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Domain   independent   enhancements   to   Monte   Carlo   tree   search   
for   eurogames   

  

  
  

Abstract    -     
  

The  Monte  Carlo  tree  search-algorithm  (MCTS)  has  been          
proven  successful  when  applied  to  combinatorial  games,  a  term           
applied  to  sequential  games  with  perfect  information.  As  the           
focus  for  MCTS  has  tended  to  lean  towards  combinatorial           
games,  general  MCTS-strategies  for  other  types  of  board          
games  are  hard  to  find.  On  another  front,  board  games  under             
the  name  of  “Eurogames”  have  become  increasingly  popular  in           
the  last  decade.  These  games  introduce  yet  another  set  of            
challenges  for  game-playing  agents  on  top  of  what          
combinatorial   games   already   offer.   
Since  its  initial  conception,  a  large  number  of  enhancements  to            
the  MCTS-algorithm  has  been  proposed.  Seeing  that         
eurogames  share  much  of  the  same  game-mechanics  with  each           
other,  MCTS-enhancements  proving  effective  for  one  game         
could   potentially   be   aimed   towards   eurogames   in   general.   
In  this  paper,  alterations  to  the  expansion  phase,  the  playout            
phase  and  the  backpropagation  phase  are  made  to  the           
standard  MCTS-algorithm  for  agents  playing  the  game  of          
Carcassonne.  To  detect  how  enhancements  are  affected  by          
chance  events,  both  a  deterministic  and  a  stochastic  version  of            
the  game  is  examined.  It  can  be  concluded  that  a  reward  policy              
relying  solely  on  in-game  score  outperforms  the  conventional          
wins-against-losses  policy.  Concerning  playouts,  the  Early        
Playout  Termination  enhancement  only  yields  better  results         
when  the  number  of  MCTS-iterations  are  somewhat  restricted.          
Lastly,  delayed  node  expansion  is  shown  to  be  preferable  over            
that  of  conventional  node  expansion.  None  of  the          
enhancements  showed  any  increasing  or  declining  performance         
with   regard   to   chance   events.   
Additional  experiments  on  other  eurogames  are  needed  to          
reaffirm  any  findings.  Moreover,  subsequent  studies  which         
introduce  modifications  to  the  examined  enhancements  is         
proposed   as   a   measure   to   further   increase   agent   performance.   
  

Index  Terms  -  Monte  Carlo  tree  search  ·  Domain                   
independence   ·   Stochasticity   ·   Eurogames   ·   Carcassonne     
  

I.    I NTRODUCTION   

Monte  Carlo  tree  search  originates  from  the  work  of  Kocsis                     
and  Szepesvári  [1],  who  developed  the  method  by  using  the                     
already  established   Monte  Carlo  simulation  of  repeated               
random  sampling  [2].  By  running  multiple   playouts  -                 
simulations  of  a  search  space  (e.g.  the  many  different                   
outcomes  of  a  board  game)  -  a  search  tree  is  gradually                       
formed  where  promising  paths  are  sampled  more               

extensively.  Conversely,  frequently  visited  areas  of  the               
search  tree  are  given  less  and  less  priority,  thus  finding  a                       
balance   in   the    exploitation   vs.   exploration   tradeoff    [3].   
Though  MCTS  has  attracted  the  attention  of  developers                 
from  various  fields,  the  algorithm  has  garnered  most                
reputation  when  applied  to  the  chinese  board  game   Go  [4].                     
In  2017,  the  computer  program   AlphaGo  Master  [5],  which                   
utilized  the  MCTS-algorithm,  defeated  the  World  Champion               
in   Go.   
The  applicability  of  MCTS  has  generally  been  centered                 
around   combinatorial  games ;  typically  two-player  games             
without   chance  events  (like  the  roll  of  a  die)  or   hidden                       
information    (like   a   closed   poker   hand)   [6].   
On  another  front,  board  and  card  games  have  seen  a  revival                       
in  later  years,  with  an  increasing  market  size  [7].  The                     
German-style  board  games ,  more  commonly  referred  to  as                 
eurogames,  gained  popularity  in  the  last  decade,  which  in                   
turn  have  been  followed  by  several  studies  of   intelligent                   
agents    [8]   for   eurogames   [9]   [10]   [11].   
In  previous  work  concerning  MCTS  and  eurogames,  focus                 
has  tended  to  lie  in  optimizing  an  agent  for  a  particular                       
game  [9]  [10].  For  example,  MCTS  is  often  combined  with                     
domain  dependent  knowledge  [12],  applicable  for  the  board                 
game  in  question.  While  this  approach  is  indeed  effective                   
[13]  [14],  it  hinders  a  transposition  to  another  environment                   
since  different  domains  seldom  share  such  specific               
characteristics.  Chance  events,  hidden  information  and  a               
component  heavy  game  state  are  some  of  the  factors  that                     
distinguish   eurogames   from   combinatorial   games.   
While  previous  knowledge  gathered  from  evaluating  MCTS               
in  environments  of  perfect  information  is  doubtlessly               
important  to  understand  more  complex  domains,  the  latter                 
still   have   to   be   studied   on   their   own   terms   as   well.   
In  this  paper,  three  techniques  are  evaluated  as  a  general                     
approach  for  MCTS-agents  playing  eurogames,  using  the               
board   game   Carcassonne   as   a   test   environment.   
The  first,   Point  Based  Reward  Policy  (PBRP),  focuses  only                   
on  the  agent's  performance  based  on  game  points  (with  no                     
regard   for   the   opponent's   performance).   
The  second,   Early  Playout  Termination  (EPT)  [15],  cuts  the                   
simulation  short  by  limiting  the  playout  to  a  preset  number                     

  

Peter   Bergh   
BSc.   Thesis,   Programvaruteknik   

Institute   of   Computer   and   Systems   Sciences   
Mid   Sweden   University   

Östersund,   Sweden   
pebe1700@student.miun.se   



2   

of  turns  and  backpropagating  an  evaluation  of  the  game                   
state.   
Third  and  finally,  two  variants  of  expansion  policies  are                   
evaluated.     
Hopefully  this  research  can  bring  further  understanding  of                 
how  MCTS  can  be  optimized  without  heavy  reliance  on                   
domain  knowledge.  A  high-performing  rational  agent             
without  a  bias  towards  the  environment  could  ideally  bring                   
about  domain  knowledge  previously  unrevealed.  In  a               
broader  perspective,  the  foundation  for  understanding  of               
what  governs  events  in  real  life  arguably  has  to  be  built  from                         
the  bottom-up.  The  research  that  has  been  made  on                   
predictable  environments,  like  the  ones  in  combinatorial               
games,  can  rightly  be  regarded  as  a  keystone  for  this                     
foundation.  Steps  towards  more  advanced  environments  is  a                 
natural   extension   of   this   previous   work.   
  

II.    P ROBLEM    S TATEMENT   

In  MCTS,  every  action  that  can  be  made  in  a  game  is                         
represented  by  a  node  residing  in  a  search  tree  [14].  An                       
individual  game  state,  stored  in  each  node,  reflects  the                   
outcome  from  an  action  made  from  the  previous  state                   
(referred  to  as  the   parent  state ).  When  a  MCTS-simulation                   
starts,  the  only  node  available  is  the   root  node ,  which  holds                       
the  current  state  of  the  game.  From  this  starting  point,                     
additional  nodes  will  be  expanded  (see  section  V-I  for  a                     
detailed   description   on   the   MCTS-algorithm).     
As  discussed  in  section  I,  the  effectiveness  of  MCTS  when                     
applied  to  eurogames  have  been  investigated  on  several                 
occasions.  The  number  of  MCTS-iterations  per  player  turn                 
that  is  required  for  an  agent  to  achieve  a  majority  of  wins                         
can  sometimes  reach  over  10 5  [11].  Depending  on  the                   
complexity  of  the  game  state,  a  vast  number  of  iterations                     
can  pose  a  problem  concerning  expenditure  of  time  and                   
memory  allocation.  With  regards  to  node  expansion,  storing                 
game  states  can  become  a  memory  issue.  Considering  the                   
average   branching  factor  -  that  is,  the  number  of  possible                     
action  available  from  a  given  game  state  -  a  game  with  an                         
average  branching  factor  of  35  would  on  an  average  require                     
1,838,265,625  nodes  if  one  were  to  expand  every  possible                   
state  for  six   plies  (a  ply  is  one  turn  taken  by  one  of  the                             
players).  Eurogames  are  often  component  heavy;  markers,               
card  decks,  multiple  game  boards  etc.  They  also  exhibit  a                     
relatively  high  branching  factor.  Looking  at  the  game                 
Carcassonne,  the  average  branching  factor  is  55  [16].  If  all                     
child  nodes  of  a  parent  were  to  be  expanded,  55  new  game                         
states  would  on  average  have  to  be  created.  The  processing                     
time  to  achieve  this  will  vary  depending  on,  among  other                     
things,  the  complexity  of  the  game  state.  Considering  their                   
emphasis  on  components  and  parameters,  eurogames  serves               
as  good  candidates  for  the  problem  mentioned  regarding                 
time   consumption   and   memory   requirements   .   
After  a  node  has  been  expanded,  the  playout  takes  place.                     
The  game  is  simulated  with  random  actions  until  the  game                     

reaches  an  end,  a  so-called   terminal  state .  In  the  case  of                       
eurogames,  end  conditions  usually  take  place  after  a  preset                   
number  of  turns.  For  the  board  game  Carcassonne,  the  fixed                     
number  of  turns  is  71.  This  amounts  to  several  millions                     
copies  of  game  states  just  for  the  playout  phase  if  the                       
number  of  simulations  were  to  be  in  the  hundred  of                     
thousands.  With  the  reasoning  presented  above,  it’s  a                 
feasible  assumption  that  neither  an  exhaustive  amount  of                 
simulations  or  an  exhaustive  expansion  of  nodes  would  be                   
preferable.     
As  a  supplement  to  knowledge  gathered  from  playouts,                 
evaluation  functions  can  be  used  [12].  For  example,  instead                   
of  letting  each  player  action  be  chosen  at  random  during                     
playout,  heuristic  knowledge  can  be  used  to  direct  the                   
playout  to  more  probable  lines  of  action  than  that  of  a                       
random  play   [17].  However,  evaluation  functions  come  at                 
the  cost  of  how  thoroughly  the  search  tree  can  be  explored,                       
since  time  will  be  consumed  by  evaluating  game  states                   
instead.  An  alternative  approach  to  evaluation  functions  is  to                   
use  domain  independent  knowledge   [12].  One  way  to                 
enhance  MCTS  is  to  measure  the  favourable  outcome  of                   
actions  based  on  their  occurrence  in  playouts  leading  to                   
wins/losses.  For  example,  the   Rapid  Action  Value               
Estimation  (RAVE)  strategy  has  increased  the  performance               
of  agents  in  combinatorial  games  [18].  However,  Lorentz                 
[19]  noted,  when  applied  to  the  game  Havannah,  that  RAVE                     
offered  no  advantage.  A  proposed  reason  for  this  was  that                     
moves  in  Havannah  weren't  inherently  strong  or  weak,  but                   
rather  that  the  context  which  surrounded  a  certain  move  had                     
more  influence  when  judging  the  move’s  “value”.  Actions  in                   
eurogames  are  arguably  more  context-dependent  than  that  of                 
combinatorial  games.  Hence  enhancements  like  RAVE  as               
well  as  other  heuristics  employing  similar  strategies  will  not                   
be   optimal   for   eurogames.     
Also  worth  noting,  as  yet  another  differentiating  factor                 
between  eurogames  and  combinatorial  games,  is  the               
self-managing  style  of  play  that  is  associated  with                 
eurogames.  Since  eurogames  aren’t  confrontational  in  the               
same  manner  as  many  combinatorial  games,  it  is  reasonable                   
to  question  whether  the  applicability  of  MCTS  for  the                   
former  should  be  based  on  implementation  that've  been                 
proven  effective  for  latter  (see  section  V-III  for  a  more                     
detailed  description  of  how  eurogames  and  combinatorial               
games   differ).   
Three  proposals  will  now  be  presented  as  a  measure  to                     
alleviate  the  problems  previously  mentioned.  These  are  as                
follows.     

1. Winning  condition  in  eurogames  is  for  the  most                 
part  based  on  in-game  score.  Scoring  is  usually                 
done  both  during  the  game  and  at  the  end  of  the                       
game  (referred  to  as   final  scoring ).  Since  the  player                   
score  is  part  of  the  game  state,  the  scoring  has  to  be                         
stored  with  each  node  regardless.  Using  the  game                 
score  as  a  heuristic  knowledge  would  require               
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negligible  data  processing  while  a  more  detailed               
description   of   the   game   state   is   provided.     

2. In  a  game  with  chance  events,   determinization  is                 
often  used  to  set  the  search  tree  to  a  fixed  state  (see                         
section  V-II-I  for  details  regarding          
determinization).  The  probability  that  a           
determinized  game  state,  far  down  in  the  tree,                 
would  be  representative  of  the  actual  environment               
is  next  to  none.  Instead  of  letting  playout  reach  a                     
terminal  state,  cutting  off  the  playout  at  a  fixed                   
point  and  from  there  backpropagating  the  current               
score  would  enable  more  MCTS  iterations  over  a                 
set   timeframe.   

3. Based  on  the  relatively  complex  game  state  of                 
eurogames  in  general  (as  discussed  earlier),  the               
expansion  policy  used  should  not  employ  a  full                 
node  expansion,  not  at  least  without  any  form  of                   
restrictions.  The  two  strategies  used  in  this  study                 
will   be   presented   in   section   III.   

  
The  aim  for  this  study  is  to  investigate  the  prospects  of  a                         
generalized  method  for  enhancing  MCTS  to  work  well  with                   
eurogames.  An  agent  employing  a  general  approach  to                 
eurogames  could  serve  as  a  helpful  tool  in  future  studies  of                       
domains  where  a  quantitative  measure  of  progression  exists                 
within   the   node   state.   
  

III.    R ESEARCH    Q UESTIONS   

The  environment  of  the  study  is  a  two-player  version  of  the                       
eurogame   Carcassonne.   
Several  agents  will  be  tried  against  each  other,  all  employing                    
MCTS  with  different  enhancements  (for  details  on  MCTS                 
and  its  enhancements  as  well  as  Carcassonne,  see  section                   
V-I   and   section   V-III-I   respectively):   

● Upper   Confidence   Bounds   applied   to   Trees    (UCT)   
The  conventional  MCTS-algorithm  proposed  by           
Kocsis   and   Szepesvári   [1]   

● Point   Based   Reward   Policy   (PBRP)   
Identical  to  UCT,  but  back-propagates  game  score               
instead   of   win/loss/draw.   

● Early   Playout   Termination   (EPT)    [15]   
Identical  to  UCT,  but  playouts  are  cut  short  by   n                     
plies  and  the  reward  policy  is  based  on  an                   
evaluation   of   the   game   state   at   that   specific   turn.  

  
In  addition  to  the  three  listed  agent-types,  two  different                   
expansion   strategies   will   be   tested:   

A. Expansion  strategy   A ,  which  expands  one  child               
node  from  one  parent  node  at  each  expansion                 
phase.    

B. Expansion  strategy   B ,  which  expands  all  child               
nodes  from  one  parent  node  when  the  visit  count                   
for  the  parent  node  has  reached  a  certain  threshold                   

(given  that  the  parent  node  is  selected  when  the                   
game   tree   is   traversed).   

 
The  following  research  questions  is  the  main  concern  for  the                     
investigation:   
 
RQ1:  How  does  PBRP  perform  against  UCT  in  terms  of                     
score  and  win  frequency,  and  how  is  the  performance                   
affected   by   an   increased   time-limit?   
  

RQ2:   How  does  the  different  cutoffs  in  EPT  alter                   
performance  in  terms  of  score  and  win  frequency,  and  how                     
is   this   affected   by   the   time-limit?   
 
RQ3:  Is  the  difference  in  performance  between  two  agents                   
in  any  way  affected  by  the  inclusion  of  a  chance  event  in  the                           
environment?   
 
RQ4:  Which  of  the  two  expansion  strategies  performs  best                   
in  terms  of  score  and  win  frequency,  and  what  can  be  said                         
about  consistency  regarding  performance  in  relation  to               
time-limit?   
 
A  quality-based  reward  policy,  taking  into  account  more                 
factors  than  just  the  binary  state  of  win  and  loss,  was  shown                         
by  Pepels  et  al.  [20]  to  increase  performance  for                   
MCTS-agents  for  a  majority  of  the  games  tested.  It  should                     
be  noted  that  these  games  weren't  based  on  the  premise  of                       
players  earning  game  scores.  In  Carcassonne,  the  final  score,                   
and  to  a  lesser  extent  the  ongoing  scoring  throughout  the                     
game,  could  reasonably  be  regarded  as  a  precise                 
quality-based  reward  policy.  It  is  presumed  that  an  agent                   
using  scoring  as  a  measurement  of  quality  would  outclass  an                     
agent  using  only  wins  and  losses,  seeing  as  the  game  state                       
itself   provides   the   scoring   mechanism.   
  

Lorentz  [21]  noted  that  6  plies  before  cutoff  worked  best                     
when  EPT  was  implemented  in  the  board  game   Amazons .                   
Given  that  a  low  number  of  played  plies  per  playout  yields  a                         
higher  number  of  MCTS  iterations  before  making  a  move,                   
the  search  space  will  consequently  be  more  thoroughly                 
explored.  This  fact  speaks  in  favor  of  an  earlier  cutoff.                     
However,  an  early  cutoff  would  at  the  same  time  prevent  any                       
prospects  of  long-term  planning;  no  actions  would  be  taken                   
based  on  a  possible  reward  later  in  the  game.  Attaching  this                       
relationship  to  combinatorial  games  and  eurogames,  it  could                 
be  argued  that  the  lack  of  long-term  planning  is  more  of  an                         
issue  for  the  former.  Combinatorial  games  makes  long-term                 
planning  more  feasible  since  the  number  of  unexpected                 
factors  are  reduced  to  zero.  Since  eurogames  on  the  other                     
hand  employs  chance  events,  long  term-planning  could  be  a                   
disadvantage;  a  specific  route  will  next  to  never  turn  out  to                       
be  realized  in  the  way  that  was  initially  planned.  Strategies                     
depending  on  every  chance  event  returning  favorably  to  the                   
agent   doesn't   seem   reliable.   
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With  the  reasoning  that  has  been  put  forth,  the  assumption  is                       
made  that  EPT  will  prove  to  be  most  effective  when  cutoff  is                         
low.  Additionally,  one  can  assume  that  the  positive  effects  of                     
EPT  will  diminish  when  the  time-limit  for  turn-taking  is                   
increased,  since  the  possibility  of  finally  exhausting  the                 
search   tree   is   likely.   

IV.   L IMITATIONS   
IV-I   Exclusion   of   multi-threaded   determinization   

A  suggested  way  to  deal  with  chance  events  and  hidden                     
information  is  by   determinization  (for  details  on               
determinization,  see  section  V-II-I).  Earlier  studies  have               
shown  both  an  increase  in  play  performance  as  well  as  none                       
[22]  [23]  when  employing  multiple  agents  running  parallel                 
determinizations.  Initial  investigations  in  this  study,  running               
4-8  agents  on  parallel  threads,  resulted  in  poorer  win                   
frequency  than  that  of  just  one  determinized  agent.                 
However,  variations  with  which  this  strategy  can  be                 
employed  were  not  thoroughly  explored,  hence  no  certain                 
conclusions  can  be  drawn.  With  that  said,  further  exploring                   
on  the  varying  of  parameters  for  multi-threaded               
determinization   has   been   excluded   from   this   study.   

 
IV-II  Limited  experimentation  with  exploration/exploitation           
constant   

This  study  does  not  involve  any  analysis  of  how                   
performance  is  affected  by  varying  the             
exploration/exploitation  constant  (see  section  V-I-I  for             
details  regarding  selection  of  nodes).  The  value  of  the                   

constant,  ,  for  UCT  is  based  on  the  initial  work  of     C = 1/√2                    
Kocsis  and  Szepesvári  [1]  on  MCTS,  which  satisfies  the                   
Hoeffding  inequality  [24]  with  rewards  in  the  range  [0,1].                   
However,  the  reward  range  for  the  UCT  agent  for  this  study                       
lies  within  [-1,1].  Initial  trials  with  UCT  vs  PBRP,  taking                     
1000  ms  per  player  turn  and  using  multiples  of   C  for  UCT,                         
showed  no  crucial  performance  gain  for  which  to  motivate                   
using  UCT  in  any  subsequent  experiments  than  the  ones                   
already   conducted   (statuated   in   Table   7.1).     

    
IV-III   Omittance   of   game   mechanics   

The  environment  for  which  the  experiments  is  conducted                 
doesn't  include  every  aspect  of  the  game  Carcassonne  (see                   
section  V-III-I  for  rules  of  Carcassonne  and  section  VII-I  for                     
elements  excluded).  The  agents  performance  in  terms  of                 
earned  points  will  therefore  not  correspond  to  any  scoring                   
earned  from  the  standard  game.  Moreover,  the  performance                 
difference  between  agents  could  be  altered  if  the  standard                   
game   were   implemented.   
  

V.   B ACKGROUND   
V-I   Monte   Carlo   tree   search   

MCTS  is  a  best-first  search  method  which  utilizes  several                   
random  simulations  of  the  search  space  to  estimate                 
favorable  actions  in  the  given  environment  (for  this  section                   
hereafter,  the  word  “game”  will  be  used  instead  of                   
“environment”  for  an  easier  understanding).  Starting  with               
the  root  node  𝑅,  which  holds  the  current  state  𝑅 s  of  the                         
game,  each  child  node  𝑉,  and  their  subsequent  child  nodes,                     
holds  a  reachable  state  𝑉’ s  of  the  game,  originating  from  𝑅 s .                       
One   iteration   of   MCTS   consists   of   four   phases:   

● Selection   
● Expansion   
● Playout   
● Backpropagation   

In  the  selection  phase,  starting  from  𝑅,  previously  expanded                   
child  nodes  are  successively  selected  until  a  leaf  node   l  is                       
reached   (which   child   nodes   that   are   chosen   for   selection   is   
discussed   under   section   V-I-I).   
In  the  expansion  phase,  if  the  state   l s  is  not  a  terminal  state,                           
one  (or  several)  child  nodes  𝑉 ’  are  expanded 1 ,  thus                   
increasing   the   order    |G|    of   the   search   tree.   
In  the  playout  phase  the  game  is  played  from  a  state  𝑉 ’ s  by                           
selecting  uniformly  random  moves  for  both  players  until  a                   
terminal  state  is  reached.  The  result  of  the  playout,                   
commonly  a   win ,   loss  or  a   draw  are  denoted  by  numerical                       
values.   
In  the  backpropagation  phase,  the  result  of  the  just  finished                     
playout  is  stored  in  𝑉’  as  well  as  every  consecutive  parent                       
node  from  𝑉’  all  the  way  up  to   R .  The  visit  count  for  each  of                               
the   involved   nodes   are   also   increased   by   one   

1 There   are   exceptions   to   this.   As   will   be   explained   later,   which   node   that   is   selected   will   be   determined   by   a   number   of   factors.   Chances   are   that   the   parent   node   
will   be   preferable   for   further   expansion   over   the   child   leaf   node.   Specifically,   the   child   node   can   have   made   one   previous   simulation   with   a   negative   result,   making  
the   parent   node   more   prosperous   for   further   exploring.   
2     Step   of   Monte   Carlo   tree   search    by   Rmoss92,   used   under    CC   BY   4.0    /   edited   from   original   

  
Fig.   5.1 2    Steps   of   MCTS.   A   grey   node   is   selected   for   expansion.   From   
the   expanded   child   node,   the   game   is   simulated   until   a   terminal   node   is   
reached,   leading   to   a   loss   for   the   white   player.   The   result   is   
backpropagated   to   each   involved   node   back   to   the   root   node.   

https://commons.wikimedia.org/wiki/File:MCTS-steps.svg
https://creativecommons.org/licenses/by-sa/4.0/
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As  depicted  in  figure  5.1,  the  phasing  and  the  opposing                     
player  is  represented  by  grey  and  white  nodes  respectively.                   
The  topmost  node  stores  the  current  state  of  the  game;  the                       
three  grey  childnodes  are  the  three  possible  actions  that  can                     
be  made  by  the  phasing  player.  The  tree  is  traversed  down  to                         
a  game  state  where  the  phasing  player  has  just  made  an                       
action.  In  this  example,  a  single  child  node  is  expanded.                     
From  that  child  node,  the  game  is  then  simulated  until  a                       
terminal  state,  leading  to  a  win  for  the  phasing  player.  The                       
winning   result   is   stored   in   each   preceding   parent   node.   
  

V-I-I   Selection   Strategies   

When  traversing  the  search  tree,  the  node  selected  for                   
expansion  will  depend  on  the  heuristic  that  is  employed.  If  a                       
node  with  one  previous  visit  is  involved  in  one  win,  and  the                         
heuristic  was  designed  to  prioritize  winning  nodes  over                 
non-winning  nodes,  a  node  with  one  visit  and  zero  wins                     
would  never  be  visited  again  as  a  result.  Contrary,  if  all                       
nodes  were  visited  evenly,  unpromising  paths  of  the  search                   
tree  would  have  equal  priority  as  promising  paths,  which                   
would  impair  the  prospect  of  playing  rational.  Kocsis  and                   
Szepesvári  [1]  used  the  UCB1  formula  [3]   to  balance  the                     
dilemma  between  exploration  and  exploitation.  MCTS  with               
the  UCB1  formula  is  called  UCT  (Upper  Confidence                 
Bounds  applied  to  Trees).  It  works  in  the  following  way;  of                       
the  child  nodes   𝑉 ( p ),  whose  parent  is   p ,  the  child   v  that  will                           
be   chosen   for   selection   is   the   child   that   satisfies:   

rgmax  v* = a v∈V (p){ nv

sv + C√ nv

㏑(n )p } (1)   

where   s v  is  the  total  score  of   v ,   n v  is  the  number  of  visits  to   v                                 
and   n p  is  the  number  of  visits  to p .   C  is  a  constant  to  tune  the                                 
balance  between  exploration  and  exploitation.  Previous             
unvisited  nodes  are  given  a  maximum  value,  thus                 
prioritizing   previous   unvisited   nodes.   
MCTS  has  been  proven  to  be   Hannan  consistent  [25]  with                     
the  right  tuning  [26].  This  means  that  for  combinatorial                   
games,   MCTS   will   converge   to   a    Nash   equilibrium    [27].   
  

V-I-II   Expansion   

As  mentioned  earlier,  if   l s  isn't  a  terminal  state,   l  will  be                         
expanded.  Depending  on  the  domain  and  the  demand  on                   
memory  requirements,  one  node  up  to  all  child  nodes  can  be                       
expanded.  It  is  however  a  common  practice  to  expand  all                     
child  nodes  of  the  root  node  immediately,  since  they                   
represent  the  actual  actions  that  can  be  made  in  the  current                       
game   turn.  
  

V-I-III   Playout   

During  the  playout,  the  MCTS-algorithm  usually  simulates               
the  game  by  selecting  random  moves  until  a  terminal  state  is                       
reached.  Instead  of  simulating  the  game  until  a  terminal                   
state,  Lorentz  [15]  proposed  EPT,  which  effectively  cuts  the                   

simulation  short.  Since  the  game  state  in  which  the                   
simulation  has  stopped  isn't  necessarily  a  terminal  state  (for                   
most  instances  this  is  rather  not  the  case),  some  evaluation                     
function  must  be  applied  to  quantify  the  chances  of  winning                     
for   each   player.   
  

V-II   Stochastic   environments   and   Hidden   information   

An  environment  containing  one  or  more  random  events  is                   
said  to  be  stochastic.  Its  counterpart,  a  deterministic                 
environment,  is  however  absent  of  any  events  that  are  a                     
product  of  chance  or  probability.  The  game  of  chess  is  an                       
example  of  a  deterministic  environment.  Worth  mentioning               
is  the  quite  common  factor  of  hidden  information  in  many                     
board-  and  card  games.  Unlike  stochasticity,  hidden               
information  isn't  due  to  chance,  but  due  to  information                   
known  to  one  agent  but  unknown  to  another  agent.  The                     
content  of  a  closed  hand  of  cards  is  only  known  to  the  player                           
holding   the   cards,   not   to   the   opponent.     
  

V-II-I   Determinization   

When  dealing  with  stochasticity  or  hidden  information,  the                 
game  tree  that  is  traversed  by  the  MCTS-algorithm  is  by                     
default  deficient;  there  is  no  way  for  the  agent  to  know  the                         
ordering  of  a  shuffled  deck  of  cards,  or  which  cards  the                       
opponent  has  in  its  hand.  To  overcome  this,  the  procedure  of                       
determinizing  the  environment  is  implemented  [12].  This               
means  that  the  game  tree  is  determined  to  one  possible                     
outcome.  To  alleviate  an  eventual  flaw  in  that  the                   
determinized  version  of  the  game  doesn't  reflect  the  factual                   
turn  of  events,  multiple  agents  can  run  parallel,  each  agent                    
returning  their  preferred  action.  The  most  frequent  returned                 
action   is   then   chosen   as   the   actual   move.     

 
V-III   How   eurogames   differ   from   combinatorial   games   

Combinatorial  games,  such  as  the  previously  mentioned  Go,                 
are  typically  two-player,  turn-based  games  where  none  of                 
the  game  events  are  a  product  of  chance.  Furthermore,  both                     
players  have  access  to  the  same  information.  Another                 
common  denominator  is  that  the  games  often  aren't  played                   
over  a  preset  number  of  turns;  they  can  end  anytime,  end                       
because   of   lack   of   valid   moves,   or   sometimes   go   on   forever.   
Eurogames,  on  the  other  hand,  is  seldom  focused  on                   
two-player  game  mechanics.  Chance  events  are  almost               
without  exception  included  in  the  mechanics.  They  are  in                   
many  cases  restricted  to  a  preset  number  of  turns,  as                     
opposed  to  what  was  mentioned  earlier  concerning               
combinatorial  games.  Moreover,  the  number  of  elements               
that  constitutes  eurogames  are  often  high;  cards,  multiple                 
game  boards,  resource  markers,  placeable  structures,             
multiple  player  markers  etc.  As  a  consequence,  game  states                   
are  seldom  bound  to  actions  taking  place  on  one  specific                     
board.  Winning  conditions  in  eurogames  are  almost  always                 
based  on  a  game  score  track  for  each  player.  The  score                       
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could  either  be  calculated  only  at  the  end  of  the  game,  but                         
for  the  most  part  scoring  is  handled  as  an  in-game  event  as  it                           
progresses,  and  finishing  with  a  final  scoring  at  game-end.                   
Player  interaction  in  eurogames  differs  from  that  of                 
combinatorial  games.  The  latter  has  a  direct  form  of                   
interaction  where  one  player's  action  is  aimed  at,  and                   
against,  the  opposing  player.  Eurogames  employs  an  indirect                 
interaction   which   focuses   more   on   self-management.   

 
V-III-I   Carcassonne   

Carcassonne  is  a  2-7  player  game,  where  players  take  turns                     
drawing  bricks  (one  at  a  time)  from  a  shuffled  deck  and                       
placing  the  bricks  on  the  table  (abiding  given  restrictions  for                     
brick  placement).  Over  the  course  of  the  game,  a  commutual                    
landscape  is  built  where  the  game  takes  place.   Features  such                     
as   towns ,   roads ,   cloisters  and   fields  (pasture)  can  be  formed                     
into   structures .  By  placing  personal  markers  (called               
meeples )  at  structures,  players  are  rewarded  points  when  the                   
structures  are  completed,  thus  moving  forward  on  a  scoring                   
track.  The  game  ends  when  all  bricks  have  been  drawn,  and                       
a   final   scoring   takes   place.   
One   ply   goes   as   follows:   
1.   The    phasing   player    (PP)   draws   a   brick.   
2.  PP  places  the  brick  on  the  board  abiding  the  following                       
rules:   

a.    the   brick   must   be   connected   to   some   other   brick   
b.    the  brick  has  to  fit  with  its  neighbouring  bricks                   

according   to   the   neighbouring   features.   
3.  If  any  structure  is  completed  as  a  result  of  the  just  placed                           
brick,  a  scoring  for  each  structure  will  take  place  (Iff                     
meeples   was   placed   on   the   structure   in   question).   
4.  PP  now  has  the  option  of  positioning  ONE  meeple  on  any                         
one   feature   on   the   just   placed   brick   Iff:   

a. PP  has  any  meeples  left  (All  players  have  seven                   
each   at   their   disposal   at   the   start   of   the   game)   

b. The  feature  in  question  isn’t  already  belonging  to  a                   
structure   where   a   meeple   is   placed.   

5.  If  the  meeple  is  positioned  on  a  just  finished  structure,                       
scoring  will  take  place  and  the  meeple  goes  back  to  the                       
player   bank.   
  

Seeing  as  two  structures  of  the  same  type  can  over  time                       
become  one  larger  structure  (excluding  cloisters),  two  or                 
more  players  can  have  meeples  placed  on  a  joint  structure.                     
In  that  case,  all  the  players  with  the  most  meeples  on  the                         
structure  get  a  full  score  when  the  structure  is  completed                     
(with   ties   allowed).   
Scoring   in   the   game   works   as   follows.   

● Finished  towns  yield  2  points  per  brick  involved  in                   
the  town  structure.  Town  features  with  a   shield                 
symbol    on   it   yields   2   extra   points.   

● Finished  roads  yield  1  point  per  brick  involved  in                   
the   road   structure.   

● Finished  cloisters  yield  1  point  per  brick  involved                 
in   the   cloister   (to   a   maximum   of   9).   

● During  final  scoring,  every  not-yet  finished             
structure  yields  1  point  per  brick  (and  shield,  in  the                     
case  of  towns)  to  the  player  which  has  a  meeple                     
placed   on   the   given   structure.   

● During  final  scoring,  the  player  which  dominates  a                 
field  in  terms  of  placed  meeples  earns  3  points  for                     
every  adjacent  finished  town  structure.  Note  that               
one  town  can  be  adjacent  to  multiple  fields.  Road-                   
and  town  features  act  as  delimiters  for  different                 
fields.   

  

VI.    R ELATED    W ORK   

In  this  section,  related  works  addressing  reward  policies  and                   
playout  terminations  for  MCTS  are  presented,  as  well  as  the                     
prospects   for   contribution   to   the   field   of   study.   

VI-I   Score-based   reward   policies   

For  the  combinatorial  game  BlokusDuo,  when  using  a  final                   
score  as  a  reward  policy  for  UCT,  Shibahara  and  Kotani                     
[28]  noted  a  diminishing  win  ratio  against  Win-or-Lose                 
reward  policy  when  the  number  of  playouts  exceeded                 
100,000.  This  result  can  be  considered  expected,  since                 
standard  UCT  converges  to  a  Nash  equilibrium  [27],  and                   
accordingly  will  get  closer  and  closer  to  a  perfect  strategy  as                       
iterations  are  increased.  Following  the  discussions  from               
section  II,  the  complexity  of  eurogames  aren’t  well  fit  for                     
that  many  iterations,  and  thus  the  strategy  of  abandoning  a                     
win-loss   policy   is   partly   motivated   by   the   data   found   in   [28]   
 
Further,  [28]  showed  that  a   Sigmoid  function  [29],  which                   
combined  the  multifaceted  properties  of  score-based  policy               
with  the  binary  nature  of  a  win-loss  policy,  were                   
advantageous  beyond  100,000  playouts.  Pepels  et  al.  [20]                 
also  employed  a  Sigmoid  function  to  alternate  from  the                   
conventional  UCT  policy  of  win-loss,  with  positive  results.                 
In  this  case,  a  number  of  two-player  games  were  examined,                     
all   of   them   combinatorial.   
The  findings  in  the  studies  presented  above  gives  credence                   
to  a  score-based  reward  policy.  However,  the  need  for                   
merging  a  reward  policy  based  on  score  with  one  based  on                       
win-loss  seems  more  relevant  in  the  case  of  combinatorial                   
games  (for  the  reasons  discussed  earlier  in  section  II).                   
Hence,  a  reward  policy  based  only  on  final  score,                   
backpropagated  in  a  linear  manner,  is  the  primary  interest                   
for   this   study.   
  

VI-II   Early   Playout   Termination   

Lorentz  [21]  proposed  EPT  for  the  game  Amazons  with                   
favorable   results.   The   cutoff   point   was   set   to   5-6   plies   before     
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invoking  a  reward  policy.  Matsuzaki  and  Kitamura  [30]  also                   
found  EPT  to  be  effective  when  applied  to  the  game  of                       
Othello,  with  a  depth  set  to  5  plies.  A  more  thorough                       
investigation  of  how  cutoff  point  affects  performance  in                 
relation  to  MCTS-iterations  would  however  be  of  interest  to                   
better  understand  the  conditions  for  which  EPT  should  be                   
employed   depending   on   context.   
  

VI-III   Contribution   to   the   field   

The  main  contribution  of  this  work  is  to  get  a  better  estimate                        
of  the  performance  difference  between  agents  using  a                 
score-based  reward  policy  to  that  of  conventional  UCT                 
reward  policy.  This  work  also  presents  more  comprehensive                 
data  on  the  performance  of  the  EPT-enhancement,  since  a                   
multitude  of  cutoff  points  is  implemented.  Additionally,               
there’s  a  hope  to  get  a  better  estimate  of  how  stochastic                       
environments  affect  the  performance  of  the             
MCTS-algorithm  and,  in  extension,  if  any  of  the  selected                   
enhancements  have  any  diverging  impact  on  an  agents                 
performance  with  regards  to  stochasticity.  Finally,  this  work                 
aims  to  provide  knowledge  concerning  generalized  (i.e.               
domain  independent)  MCTS-methods  for  environments           
such  as  eurogames  and  any  environments  which  bears  a                   
resemblance   to   the   former.   
  

VII.   R ESEARCH    M ETHODOLOGY   
VII-I   Game   environment   

The  Carcassonne  game  environment  was  developed  with  the                 
Java  Platform,  Standard  Edition  (Java  SE)  [31]  and  executed                   
in  Java  Virtual  Machine  (JVM)  [32].  The  Swing  toolkit  [33]                     
was   used   for   monitoring 1   
The  following  changes  to  the  standard  rules  was                 
implemented  (for  details  on  Carcassonne  game  mechanics,               
see   section   V-III-I):   

● Shields   on   town   features   were   removed.   
● Meeples  could  only  be  placed  on  town  features  or                   

roads   (that   is,   no   placements   on   fields   or   cloisters).   
● The  six  bricks  with  cloisters  were  removed               

altogether.   
This   left   a   game   with   65   bricks   plus   one   starting   brick.   

VII-II   Agent   setup   

Five  different  agents  were  used  in  the  experiment,  playing                   
against  each  other  as  shown  in  table  7.1.  Node  expansion                     
was  done  as  described  in  section  III,  with  either  A  or  B                        
expansion  policy.  The  threshold  for  visit  count  for  expansion                   
policy  B  was  set  to  20,  based  on  Roschke  and  Sturtevant’s                       
work  on  Chinese  Checkers  [34].  All  child  nodes  of  the  root                       
node  were  however  expanded  immediately  (see  section               
V-I-II  for  the  reason  for  this).  UCT_A  was  standard  UCT                     

with  exploration/exploitation  constant  set  to   with             1/√2    
reward  values  for  win,  draw  and  loss  set  to  1,  0  and  -1                           
respectively.  Child  nodes  for  UCT  were  expanded  one  at  a                     
time,  as  explained  previously.  PBRP  implemented  a  linear                 
reward   policy   using   the   formula   

RP  L = G
200 (2)   

where   G  was  the  final  score.  The  exploration/exploitation                 
constant  for  all  other  agents  except  for  UCT  was  set  to  1/10.                         
An  exception  from  the  conventional  way  of  traversing  the                   
game  tree  (as  explained  in  section  V-I  and  V-I-I                   
respectively)  was  done  as  a  leaf  node  was  reached;  if  UCB1                       
yielded  a  higher  score  for  the  parent  node,  the  parent  node                       
was  chosen  for  expansion  instead.  PBRP+EPT_A  was               
implemented  with  three  different  cutoff  values  during               
playout;  5,  10  and  20  respectively.  For  EPT,  eq.  (3)  was                       
modified  as  such  that  the  current  score  was  backpropagated                   
instead  of  the  final  score  if  the  playout  finished  before  the                       
last  turn  (as  compared  to  calculating  final  score  at  an  earlier                       
instance  than  the  game  end).  In  the  stochastic  game                   
environment,  on  each  agents  respective  turn,  the  remaining                 
bricks   in   the   deck   where   determinized.   
  

VII-III   Game   setup   

Five  game  modes,  based  on  a  time-limit  per  turn,  were                     
conducted  for  each  agent-vs-agent  tryout;   1,  3,  6,  10  and  21                       
seconds  respectively.  For  each  game  mode,  two  different                 
game  environments  were  used;  one  where  the  agents  didn't                   
know  the  order  of  the  deck  of  bricks  (stochastic),  and                     
another  where  the  deck  order  was  known  (deterministic).                 
First-move  were  evenly  distributed  between  agents.  The               
number  of  games  played  for  each  game  mode  and                   
environment  ranged  between  118  up  to  904,  resulting  in  a                     
total  of  11208  simulated  games  with  an  average  of  224                     
games   for   each   mode   (see   table   8.1   for   details).   
  

Table   7.1    Overview   of   competing   agents.   

  

1 A   repository   can   be   found   at:    https://bitbucket.org/philemonkey/exjobb/src/master/   

  
Fig   7.1.    An   ongoing   simulation   of   Carcassonne   in   the   GUI.   

   UCT_A    PBRP_A   PBRP_B   PBRP+EPT_A   

UCT_A      x       

PBRP_A    x     x   x   

PBRP_B      x       

PBRP+EPT_A      x       

https://bitbucket.org/philemonkey/exjobb/src/master/
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I-IV   Simulations   

All  simulations  were  executed  on  a  desktop  PC  with  Intel                     
Core  i7  Processor  quad-core  3.4  GHz  and  16  GB  DDR3                     
RAM.   

VII-V   Data   post-processing   

Since  the  smallest  sample  size  for  any  of  the  dueling  agents                       
was  118,  the   standard  score  for  normal  distribution  was                   
used.   Margin  of  error  (MOE)  with  95%  confidence  interval                   
was   generated   by   the   formula   
  

OE XM =  ± z s
√n [35](3)   

Where  was  the  average  result,   z  was  the  score  for  95%    X                    
confidence  interval,   s  was  the  sample  standard  deviation  and                   
n    was   the   sample   size.   
  

VIII.   R ESULTS   
The  most  dramatic  difference  in  final  score  can  be  seen                     
between  UCT_A  and  PBRP_A,  as  depicted  in  figure  8.1.                   
Both  agents  behave  predictably  in  that  the  average  final                   
score  is  increased  as  the  time-limit  is  increased.  But  while                     
the  average  difference  in  lowest-to-highest  score  for               
PBRP_A  is  15.9  (43.1-59),  it’s  only  a  mere  4.3  (21.5-25.8)                     
for  UCT_A  (see  table  8.1  for  MOE).  A  noticeable  difference                     
can  also  be  observed  when  it  comes  to  how  the  agents  are                         
affected  by  environmental  changes.  UCT_A  shows  a               
somewhat  worsened  performance  in  the  stochastic             
environment,  which  can  be  expected.  PBRP_A  performance               
is  however  unaffected  by  the  stochastic  environment.  The                 
win  frequency,  which  can  be  seen  in  figure  8.2,  shows  that                       
PBRP_A  has  a  higher  win  frequency  in  the  stochastic                   
environment  when  compared  to  the  deterministic  one.  This                 
behaviour  also  correlates  with  UCT_A’s  worsened             
performance  in  the  stochastic  environment,  which  is               
recovered  on  the  highest  time-limit  quota,  consequently               
reducing  the  win  ratio  for  PBRP_A.  However,  the  difference                  
in  performance  with  respect  to  environmental  changes  can                 
all  be  attributed  to  MOE  (see  table  8.1  for  details).  Finally,                       
when  observing  the  slope  for  PBRP_A,  a  logarithmic                 
increase   in   performance   can   be   noticed.   
  

  

  
Moving  on  to  EPT,  the  average  final  score  for  the  agents  in                         
the  deterministic  and  the  stochastic  environment  can  be  seen                   
in  figure  8.3  and  figure  8.4  respectively.  For  time-limits                   
[1000  ms,  3000  ms]  EPT  performs  better  to  that  of  PBRP,                       
regardless  of  the  cutoff  point  for  playout.  The  advantage                   
seen  in  EPT  for  these  lower  time-limits  can  not  be  attributed                       
to  MOE.  The  average  final  score  is  somewhat  lowered  for                     
EPT  on  the  higher  time-limits,  while  PBRP  on  the  contrary                     
sees  an  increase  in  final  score  as  time  per  turn  gets  higher.                         
This  shift  in  advantage  performance-wise  affects  the               
win-frequency  accordingly,  which  is  illustrated  in  figure  8.5.                 
At  time-limit  6000  ms  EPT  and  PBRP  performs  more  or                     
less  equally,  regardless  of  which  factor  is  considered,                 
including  environment.  No  statistical  significant  difference             
can  be  identified  when  comparing  the  deterministic  and  the                   

  

Fig  8.1.  Showing  how  the  UCT-agent  is  more  affected  by  the  change  in                           
environment   (“det”   =   deterministic,   “sto”   =   stochastic).   

Fig  8.2.  PBRP_A  win  ratio  is  higher  in  the  stochastic  environment  (with                         
the   exception   of   time-limit   21000   ms).   
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stochastic  environment,  neither  when  comparing  score  nor               
win   frequency   (see   table   8.1   for   details).   

  

  

  
When  comparing  PBRP_B  to  PBRP_A,  while  the  difference                 
in  score  isn’t  that  dramatic  for  time-limits  in  the  range  [1000                       
ms,  6000  ms],  PBRP_B  displays  an  obvious  performance                 
gain  over  PBRP_A  as  the  time-limit  goes  beyond  6  seconds.                     
PBRP_A  performance  stagnates  from  6  seconds  onward.               
The  win  ratio  for  PBRP_B  isn’t  overly  affected  by  the  score                       
advantage  for  time-limits  [1000  ms,  10000  ms],  regardless                 

of  the  environment.  For  the  highest  time-limit,  PBRP_B                 
however  shows  an  almost  20%  increase  in  win  ratio,                   
winning  about  75%  of  the  games.  This  increase  can  be                     
observed   for   both   environments.   

  

  
    

  

Fig   8.3.    EPT   exhibits   a   higher   average   score   for   the   lower   time-limits.   

Fig  8.4.  Much  alike  figure  8.3,  EPT  has  an  advantage  in  the  lower                           
time-limits.   

Fig  8.5.  Showing  the  slight  difference  in  win  frequency  between  EPT  in                         
the   deterministic   and   the   stochastic   environment.   

Fig   8.6.    PBRP_B   diverges   from   PBRP_A   from   time-limit   10000   ms   
onwards.   

Fig   8.7.    A   substantial   increase   in   win   ratio   is   seen   at   time-limit   21000   
ms.   
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Table   8.1    data   from   every   simulation   mode.   
Player   1   is   the   first   mentioned   under   “Competing   agents”   
table   heading   legend:     
TPT    =   time   per   turn   (ms)   
P[½]S    =   player   ½   avg.   score     
P[½]SMOE    =   player   ½   score   margin   of   error   (95%   conf.)   
P1W    =   player   1   win   freq.   

  
  
  

  
  
  

WMOE    =    win   freq.   margin   of   error   (95%   conf.)   
P[½]STDS    =   player   ½   sample   standard   dev.   for   avg.   score   
STDW    =   sample   standard   dev.   for   win   freq.   
SS    =   sample   size   (no.   games)   
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IX.   D ISCUSSION   
IX-I   PBRP   

As  expected,  PBRP  outperformed  UCT  with  a  significant                 
margin.  This  confirms  the  findings  in  [28]  and  [20].  What’s                     
more,  the  result  gives  support  to  that  an  agent  can  ignore  the                         
win-loss  aspect  of  the  game.  Whether  this  type  of  “ignoring                     
wins  and  losses”-strategy  could  be  preferable  over  a  reward                   
policy  that  combines  score  with  a  win-or-loss  outcome  (like                   
the  ones  discussed  in  section  VI)  cannot  be  assessed  at  this                       
moment.  A  reasonable  assumption  can  however  be  made                 
about  eurogames  in  general;  it  seems  feasible  that  a                   
score-based  reward  policy  is  preferable  over  a  win-loss                 
policy.  A  more  thorough  investigation  of  eurogames  would                 
be   necessary   to   assess   which   factors   are   at   play.   
  

IX-II   EPT   

The  improved  performance  as  a  result  of  EPT  confirmed                   
earlier  findings  for  the  time-limits  in  the  shorter  range.  A                     
somewhat  surprising  discovery  concerning  the  cutoff  values               
was  the  lack  of  difference  performance-wise.  While  EPT20                 
was  indeed  better  suited  for  higher  time-limits  than  EPT5,                   
the  difference  is  marginal  and  lies  within  the  MOE,  both  in                       
the  stochastic  and  deterministic  environment.  The  time-limit               
of  1000  ms  was  the  only  game  mode  in  which  statistical                       
significance  could  be  noticed;  EPT5  and  EPT10  both                 
performed   better   than   EPT20,   independent   of   environment.     
As  of  now,  there’s  no  way  to  determine  if  the  performance                       
gain  from  EPT  at  the  lower  time-limits  would  have  a                     
positive  effect  if  it  were  to  be  implemented  with  some                     
altered  mechanics  for  higher  time-limits.  Seeing  as  the                 
advantage  for  EPT  wears  off  from  6000  ms  onwards,  a                     
progressive  strategy  for  EPT,  where  the  cutoff  point  for                   
playouts  is  successively  increased  with  regard  to  elapsed                 
time,   could   be   a   possible   way   forward   for   future   research.     
  

IX-III   Expansion   strategies   

The  difference  in  average  final  score  between  PBRP_A  and                   
PBRP_B  was  to  the  latters  advantage  for  all  time-limits.                   
Some  of  the  results  in  the  range  [1000  ms,  6000  ms]  fall                         
within  MOE.  Figure  8.6  suggests  a  convergence  for                 
PBRP_A  from  time-limit  6000  ms  onwards.  This  could                 
indicate  that  strategy  B  is  more  efficient  at  the  lower                     
time-limits  as  well.  The  results  for  PBRP_A  from  figure  8.6                     
also  correlates  with  the  results  for  PBRP_A  from  figure  8.1,                     
which  shows  the  most  dramatic  performance  increase  from                 
time-limits   [1000   ms,   6000   ms]   and   a   stagnation   after   that.   
It  would  be  of  value  to  know  if  there  are  any  drawbacks  in                           
using  a  threshold.  Additional  studies  which  compare  full                 
node   expansion   with   and   without   a   threshold   is   proposed.   
  

IX-IV   Comparing   performance   from   the   two   environments   

Surprisingly,  none  of  the  agents  showed  a  statistical                 
significant  difference  in  performance  between  the  two               
environments,  neither  with  regards  to  score  or  win                 
frequency.  An  assumption  would  otherwise  have  been  that                 
win  frequency  wouldn’ve  remain  intact  but  that  the  average                   
score  would  have  lessened  for  all  agents.  However,  there’s                   
nothing  that  suggests  that  the  agents  were  the  least  affected                     
by  the  change  of  environment.  A  reason  for  this  could  be                       
that  although  the  agents  ran  simulations  down  to  the                   
terminal  state  (EPT  excluded),  the  random  actions  during                 
playout  didn’t  provide  a  useful  long-term  strategy.  Hence,                 
the  agents  decision  could  de  facto  have  been  based  on  the                       
limited  reward  obtained  during  final  scoring  by  placing  a                   
meeple   at   any   feature.   
Another  reason  for  the  marginal  difference  in  performance                 
could  be  that  the  single  chance  event  per  ply  just  isn’t                       
intrusive  enough  to  cause  any  detectable  performance  loss                 
with  the  sample  size  used.  This  explanation  and  the  previous                     
explanation   aren’t   mutually   exclusive   though.   
An  in  depth  analysis  of  the  agents  decision-making  with                   
respect  to  iterations  would  be  needed  to  draw  any  further                     
conclusions.   

 
IX-V   Potential   deficiencies   within   application   

Since  the  Carcassonne  environment  was  written  for  this                 
study,  the  guarantees  for  the  application  to  provide  reliable                   
data  is  much  less  than  that  of  an  already  established                     
application.  Potentially  undetected  bugs  could  skew  the  data                 
in  a  certain  direction.  It  can  be  argued  that  the  quantity  of                         
simulations  helps  with  suppressing  less  frequent  bugs  from                 
overshadowing  a  representative  result.  However,  the  biggest               
threat  to  validity  doesn’t  necessarily  reside  in  eventual  bugs,                   
but  more  likely  in  a  potential  unbalance  concerning                 
implementation  of  specific  algorithms.  For  example,  if  the                 
process  of  final  scoring  would  be  disproportionately  time                 
consuming,  any  agent  which  omits  final  scoring  from  its                   
implementation  would  have  an  advantage  against  agents               
who   don't.   
To  manifest  the  findings  of  this  study,  all  agents  should  thus                      
be  tested  under  the  same  premise,  but  with  an                   
implementation  of  the  environment  that  is  independent  of                 
the   one   used   here.   
  

IX-VI   Ethical   aspects   

The  ethical  aspects  of  AI  technology  has  been  a  recurrent                     
topic  in  present-day  discourse.  This  author  acknowledges               
both  the  pitfalls  and  the  existential  questions  that  comes                   
with  the  field  of  study.  With  that  said,  it  is  the  view  of  this                             
author  that  this  particular  study  doesn’t  pose  an  ethical                   
dilemma.  The  liberty  to  extrapolate  findings  and  conclusions                 
should  of  course  be  an  undertaking  available  to  each  and                     
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everyone.  The  question  whether  such  an  activity  has  any                   
scientific   validity   remains   an   open   one.   

     

X.   C ONCLUSIONS   
UCT  has  exhibited  strong  performance  in  several               
combinatorial  games.  A  transposition  of  the  algorithm               
adapted  for  eurogames  has  often  involved  domain  dependent                 
heuristics.  This  study  has  tried  to  identify  general  methods                   
for  MCTS-based  agents  for  eurogames.  This  has  been  done                   
by  letting  agents,  employing  the  MCTS-algorithm  with               
different  enhancements,  play  against  each  other  in  a                 
modified  version  of  Carcassonne.  The  contributions  of  this                 
paper   are   summarized   as   follows.   

1. In  the  examined  environments,  a  reward  policy  for                 
MCTS  which  is  exclusively  based  on  final  score  is                   
far  superior  to  that  of  conventional  UCT,  in  terms                   
of   average   score   and   win   frequency.   

2. In  the  examined  environments,  EPT  is  preferable  to                 
UCT  when  the  number  of  simulations  is  limited,                 
which  in  this  paper  was  represented  through               
time-limit.   

3. In  the  examined  environments,  an  expansion  policy               
which  expands  all  of  the  parent  node’s  children                 
after  the  parent  node’s  visit  count  reaches  a                 
threshold  of  20  gave  better  result  in  terms  of                   
average  score  and  win  frequency,  than  that  of  an                   
expansion  policy  which  expand  one  child  node  at  a                   
time   (without   a   threshold   for   visit   count)   

No  significant  difference  could  be  detected  between  the                 
agents  performance  in  the  deterministic  and  the  stochastic                 
environment.  Future  research  on  environments  with  a  higher                 
frequency  of  chance  events  are  therefore  proposed  as  a                   
method   for   further   exploring.   
The  stagnation  in  performance  from  EPT  as  time-limit  is                   
increased  could  eventually  be  counteracted  by  a  proggresive                 
version  of  EPT  which  takes  elapsed  time  (i.e.  number  of                     
iterations)   into   account.   
To  manifest  the  effectiveness  of  a  delayed  node  expansion,  it                     
is  proposed  that  comparisons  against  a  conventional  node                 
expansion   of   all   child   nodes   should   be   made.   
Lastly,  to  better  understand  how  different  domain               
independent  MCTS-enhancements  affect  the  performance  of             
agents  with  respect  to  the  environment,  further  studies  of                   
MCTS   on   eurogames   should   be   conducted.     
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