green
the third phase. The steps taken in each phase are described in the sections
below.

Figure 3.1: Illustrated research method

18

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

3.2 Phase 1: Defining the project scope

In the starting phase of the project the background of GCs where investigated
to get a grasp over the area. Current research state and recently released
articles were investigated to set a starting point for the project and decide
what to examine. The research questions were established along with the
research method and what steps to take in order to achieve answers to the
research questions.

3.3 Phase 2: Implementation and testing

In the second phase a test environment were developed to simplify the actual
testing of the GCs. The environment consisted of a REST API application
producing GC log files which were entered into a parsing application that
transformed the logs to JSON format. The JSON data were then used to
retrieve the most vital information saved in excel files to draw diagrams
which lastly formed the GC report. The report held information regarding
some general GC statistics about the total time the services were working and
data about the different pause time values. The distribution of pause times
over time were shown as well as the percentage distribution of each kind of
the pause types. The report also covered data about the heap usage over time,
both before GC and after GC and lastly data about the cause of the GC pause.
Information about the time to perform the requests were also collected in the
client application.

3.4 Phase 3: Evaluation of results

In the third phase the GC reports generated from the developed analyzing
tool were analyzed. The analysis finally lead up to conclusions about what
GC fits best in a microservice environment.

The main parameters considered in the evaluation were latency and memory

19

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

management.

3.4.1 Latency

The latency in GC is manly based on two types of pause events.

1. Stop-The-World (STW) pause

2. Concurrent pause

STW events are GC pause events that needs all GC treads to perform its tasks.
The second type is a concurrent pause that performs its tasks simultaneously
along the application threads and only occupies one or a few threads for the
GC to perform its tasks.

Each GC handles these pause times differently. E.g CMS collector uses both
pause types while parallel GC uses only STW pause time events. The parallel
collector although uses multiple threads while performing an STW pause
event while the serial GC only uses one thread on STW pause events, resulting
in extended pause events. An applications response times is highly dependent
on the STW pauses, which are perceived as a delay for the user. To reduce the
latency, either the number of times STW events occur or the length of them
must be reduced.

3.4.2 Memory management

At each request the application creates a lot of new objects and once a request
has been serviced many of these objects are of no use. At this point the GC
removes these unused objects from the heap. The heap usage hence reveals a
lot about the collectors performance.

20

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

4 Implementation

In the following chapter a description of the implementation process is pre-
sented. The implementation is divided into four stages related to the research
questions.

4.1 Stage 1: Initial GC testing

In the first testing step a few initial tests were done to get a grasp of the GC
characteristics, differences and tuning options.

The test-bed for these tests were developed as a simple application where an
object were created which were directly set to null where after the garbage
collector were called manually by a System.gc() call, the process is shown in
figure 4.1.

Figure 4.1: A flowchart of the application manually calling the GC

A method overriding the finalize method were implemented in the object to
be able to see at what object the GC were called and if it were.

public c l a s s CallGC {
@Override
protected void f i n a l i z e () throws Throwable

21

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

{
System . out . p r i n t l n (”GC was c a l l e d on o b j e c t : ” + t h i s) ;

}
}

A method were created where 100 million string instances were created in a
loop structure to try and fill the heap. The program works by creating a string
at every loop iteration and appending the string instance in a Java HashMap
structure. The outOfMemory exception is captured in a try-catch statement
and a message is outputted in the console.

private s t a t i c Map<Str ing , Str ing> s t r i n g C o n t a i n e r
= new HashMap<>();

t r y {
for (i n t i = 0 ; i < 10000000 ; i ++) {

S t r i n g newString = s t r i n g W i t h P r e f i x + i ;
s t r i n g C o n t a i n e r . put (newString , newString) ;

}
} catch (OutOfMemoryError e){

System . out . p r i n t l n (”Out of memory , GC f a i l e d ”) ;
}

4.2 Stage 2: GC characteristics

The same application were then used to do some initial tests to both confirm
and also find out new information about the collectors. The collectors were
tested using different heap sizes to find a fitting size to use in the later tests,
the collectors were also tested in both Graal VM and Hotspot JVM to find out
if they were compatible in that environment or not.

GC logs were also produced and analyzed to be able to parse the logs into
informative reports for easier extraction of information.

22

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

4.3 Stage 3: Microservice GC test

The implementation is based on creating a microservice environment and
testing the GCs by tuning parameters that might affect the performance.

The test environment consisted of a web based REST API application written
in Javas framework SpringBoot. The API was written with CRUD operations
and a docker compose file were used to serve multiple instances of the same
API on multiple ports.

A client were created using Pythons library http.client used to trigger the
CRUD operations in the microservice. Each service makes a call to the next
service using docker compose environment variables and the Java RestTem-
plate method. The following creates a microservice tree structure visualised
in figure 4.2.

23

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 4.2: Microservice architecture created with Docker compose

24

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Each services GC operations were saved in a separate log file which were
analyzed and parsed into JSON format using Regex. The JSON file were then
used to draw diagrams and create Excel files which were finally collected in
PDF reports, with individual configurations depending on the GC, to create
an easy understandable format in order to draw conclusions. The overall
program structure is shown in figure 4.3.

Figure 4.3: Test environment overview

4.4 Stage 4: Microservice with Database connec-
tion

The same test environment as in stage 3 where then used but this time with
a connected database. The database tests were configured by connecting a
locally hosted MySQL database accessed with SpringBoot JPA. Then creating
a Database (DB) container in the docker compose file for an easy setup.

25

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

db :
image : mysql : 8 . 0
ports :

− 1 2 7 . 0 . 0 . 1 : 3 3 0 6 : 3 3 0 6
environment :

− MYSQL ROOT PASSWORD=
− MYSQL DATABASE=
− MYSQL USER=
− MYSQL PASSWORD=
− MYSQL ROOT HOST=

4.5 Configurations

ZGC is available in the JDK as an experimental feature and can be enabled
by enabling experimental VM options. Since Shenandoah GC is discontinued
in JDK 9-10 and 12-14, and JDK 11 requires opt-in during build time the tests
were performed on an alternative JDK option JDK 13 configured as in table 4.1.

Table 4.1: Enable GC
Use

CMS -XX:+UseConcMarkSweepGC
G1GC -XX:+UseG1GC

ZGC
-XX:+UnlockExperimentalVMOptions
-XX:+UseZGC

Shenandoah GC
-XX:+UnlockExperimentalVMOptions
-XX:+UseShenandoahGC

Except for configuring what GC to use, the heap size were also configured
to ensure equal tests for all collectors. The log files were outputted to an
individual file specific for each service. The specifications made can be seen
in table 4.2

26

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table 4.2: JVM configurations
Max heap size -Xmx500m
Min heap size -Xms128m
GC log to file -Xlog:gc*:file=gc.log

Since Shenandoah GC is not avaliable in OpenJDK13 an alternative were used
by specifying the following in the docker file to retrieve the AdoptOpenJDK13
image, adoptopenjdk:13-jre-hotspot.

27

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

5 Result

In this chapter the results of the implemented tests are presented. The struc-
ture of the chapter is based on the research questions and hence presents the
results provided for each implementation step.

5.1 Stage 1: Initial GC testing

The results of the first tests were simply confirmatory of all four collectors
(CMS, G1GC, Shenandoah GC and ZGC) freeing the expected heap space
when an object were set to null. The System.gc() call did not affect the proba-
bility of the GC being used in this case.

A test of filling the heap space were conducted using G1GC. After about 30
million instances the heap was filled since the GC was not able to free enough
space. At 30M instances an exception were made saying the memory was
filled. The generated exception is shown in figure 5.1.

Figure 5.1: A generated Java outOfMemory exception

5.2 Stage 2: GC characteristics

The results of the GC characteristics analysis and tests are presented in fig-
ure 5.2. It was found that Shenandoah GC are not supported in JDK13 which
led to the use of an alternative JDK13 version compatible with Shenandoah
GC called adoptopenJDK13 in the following tests. Moreover, GraalVM were

28

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

not compatible with either CMS, Shenandoah GC or ZGC and were thus not
further evaluated in the upcoming tests.

Figure 5.2: GC characteristics

5.2.1 GC log format

The generated GC log file were structured in a way that each row in the file
corresponded to a operation done by the GC threads. In figure 5.3 a row in
the log file is shown and in figure 5.4 the structure in the produced JSON file
is shown. A more detailed example of the GC log files is shown in appendix
A.

29

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.3: A row in a G1GC log file generated by the JVM

Figure 5.4: A JSON object created from the G1GC log file

5.3 Stage 3: Microservice GC test

The following section presents the results of the test in the microservice
environment. The tests were performed on a computer with a 8 GB RAM
space. The initial tests were to establish the best test environment for all
collectors. A full GC log report generated by the parser is shown in appendix
B.

5.3.1 Environment settings

In table 5.1 the number of manageable instances depending on the number of
services in the microservice-tree. At a number of instances above the values
in table 5.1, the application called for a OutOfMemory exception. The table
values is an average of 10 equal tests.

30

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table 5.1: No. of manageable instances for each GC
1 service 3 services 5 services 10 services

CMS 5.0 M 3.0 M 1.7 M 0.3 M
G1GC 5.0 M 3.4 M 0.7 M 0.2 M
ZGC 3.2 M 1.2 M 0.5 M 0

Shenandoah GC 4.8 M 3.0 M 0.2 M 0

Equations (5.1)-(5.4) describes the maximum number of allocated instances
in a heap for each GC. Where n is the number of services available in the
environment. The equations are only based on the number of services from 1
up to 10 services, stepping up one service at a time. The equations might not
be correct for a number of services above 10.

CMS

{
i f (n = 1) : n ∗ 5 ∗ 106

else : n ∗ 5 ∗ 0.2
n
3 ∗ 106 (5.1)

G1GC

i f (n = 1) : n ∗ 5 ∗ 106

else i f (1 < n < 4) : n ∗ 5 ∗ 0.23n−2 ∗ 106

else : n ∗ 5 ∗ 0.23 ∗ 0.13
n
5 ∗ 106

(5.2)

ZGC

i f (n = 1) : n ∗ 3.2 ∗ 106

else i f (1 < n < 10) : n ∗ 3.2 ∗ 0.5n ∗ 106

else : 0
(5.3)

ShenandoahGC

i f (n < 3) : n ∗ 4.8 ∗ 0.4n−1 ∗ 106

else i f (2 < n < 10) : n ∗ 4.8 ∗ 0.21n−2 ∗ 106

else : 0
(5.4)

5.3.2 Microservice tree test

Since it was found from above tests that neither Shenandoah GC or ZGC were
able to handle 10 services or above using a RAM space of 8 GB the following

31

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

tests were established at 5 services with an allocation rate of 100K instances
per request. The number of requests at each test were set to 10. All results are
an average of 10 equal tests.

With the above configurations a test were conducted to review the size of the
services in the docker container structure, see table 5.2. The average service
size is the average Docker image size at the creation of the services and the
maximum service size describes the maximum image size at runtime.

Table 5.2: Docker image size for services
Avg. service size [MiB] Max service size [MiB]

CMS 125 165
G1GC 115 185
ZGC 300 420

Shenandoah GC 250 300

The time to perform the requests were calculated in the client application
from the initial call until the last response. The total elapsed time for 10 GET
requests are presented in table 5.3.

Table 5.3: Elapsed time for 10 GET requests
Total request time

CMS 7.57 s
G1GC 9.58 s
ZGC 9.09 s

Shenandoah GC 5.19 s

The number of collection phases were extracted from the log files and are
summarized in table 5.4. Concurrent pauses being events that partially pauses
the application by using one or multiple application threads, and STW pause
events fully pausing the application.

32

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table 5.4: No. of GC collection phases
Concurrent STW Pause Total

CMS 112 226 338
G1GC 159 200 359
ZGC 79 45 124

Shenandoah GC 71 44 115

In figure 5.5 the total time of the GC collection phases were calculated and
divided by the total GC collection phase time, the percentage of each phase is
shown for each GC. G1GC definitely stood out by having the highest pause
time among all collectors.

Figure 5.5: Average GC times

The total time values of the GC pause, concurrent and total times are presented
in table 5.5. Table 5.5 shows that G1GC definitely has the highest amount of
STW pause times, whereas CMS has the highest total GC work time. ZGC has
a very small amount of STW pause time followed by Shenandoah GC which
total GC time also is the lowest.

33

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table 5.5: Total GC stats
Total STW Total concurrent Total GC

CMS 6.4 s 18.4 s 24.8 s
G1GC 11.7 s 15.5 s 27.2 s
ZGC 0.3 s 9.0 s 9.3 s

Shenandoah GC 0.9 s 4.5 s 5.4 s

The distribution of pause- and concurrent times differ among the collectors,
seen by the plots in figure 5.6 - figure 5.9. The figures display two graphs
per service where the top graphs showing the STW pause time distribution
and the bottom graphs showing the concurrent time distribution, each figure
containing graphs using a certain GC. The x-axis describes the time interval
of the GC events in ms and the y-axis describes the length of the pause in
ms. Observe that the y-axis scale are not equal for all graphs and that the
x-axis in figure 5.8, STW pause time graphs, has a different starting value
than on the others. By the figures it is visible that Shenandoah GC definitely
has a more stable distribution of pause times than the others, although the
amount of pause times and concurrent times are very evenly distributed in
both Shenandoah GC and ZGC.

Figure 5.6: CMS pause and concurrent times

34

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.7: G1GC pause and concurrent times

Figure 5.8: Shenandoah GC pause and concurrent times

35

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.9: ZGC pause and concurrent times

5.3.3 Heap usage

At each request the application creates a lot of new objects and once a request
has been serviced many of these objects are of no use. At this point the GC
removes these unused objects from the heap. The main goal of the GC is to free
as much unnecessary memory usage as possible. In figure 5.10 - figure 5.13
the top graphs shows the heap usage (the heap size) before the GC ran and
the bottom graphs show the heap usage (the heap size) after the GC ran. In all
graphs in figure 5.10 - figure 5.13 the x-axis indicates the time at which the GC
event ran in seconds and the y-axis indicates the heap space in MB. Observe
that the y- and x-axis scale are not the same in all figures.

36

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.10: CMS heap usage

Figure 5.11: G1GC heap usage

37

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.12: Shenandoah GC heap usage

Figure 5.13: ZGC heap usage

38

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

5.3.4 Scenario performance

A worst case scenario where the number of GC work times per GC multiplied
by the average pause time were calculated. The results are presented in
table 5.6

Table 5.6: Worst case GC pause time
Worst case

CMS 13.97 s
G1GC 35.83 s
ZGC 0.89 s

Shenandoah GC 2.49 s

5.4 Stage 4: Microservice with Database connec-
tion

The following tests were conducted using a database connection. The test
environment consisted of 5 microservices and an allocation rate of 100K
instances per GET requests. In each test 10 GET requests were performed by
each GC.

In table table 5.7 the elapsed time to complete 10 GET requests with and
without a database connection is shown. As seen in the following tables no
data were captured for the ZGC collector. That with the reason that ZGC
called a NullPtrException resulting in one or multiple services being unable
to maintain connected.

39

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Table 5.7: Elapsed time for 10 GET requests with DB connection
Total time

CMS 17.95 s
G1GC 19.69 s
ZGC -

Shenandoah GC 93.44 s

Considering the decrease in manageable allocated instances per service the
Docker image size were examined to see if that had any influence on the crash.
The image size of each collectors images is shown in table 5.8. The average
service size is the average Docker image size at the creation of the services
and the maximum service size describes the largest image size at runtime. It
is visible by table 5.8 that ZGC had significantly larger images than the other
collectors.

Table 5.8: Docker image size with DB connection
Avg. service size [MiB] Max service size [MiB]

CMS 200 240
G1GC 225 280
ZGC 550 700

Shenandoah GC 350 380

Figure 5.14 shows the average pause time percentage against the concur-
rent time made by the GC, using a database connection. Concurrent pauses
being events that partially pauses the application by using one or multiple
application threads, and STW pause events fully pausing the application.

40

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.14: Average GC times with DB connection

The number of GC phases extracted from the GC log files are presented in
table 5.9.

Table 5.9: No. of GC collection phases
Concurrent STW Pause Total

CMS 324 470 794
G1GC 208 260 468
ZGC - - -

Shenandoah GC 168 101 269

In figure 5.15 - figure 5.17 the distribution of pause times are shown. The
top graphs in each figure representing the STW pause times, and the bottom
graphs in each.figure representing the concurrent times. The x-axis describes
the time interval of the GC events in ms and the y-axis describes the length of
the pause in ms. Observe that the y-axis scales are not equal for all graphs.

41

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.15: CMS pause and concurrent times

Figure 5.16: G1GC pause and concurrent times

42

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.17: Shenandoah GC pause and concurrent times

5.4.1 Heap usage

The heap usage for the GCs using a database connection is shown in figure 5.18
- figure 5.20. The top graphs shows the heap usage before the GC ran and
the bottom graphs show the heap usage after the GC ran. In all graphs in
figure 5.18 - figure 5.20 the x-axis indicates the time at which the GC event
ran in seconds and the y-axis indicates the heap space in MB. Observe that
not all figures have the same scale on the y-axis.

43

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.18: CMS heap usage with DB connection

Figure 5.19: G1GC heap usage with DB connection

44

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Figure 5.20: Shenandoah GC heap usage with DB connection

45

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

6 Discussion

The following chapter discusses the obtained results presented in the previous
chapter.

6.1 Stage 1: Initial GC testing

Since the objects were set to null the garbage collector were definitely expected
to be executed, which they also were. Which confirmed the GC activity. Even
though an explicit System.gc() call is not recommended because it muddles
with the JVM GC activity. For cases like testing it anyways can be a good
advantageous functionality to try and force the GC at a point in the application
for evaluation purposes. A System.gc() call does however not guarantee that
the GC will run. The System.gc() call can instead be seen as a recommendation
to the GC to run at a specific part of the program.

Filling the heap were produced as a proof of concept model to prove that the
GC does have opportunities for improvement. Despite the GC purpose of
replacing manual memory handling, errors still occur, proven by the received
OutOfMemory exception.

6.2 Stage 2: GC characteristics

The GC characteristics table containing information about the GCs were
created to form an initial understanding and overall grasp of the attributes
of the GCs and their differences. By figure 5.2 ZGC and Shenandoah GC is
shown to have GC STW pause times below 10ms which by later tests were
not the case in a microservice environment.

Regarding the GC log files it was clear that the log files were structured in
a way that were capable of parsing. The log files also without any added

46

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

justifications, apart from using the detailed GC log version, consisted of the
most vital information necessary for a somewhat in-depth analysis.

6.3 Stage 3: Microservice GC test

Many times performance evaluations are configured in an environment with
high specifications of performance, available memory space etc. It is clearly
shown that when limiting these parameters and performing the test in a more
real-world system, the tests of GCs does not always fulfill the expectations. It
also goes to show that some GCs are yet not developed to work completely
immaculate in microservice environments.

Primarily, evaluating the manageable instances for each GC there is a huge
decrease in the convenient instances at the increase of number of services.
The collector handling the increase of microservices best by the number of
instances are CMS, since it is able to handle the highest amount of instances.
Also, CMS along with ZGC has the most stable decrease of manageable
instances at the increase of services. Both G1GC and Shenandoag GC made
a huge drop of manageable instances at about 5 services. This may be an
indication of the GCs not being able to handle a microservice environment
since most microservice environments consists of more than 5 services, despite
the fact that all microservices may not be allocating memory in the same phase
as in the conducted tests. Although, at 10 services both ZGC and Shenandoah
threw a OutOfMemoryException as soon as the heap were trying to allocate
any memory at all.

This led to evaluate the Docker image size for each GC. It was by that clear that
ZGC had the largest service sizes, partly explaining the drop in manageable
instances. It also correlates for the other collectors. Also, in Stage 1 when
testing GC activity, the number of manageable instances were almost 10x
more in the case of a monolith service architecture, not using Docker.

The time to perform the requests differed among the collectors and Shenan-
doah GC had the shortest request time, almost half the time as G1GC and

47

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

ZGC. CMS again performed well when comparing against the other collectors,
although it being the earliest of the collectors.

Even though the request time were low the affects on the systems may differ
from these results. One indication of how the GC affects the system were by
looking at the GC pause and concurrent times. That information definitely
gave away more about the performance. Although G1GC did not have the
highest amount of STW pause times the total STW time were the highest
of all collectors and the percentage stood out, being the overall highest GC
percentage of STW pause time. As seen in figure 5.6 - figure 5.9 it is visible
that all collectors top graphs (showing the STW pause time) has a peak at
the beginning of the plot. The explanation being all collectors has an initial
marking step to start off the GC process.

The heap usage also gives away a lot about the performance of the GC. Since
all collectors performed under the same conditions it is clear that the collectors
have differences in performance. An important aspect to be aware of is that
the first request took a bit longer than the following requests, as usual in Java
because Java stores information about the last request, making the following
request time faster. As is shown in figure 5.10 presenting the heap usage
before the GC and after GC, Shenandoah GC definitely were able to free the
most memory followed by ZGC, G1GC and lastly CMS.

The worst case scenario were set up as a guideline and an indicator to what
would happen if all GC pause times ended up being STW pause times. An
average value of all GC pause times were used as the STW pause time value
which were multiplied by the total amount of GC pause events. The results
again pointed towards ZGC providing the by far lowest total time, which
again implies it being beneficial for systems requiring low latency.

48

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

6.4 Stage 4: Microservice with Database connec-
tion

rThe database tests in many ways differed from the tests done without any
database connection. Especially the request time differed greatly between the
collectors with CMS performing all the requests at a twentieth of time com-
pared to Shenandoah GC. Although the services weren’t directly connected
to the database or the application using the database the image sizes were
significantly larger than when the database were not included in the system.
In particular ZGC nearly doubled its average service size when having a
connected database in the architecture.

ZGC did not respond well to the tests in the environment with a database
connection. This is most probably due to ZGCs multi-memory mapping
technique, meaning it uses more memory mappings per process than other
collectors. The maximum mappings per process were adjusted as well as the
heap maximum and minimum size without any differences. The reason might
have been because of the use of a docker container structure. The internal
docker preferences were also tweaked by lowering the resources, specifically
the available memory and swap space, which also had no impact on ZGC.
Thus no further data regarding ZGC were collected in this research.

The number of GC collection phases alike the image sizes increase consider-
ably. Both CMS and Shenandoah GC more than doubled both the amount
of concurrent pauses and STW pauses (CMS nearly tripled the amount of
concurrent pauses). G1GC increased both STW and concurrent pause times
by about 20 percent. G1GC did also improved the percentage of total elapsed
STW pause time in comparison to concurrent time by about 20 percent when
using a database connection.

Regarding the heap usage the database did not make any outstanding differ-
ences in comparison to not having a database connected.

49

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

7 Conclusion

The main objective for this research were to shed light on the CMS, G1GC,
Shenandoah GC and ZGC performance in a microservice environment. The
study was able to demonstrate the importance of the choice of the right GC
and its impact on microservice applications by inspecting each collectors
performance in the same environment. Furthermore, this study also managed
to confirm ZGC and Shenandoah GCs latency advantage compared to the
default collector G1GC in JDK13 and CMS. In the following chapter some of
the final conclusions made in this thesis are presented.

ZGC showed great results regarding keeping low STW pause times and
being able to free a lot of garbage objects in the heap. The results obtained
aims towards ZGC being a good option for a system with high resource
specifications, when opting for low response times, e.g in a web application.
Although, ZGC did not perform well on either a microservice application
with many services connected, neither on an application with a database
connection. The results in this research leans towards the reason being ZGC
requiring more memory space to build the service images when using a
Docker container. If more memory space were available, ZGC may have had
different results.

CMS definitely had better results than were expected in the start of the project.
This with the reason of CMS being the oldest of the GCs and microservice
application being a fairly new concept. CMS although showed to perform
very well in the microservice environment. Both by being able to handle the
most instances in larger microservice systems, having the second best request
time (and best in the system using a DB connection) CMS also had a very
stable pause time as well as heap usage behavior. Still, the STW pause time
is quite high which has a pretty big impact on the final decision of the GC
choice since it has large impact on the latency of the application.

50

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

As a final conclusion, microservice applications working on a large heap
optimizing for low response times should primarily consider using ZGC and
secondary Shenandoah GC. For an application running on a smaller heap
space (less than 4GB) CMS could be a stable option if the system is opting to
be as scalable as possible regarding number of services. If the requirement
is only a few services ZGC again performs very pleasantly concerning STW
pause times and can thus be considered a good option. The recommendation
that can be made regarding what GC to choose in the case of a microservice
environment using a database connection leans towards CMS performing the
most stable results out of the collectors. Even though Shenandoah GC does
have the lowest STW pause time percentile the time to perform the application
requests were by far the most time consuming. Again though, if the aim is
to achieve the lowest STW pause times Shenandoah GC should be used as
GC. As a final note, there of course is always a balance between memory and
hardware usage that should be considered for each individual case.

7.1 Ethical aspects

The ethical aspects of this research mainly relates to providing a fair com-
parison to all included collectors. This is done by performing the test in an
environment that is equal for all GCs. It is also vital for the results to be
presented in a unbiased manner and present any injustices caused by the tests.
Especially since the results of this study may form the basis for decisions re-
garding what GC to pick for developers. The performance evaluation of GCs
can be highly beneficial in several aspects. Depending on the performance
feature reviewed, a better GC configuration can lead to,

• Application efficiency

• Reduced memory footprint

• Reduced CPU consumption

• Lowered hardware costs

51

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

The more efficiently we utilize the resources we already have, the more can be
achieved, which is important in both a sustainable and effective perspective.
By comparing the GCs with each other developers can also be helped into
making better decisions when choosing a GC for their specific environment.
Also here preventing rebuilding things, and by that save time, environment,
money and workload. Another aspect to consider is the power consumption
of a microservice application in comparison to a monolith system.

7.2 Future work

The future of GC definitely should involve developing and consider solutions
suitable for microservice environment. There exists a definite need for conti-
nous and uninterrupted services in modern program architectures. The ways
of adjusting the GC tuning options are massive and thus future investigations
has a lot of potential improvements.

Since the ZGC had bad response when using a database connection more
evaluation should definitely be done in that area. Especially since the reason
of the application not responding to JVM tuning regarding memory mappings
was not found. A good idea might be to perform the tests on a different OS
or investigate if the use of Docker has any impact on the problem by using
another microservice structure.

This study were limited to a simple application and results relating to param-
eters such as memory footprint and CPU usage were limited, which could be
of interest in future research. Also, apart from tuning GC options; hardware
setup and application properties would also be interesting to adjust. Since
the results aim towards the GCs being application dependent, referring to
the allocation test, the performance in other application structures is also of
interest. Furthermore, the java version and JVM type would be of interest
for further tests since this research did the major tests on Java version 13
using HotSpot JVM, especially since GraalVM is said to be appropriate for a
microservice architecture. Regarding the hardware in the test environment

52

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

it also is an aspect that could be compared to other hardware setups. E.g by
increasing or limit the memory usage or available CPU threads.

53

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

References

[1] Java se naming and versions, Oracle. [Online]. Available: https://www.
oracle.com/java/technologies/javase/naming-and-versions.html

(visited on 02/05/2021).

[2] Java garbage collection basics, Oracle. [Online]. Available: https://www.
oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/

index.html (visited on 02/02/2021).

[3] Akamai online retail performance report: Milliseconds are critical, Akamai.
[Online]. Available: https://www.akamai.com/uk/en/about/news/
press / 2017 - press / akamai - releases - spring - 2017 - state - of -

online-retail-performance-report.jsp (visited on 04/01/2021).

[4] Y. Einav, Amazon found every 100ms of latency cost them 1% in sales, Gi-
gaspaces, 2019. [Online]. Available: https://www.gigaspaces.com/
blog / amazon - found - every - 100ms - of - latency - cost - them - 1 -

in- sales/?fbclid=IwAR33heyNAI- a827DIXCizeLtp2aN- L0iNTYoL8-

vVAVf5hfQniAthUoOrL0 (visited on 04/19/2021).

[5] Java 11 guidelines, Gigaspaces. [Online]. Available: https : / / docs .
gigaspaces.com/latest/rn/java11- guidelines.html (visited on
02/07/2021).

[6] Jep 248: Make g1 the default garbage collector, OpenJDK. [Online]. Available:
http://openjdk.java.net/jeps/248 (visited on 04/12/2021).

[7] Understanding memory management, Oracle. [Online]. Available: https:
//docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/

diagnos/garbage_collect.html (visited on 02/06/2021).

[8] O. Agesen, D. Detlefs, and J. E. B. Moss, Garbage Collection and Local
Variable Type-Precision and Liveness in Java Virtual Machines, 1998. DOI:
10.1145/277650.277738.

54

https://www.oracle.com/java/technologies/javase/naming-and-versions.html
https://www.oracle.com/java/technologies/javase/naming-and-versions.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/?fbclid=IwAR33heyNAI-a827DIXCizeLtp2aN-L0iNTYoL8-vVAVf5hfQniAthUoOrL0
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/?fbclid=IwAR33heyNAI-a827DIXCizeLtp2aN-L0iNTYoL8-vVAVf5hfQniAthUoOrL0
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/?fbclid=IwAR33heyNAI-a827DIXCizeLtp2aN-L0iNTYoL8-vVAVf5hfQniAthUoOrL0
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/?fbclid=IwAR33heyNAI-a827DIXCizeLtp2aN-L0iNTYoL8-vVAVf5hfQniAthUoOrL0
https://docs.gigaspaces.com/latest/rn/java11-guidelines.html
https://docs.gigaspaces.com/latest/rn/java11-guidelines.html
http://openjdk.java.net/jeps/248
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://doi.org/10.1145/277650.277738

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

[9] S. Kadavath, Understanding hotspot vm garbage collectors (gc) in depth,
DZone, 2018. [Online]. Available: https : / / dzone . com / articles /
understanding-garbage-collectorsgc-in-depth (visited on 03/03/2021).

[10] H. Grgić, B. Mihaljević, and A. Radovan, Comparison of garbage collec-
tors in java programming language, Rochester Institute of Technology
Croatia, 2018. [Online]. Available: https://www.researchgate.net/
profile/Aleksander-Radovan/publication/326701102_Comparison_

of_garbage_collectors_in_Java_programming_language/links/

5d5f9ba392851c37637370eb/Comparison- of- garbage- collectors-

in-Java-programming-language.pdf (visited on 05/19/2021).

[11] Deep dive into the new java jit compiler – graal, Baeldung. [Online]. Avail-
able: https://www.baeldung.com/graal-java-jit-compiler (visited
on 02/25/2021).

[12] Graalvm, GraalVM. [Online]. Available: https://www.graalvm.org
(visited on 02/20/2021).

[13] P. Jayawardhana, Jvm garbage collection and optimizations, Medium, 2020.
[Online]. Available: https://medium.com/@Pushpalanka/jvm-garbage-
collection-and-optimizations-3f338c86de27 (visited on 02/05/2021).

[14] Jvm garbage collectors, Baeldung. [Online]. Available: https : / / www .
baeldung.com/jvm-garbage-collectors (visited on 02/16/2021).

[15] Type of garbage collector, PerfMatrix. [Online]. Available: https : / /
www . perfmatrix . com / type - of - garbage - collector/ (visited on
02/08/2021).

[16] Garbage first garbage collector tuning, Oracle. [Online]. Available: https:
//www.oracle.com/technical-resources/articles/java/g1gc.html

(visited on 02/17/2021).

[17] Getting started with the g1 garbage collector, Oracle. [Online]. Available:
https://www.baeldung.com/jvm-garbage-collectors (visited on
02/16/2021).

55

https://dzone.com/articles/understanding-garbage-collectorsgc-in-depth
https://dzone.com/articles/understanding-garbage-collectorsgc-in-depth
https://www.researchgate.net/profile/Aleksander-Radovan/publication/326701102_Comparison_of_garbage_collectors_in_Java_programming_language/links/5d5f9ba392851c37637370eb/Comparison-of-garbage-collectors-in-Java-programming-language.pdf
https://www.researchgate.net/profile/Aleksander-Radovan/publication/326701102_Comparison_of_garbage_collectors_in_Java_programming_language/links/5d5f9ba392851c37637370eb/Comparison-of-garbage-collectors-in-Java-programming-language.pdf
https://www.researchgate.net/profile/Aleksander-Radovan/publication/326701102_Comparison_of_garbage_collectors_in_Java_programming_language/links/5d5f9ba392851c37637370eb/Comparison-of-garbage-collectors-in-Java-programming-language.pdf
https://www.researchgate.net/profile/Aleksander-Radovan/publication/326701102_Comparison_of_garbage_collectors_in_Java_programming_language/links/5d5f9ba392851c37637370eb/Comparison-of-garbage-collectors-in-Java-programming-language.pdf
https://www.researchgate.net/profile/Aleksander-Radovan/publication/326701102_Comparison_of_garbage_collectors_in_Java_programming_language/links/5d5f9ba392851c37637370eb/Comparison-of-garbage-collectors-in-Java-programming-language.pdf
https://www.baeldung.com/graal-java-jit-compiler
https://www.graalvm.org
https://medium.com/@Pushpalanka/jvm-garbage-collection-and-optimizations-3f338c86de27
https://medium.com/@Pushpalanka/jvm-garbage-collection-and-optimizations-3f338c86de27
https://www.baeldung.com/jvm-garbage-collectors
https://www.baeldung.com/jvm-garbage-collectors
https://www.perfmatrix.com/type-of-garbage-collector/
https://www.perfmatrix.com/type-of-garbage-collector/
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.oracle.com/technical-resources/articles/java/g1gc.html
https://www.baeldung.com/jvm-garbage-collectors

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

[18] The z garbage collector, Oracle. [Online]. Available: https : / / docs .
oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.

html#GUID- A5A42691- 095E- 47BA- B6DC- FB4E5FAA43D0 (visited on
02/04/2021).

[19] An introduction to zgc: A scalable and experimental low-latency jvm garbage
collector, Baeldung. [Online]. Available: https://www.baeldung.com/
jvm-zgc-garbage-collector (visited on 02/04/2021).

[20] Main, OpenJDKWiki. [Online]. Available: https://wiki.openjdk.java.
net/display/zgc/Main (visited on 03/15/2021).

[21] I. Clark, Shenandoah gc, OpenJDK, 2021. [Online]. Available: https:
//wiki.openjdk.java.net/display/shenandoah/Main (visited on
02/19/2021).

[22] K. Chandrakant, Experimental garbage collectors in the jvm, Baeldung, 2021.
[Online]. Available: https://www.baeldung.com/jvm-experimental-
garbage-collectors (visited on 02/24/2021).

[23] P. Nima, A brief overview of garbage collectors in java, because cleanliness
is necessary, Medium, 2020. [Online]. Available: https://medium.com/
swlh/a-brief-overview-of-garbage-collectors-in-java-because-

cleanliness-is-necessary-f3dd9babc2cb (visited on 02/08/2021).

[24] E. Goebelbecker, Java garbage collection, DZone, 2019. [Online]. Available:
https://dzone.com/articles/java-garbage-collection-3 (visited
on 02/22/2021).

[25] M. Persson, Microservices – vad är det och hur utnyttjar du det, Telia, 2018.
[Online]. Available: https://www.cygate.se/blogg/microservices-
vad-ar-det-och-hur-utnyttjar-du-det/ (visited on 03/12/2021).

[26] C. Richardsson, What are microservices?, Microservices, 2020. [Online].
Available: https://microservices.io (visited on 04/21/2021).

[27] Understanding microservices, Redhat. [Online]. Available: https://www.
redhat.com/en/topics/microservices (visited on 03/12/2021).

56

https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
https://www.baeldung.com/jvm-zgc-garbage-collector
https://www.baeldung.com/jvm-zgc-garbage-collector
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/zgc/Main
https://wiki.openjdk.java.net/display/shenandoah/Main
https://wiki.openjdk.java.net/display/shenandoah/Main
https://www.baeldung.com/jvm-experimental-garbage-collectors
https://www.baeldung.com/jvm-experimental-garbage-collectors
https://medium.com/swlh/a-brief-overview-of-garbage-collectors-in-java-because-cleanliness-is-necessary-f3dd9babc2cb
https://medium.com/swlh/a-brief-overview-of-garbage-collectors-in-java-because-cleanliness-is-necessary-f3dd9babc2cb
https://medium.com/swlh/a-brief-overview-of-garbage-collectors-in-java-because-cleanliness-is-necessary-f3dd9babc2cb
https://dzone.com/articles/java-garbage-collection-3
https://www.cygate.se/blogg/microservices-vad-ar-det-och-hur-utnyttjar-du-det/
https://www.cygate.se/blogg/microservices-vad-ar-det-och-hur-utnyttjar-du-det/
https://microservices.io
https://www.redhat.com/en/topics/microservices
https://www.redhat.com/en/topics/microservices

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

[28] N. Alshuqayran, N. Ali, and R. Evans, A systematic sapping study in
microservice architecture, 2016. DOI: 10.1109/SOCA.2016.15.

[29] Docker overview, Docker. [Online]. Available: https://docs.docker.
com/get-started/overview/ (visited on 02/10/2021).

[30] Overview of docker compose, Docker. [Online]. Available: https://docs.
docker.com/compose/ (visited on 02/11/2021).

[31] Chapter 1. introduction to docker, O’reilly. [Online]. Available: https://
www.oreilly.com/library/view/docker-for-java/9781492042624/

ch01.html (visited on 02/11/2021).

57

https://doi.org/10.1109/SOCA.2016.15
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.oreilly.com/library/view/docker-for-java/9781492042624/ch01.html
https://www.oreilly.com/library/view/docker-for-java/9781492042624/ch01.html
https://www.oreilly.com/library/view/docker-for-java/9781492042624/ch01.html

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

Appendices

58

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

A GC log example

A short example of the GC log file structure for each collector.

A.0.1 CMS

59

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

A.0.2 G1GC

60

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

A.0.3 Shenandoah GC

61

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

A.0.4 ZGC

62

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

B GC report example

The following is an example of a report generated with the parser application
of a microservice environment with 5 services using G1GC.

63

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

64

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

65

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

66

Mitigating garbage collection in Java microservices - How garbage collection
affects Java microservices and how it can be handled
Amanda Ericson June 14, 2021

67

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Terminology
	Introduction
	Overall aim
	Concrete and verifiable goals
	Scope
	Outline
	Contribution

	Theory
	Java heap
	Java object types

	JVM
	HotSpotVM
	GraalVM

	Garbage collector
	Collector types
	G1
	ZGC
	Shenandoah GC
	Epsilon

	Microservice
	Docker
	Container
	Docker compose
	WORA
	PODA

	Method
	Research method
	Phase 1: Defining the project scope
	Phase 2: Implementation and testing
	Phase 3: Evaluation of results
	Latency
	Memory management

	Implementation
	Stage 1: Initial GC testing
	Stage 2: GC characteristics
	Stage 3: Microservice GC test
	Stage 4: Microservice with Database connection
	Configurations

	Result
	Stage 1: Initial GC testing
	Stage 2: GC characteristics
	GC log format

	Stage 3: Microservice GC test
	Environment settings
	Microservice tree test
	Heap usage
	Scenario performance

	Stage 4: Microservice with Database connection
	Heap usage

	Discussion
	Stage 1: Initial gc testing
	Stage 2: GC characteristics
	Stage 3: Microservice GC test
	Stage 4: Microservice with Database connection

	Conclusion
	Ethical aspects
	Future work

	Appendices
	GC log example
	CMS
	G1GC
	Shenandoah GC
	ZGC

	gc report example

