
Domain independent enhancements to
Monte Carlo tree search for eurogames

Peter Bergh

Computer Engineering BA (C), Final Project, 15 hp
Main field of study: Computer Engineering
Credits: 15
Semester/Year: VT 2020
Supervisor: Awais Ahmad
Examiner: Felix Dobslaw

1

Domain independent enhancements to Monte Carlo tree search
for eurogames

Abstract -

The Monte Carlo tree search-algorithm (MCTS) has been
proven successful when applied to combinatorial games, a term
applied to sequential games with perfect information. As the
focus for MCTS has tended to lean towards combinatorial
games, general MCTS-strategies for other types of board
games are hard to find. On another front, board games under
the name of “Eurogames” have become increasingly popular in
the last decade. These games introduce yet another set of
challenges for game-playing agents on top of what
combinatorial games already offer.
Since its initial conception, a large number of enhancements to
the MCTS-algorithm has been proposed. Seeing that
eurogames share much of the same game-mechanics with each
other, MCTS-enhancements proving effective for one game
could potentially be aimed towards eurogames in general.
In this paper, alterations to the expansion phase, the playout
phase and the backpropagation phase are made to the
standard MCTS-algorithm for agents playing the game of
Carcassonne. To detect how enhancements are affected by
chance events, both a deterministic and a stochastic version of
the game is examined. It can be concluded that a reward policy
relying solely on in-game score outperforms the conventional
wins-against-losses policy. Concerning playouts, the Early
Playout Termination enhancement only yields better results
when the number of MCTS-iterations are somewhat restricted.
Lastly, delayed node expansion is shown to be preferable over
that of conventional node expansion. None of the
enhancements showed any increasing or declining performance
with regard to chance events.
Additional experiments on other eurogames are needed to
reaffirm any findings. Moreover, subsequent studies which
introduce modifications to the examined enhancements is
proposed as a measure to further increase agent performance.

Index Terms - Monte Carlo tree search · Domain
independence · Stochasticity · Eurogames · Carcassonne

I. I NTRODUCTION

Monte Carlo tree search originates from the work of Kocsis
and Szepesvári [1], who developed the method by using the
already established Monte Carlo simulation of repeated
random sampling [2]. By running multiple playouts -
simulations of a search space (e.g. the many different
outcomes of a board game) - a search tree is gradually
formed where promising paths are sampled more

extensively. Conversely, frequently visited areas of the
search tree are given less and less priority, thus finding a
balance in the exploitation vs. exploration tradeoff [3].
Though MCTS has attracted the attention of developers
from various fields, the algorithm has garnered most
reputation when applied to the chinese board game Go [4].
In 2017, the computer program AlphaGo Master [5], which
utilized the MCTS-algorithm, defeated the World Champion
in Go.
The applicability of MCTS has generally been centered
around combinatorial games ; typically two-player games
without chance events (like the roll of a die) or hidden
information (like a closed poker hand) [6].
On another front, board and card games have seen a revival
in later years, with an increasing market size [7]. The
German-style board games , more commonly referred to as
eurogames, gained popularity in the last decade, which in
turn have been followed by several studies of intelligent
agents [8] for eurogames [9] [10] [11].
In previous work concerning MCTS and eurogames, focus
has tended to lie in optimizing an agent for a particular
game [9] [10]. For example, MCTS is often combined with
domain dependent knowledge [12], applicable for the board
game in question. While this approach is indeed effective
[13] [14], it hinders a transposition to another environment
since different domains seldom share such specific
characteristics. Chance events, hidden information and a
component heavy game state are some of the factors that
distinguish eurogames from combinatorial games.
While previous knowledge gathered from evaluating MCTS
in environments of perfect information is doubtlessly
important to understand more complex domains, the latter
still have to be studied on their own terms as well.
In this paper, three techniques are evaluated as a general
approach for MCTS-agents playing eurogames, using the
board game Carcassonne as a test environment.
The first, Point Based Reward Policy (PBRP), focuses only
on the agent's performance based on game points (with no
regard for the opponent's performance).
The second, Early Playout Termination (EPT) [15], cuts the
simulation short by limiting the playout to a preset number

Peter Bergh
BSc. Thesis, Programvaruteknik

Institute of Computer and Systems Sciences
Mid Sweden University

Östersund, Sweden
pebe1700@student.miun.se

2

of turns and backpropagating an evaluation of the game
state.
Third and finally, two variants of expansion policies are
evaluated.
Hopefully this research can bring further understanding of
how MCTS can be optimized without heavy reliance on
domain knowledge. A high-performing rational agent
without a bias towards the environment could ideally bring
about domain knowledge previously unrevealed. In a
broader perspective, the foundation for understanding of
what governs events in real life arguably has to be built from
the bottom-up. The research that has been made on
predictable environments, like the ones in combinatorial
games, can rightly be regarded as a keystone for this
foundation. Steps towards more advanced environments is a
natural extension of this previous work.

II. P ROBLEM S TATEMENT

In MCTS, every action that can be made in a game is
represented by a node residing in a search tree [14]. An
individual game state, stored in each node, reflects the
outcome from an action made from the previous state
(referred to as the parent state). When a MCTS-simulation
starts, the only node available is the root node , which holds
the current state of the game. From this starting point,
additional nodes will be expanded (see section V-I for a
detailed description on the MCTS-algorithm).
As discussed in section I, the effectiveness of MCTS when
applied to eurogames have been investigated on several
occasions. The number of MCTS-iterations per player turn
that is required for an agent to achieve a majority of wins
can sometimes reach over 10 5 [11]. Depending on the
complexity of the game state, a vast number of iterations
can pose a problem concerning expenditure of time and
memory allocation. With regards to node expansion, storing
game states can become a memory issue. Considering the
average branching factor - that is, the number of possible
action available from a given game state - a game with an
average branching factor of 35 would on an average require
1,838,265,625 nodes if one were to expand every possible
state for six plies (a ply is one turn taken by one of the
players). Eurogames are often component heavy; markers,
card decks, multiple game boards etc. They also exhibit a
relatively high branching factor. Looking at the game
Carcassonne, the average branching factor is 55 [16]. If all
child nodes of a parent were to be expanded, 55 new game
states would on average have to be created. The processing
time to achieve this will vary depending on, among other
things, the complexity of the game state. Considering their
emphasis on components and parameters, eurogames serves
as good candidates for the problem mentioned regarding
time consumption and memory requirements .
After a node has been expanded, the playout takes place.
The game is simulated with random actions until the game

reaches an end, a so-called terminal state . In the case of
eurogames, end conditions usually take place after a preset
number of turns. For the board game Carcassonne, the fixed
number of turns is 71. This amounts to several millions
copies of game states just for the playout phase if the
number of simulations were to be in the hundred of
thousands. With the reasoning presented above, it’s a
feasible assumption that neither an exhaustive amount of
simulations or an exhaustive expansion of nodes would be
preferable.
As a supplement to knowledge gathered from playouts,
evaluation functions can be used [12]. For example, instead
of letting each player action be chosen at random during
playout, heuristic knowledge can be used to direct the
playout to more probable lines of action than that of a
random play [17]. However, evaluation functions come at
the cost of how thoroughly the search tree can be explored,
since time will be consumed by evaluating game states
instead. An alternative approach to evaluation functions is to
use domain independent knowledge [12]. One way to
enhance MCTS is to measure the favourable outcome of
actions based on their occurrence in playouts leading to
wins/losses. For example, the Rapid Action Value
Estimation (RAVE) strategy has increased the performance
of agents in combinatorial games [18]. However, Lorentz
[19] noted, when applied to the game Havannah, that RAVE
offered no advantage. A proposed reason for this was that
moves in Havannah weren't inherently strong or weak, but
rather that the context which surrounded a certain move had
more influence when judging the move’s “value”. Actions in
eurogames are arguably more context-dependent than that of
combinatorial games. Hence enhancements like RAVE as
well as other heuristics employing similar strategies will not
be optimal for eurogames.
Also worth noting, as yet another differentiating factor
between eurogames and combinatorial games, is the
self-managing style of play that is associated with
eurogames. Since eurogames aren’t confrontational in the
same manner as many combinatorial games, it is reasonable
to question whether the applicability of MCTS for the
former should be based on implementation that've been
proven effective for latter (see section V-III for a more
detailed description of how eurogames and combinatorial
games differ).
Three proposals will now be presented as a measure to
alleviate the problems previously mentioned. These are as
follows.

1. Winning condition in eurogames is for the most
part based on in-game score. Scoring is usually
done both during the game and at the end of the
game (referred to as final scoring). Since the player
score is part of the game state, the scoring has to be
stored with each node regardless. Using the game
score as a heuristic knowledge would require

3

negligible data processing while a more detailed
description of the game state is provided.

2. In a game with chance events, determinization is
often used to set the search tree to a fixed state (see
section V-II-I for details regarding
determinization). The probability that a
determinized game state, far down in the tree,
would be representative of the actual environment
is next to none. Instead of letting playout reach a
terminal state, cutting off the playout at a fixed
point and from there backpropagating the current
score would enable more MCTS iterations over a
set timeframe.

3. Based on the relatively complex game state of
eurogames in general (as discussed earlier), the
expansion policy used should not employ a full
node expansion, not at least without any form of
restrictions. The two strategies used in this study
will be presented in section III.

The aim for this study is to investigate the prospects of a
generalized method for enhancing MCTS to work well with
eurogames. An agent employing a general approach to
eurogames could serve as a helpful tool in future studies of
domains where a quantitative measure of progression exists
within the node state.

III. R ESEARCH Q UESTIONS

The environment of the study is a two-player version of the
eurogame Carcassonne.
Several agents will be tried against each other, all employing
MCTS with different enhancements (for details on MCTS
and its enhancements as well as Carcassonne, see section
V-I and section V-III-I respectively):

● Upper Confidence Bounds applied to Trees (UCT)
The conventional MCTS-algorithm proposed by
Kocsis and Szepesvári [1]

● Point Based Reward Policy (PBRP)
Identical to UCT, but back-propagates game score
instead of win/loss/draw.

● Early Playout Termination (EPT) [15]
Identical to UCT, but playouts are cut short by n
plies and the reward policy is based on an
evaluation of the game state at that specific turn.

In addition to the three listed agent-types, two different
expansion strategies will be tested:

A. Expansion strategy A , which expands one child
node from one parent node at each expansion
phase.

B. Expansion strategy B , which expands all child
nodes from one parent node when the visit count
for the parent node has reached a certain threshold

(given that the parent node is selected when the
game tree is traversed).

The following research questions is the main concern for the
investigation:

RQ1: How does PBRP perform against UCT in terms of
score and win frequency, and how is the performance
affected by an increased time-limit?

RQ2: How does the different cutoffs in EPT alter
performance in terms of score and win frequency, and how
is this affected by the time-limit?

RQ3: Is the difference in performance between two agents
in any way affected by the inclusion of a chance event in the
environment?

RQ4: Which of the two expansion strategies performs best
in terms of score and win frequency, and what can be said
about consistency regarding performance in relation to
time-limit?

A quality-based reward policy, taking into account more
factors than just the binary state of win and loss, was shown
by Pepels et al. [20] to increase performance for
MCTS-agents for a majority of the games tested. It should
be noted that these games weren't based on the premise of
players earning game scores. In Carcassonne, the final score,
and to a lesser extent the ongoing scoring throughout the
game, could reasonably be regarded as a precise
quality-based reward policy. It is presumed that an agent
using scoring as a measurement of quality would outclass an
agent using only wins and losses, seeing as the game state
itself provides the scoring mechanism.

Lorentz [21] noted that 6 plies before cutoff worked best
when EPT was implemented in the board game Amazons .
Given that a low number of played plies per playout yields a
higher number of MCTS iterations before making a move,
the search space will consequently be more thoroughly
explored. This fact speaks in favor of an earlier cutoff.
However, an early cutoff would at the same time prevent any
prospects of long-term planning; no actions would be taken
based on a possible reward later in the game. Attaching this
relationship to combinatorial games and eurogames, it could
be argued that the lack of long-term planning is more of an
issue for the former. Combinatorial games makes long-term
planning more feasible since the number of unexpected
factors are reduced to zero. Since eurogames on the other
hand employs chance events, long term-planning could be a
disadvantage; a specific route will next to never turn out to
be realized in the way that was initially planned. Strategies
depending on every chance event returning favorably to the
agent doesn't seem reliable.

4

With the reasoning that has been put forth, the assumption is
made that EPT will prove to be most effective when cutoff is
low. Additionally, one can assume that the positive effects of
EPT will diminish when the time-limit for turn-taking is
increased, since the possibility of finally exhausting the
search tree is likely.

IV. L IMITATIONS
IV-I Exclusion of multi-threaded determinization

A suggested way to deal with chance events and hidden
information is by determinization (for details on
determinization, see section V-II-I). Earlier studies have
shown both an increase in play performance as well as none
[22] [23] when employing multiple agents running parallel
determinizations. Initial investigations in this study, running
4-8 agents on parallel threads, resulted in poorer win
frequency than that of just one determinized agent.
However, variations with which this strategy can be
employed were not thoroughly explored, hence no certain
conclusions can be drawn. With that said, further exploring
on the varying of parameters for multi-threaded
determinization has been excluded from this study.

IV-II Limited experimentation with exploration/exploitation
constant

This study does not involve any analysis of how
performance is affected by varying the
exploration/exploitation constant (see section V-I-I for
details regarding selection of nodes). The value of the

constant, , for UCT is based on the initial work of C = 1/√2
Kocsis and Szepesvári [1] on MCTS, which satisfies the
Hoeffding inequality [24] with rewards in the range [0,1].
However, the reward range for the UCT agent for this study
lies within [-1,1]. Initial trials with UCT vs PBRP, taking
1000 ms per player turn and using multiples of C for UCT,
showed no crucial performance gain for which to motivate
using UCT in any subsequent experiments than the ones
already conducted (statuated in Table 7.1).

IV-III Omittance of game mechanics

The environment for which the experiments is conducted
doesn't include every aspect of the game Carcassonne (see
section V-III-I for rules of Carcassonne and section VII-I for
elements excluded). The agents performance in terms of
earned points will therefore not correspond to any scoring
earned from the standard game. Moreover, the performance
difference between agents could be altered if the standard
game were implemented.

V. B ACKGROUND
V-I Monte Carlo tree search

MCTS is a best-first search method which utilizes several
random simulations of the search space to estimate
favorable actions in the given environment (for this section
hereafter, the word “game” will be used instead of
“environment” for an easier understanding). Starting with
the root node 𝑅, which holds the current state 𝑅 s of the
game, each child node 𝑉, and their subsequent child nodes,
holds a reachable state 𝑉’ s of the game, originating from 𝑅 s .
One iteration of MCTS consists of four phases:

● Selection
● Expansion
● Playout
● Backpropagation

In the selection phase, starting from 𝑅, previously expanded
child nodes are successively selected until a leaf node l is
reached (which child nodes that are chosen for selection is
discussed under section V-I-I).
In the expansion phase, if the state l s is not a terminal state,
one (or several) child nodes 𝑉 ’ are expanded 1 , thus
increasing the order |G| of the search tree.
In the playout phase the game is played from a state 𝑉 ’ s by
selecting uniformly random moves for both players until a
terminal state is reached. The result of the playout,
commonly a win , loss or a draw are denoted by numerical
values.
In the backpropagation phase, the result of the just finished
playout is stored in 𝑉’ as well as every consecutive parent
node from 𝑉’ all the way up to R . The visit count for each of
the involved nodes are also increased by one

1 There are exceptions to this. As will be explained later, which node that is selected will be determined by a number of factors. Chances are that the parent node
will be preferable for further expansion over the child leaf node. Specifically, the child node can have made one previous simulation with a negative result, making
the parent node more prosperous for further exploring.
2 Step of Monte Carlo tree search by Rmoss92, used under CC BY 4.0 / edited from original

Fig. 5.1 2 Steps of MCTS. A grey node is selected for expansion. From
the expanded child node, the game is simulated until a terminal node is
reached, leading to a loss for the white player. The result is
backpropagated to each involved node back to the root node.

https://commons.wikimedia.org/wiki/File:MCTS-steps.svg
https://creativecommons.org/licenses/by-sa/4.0/

5

As depicted in figure 5.1, the phasing and the opposing
player is represented by grey and white nodes respectively.
The topmost node stores the current state of the game; the
three grey childnodes are the three possible actions that can
be made by the phasing player. The tree is traversed down to
a game state where the phasing player has just made an
action. In this example, a single child node is expanded.
From that child node, the game is then simulated until a
terminal state, leading to a win for the phasing player. The
winning result is stored in each preceding parent node.

V-I-I Selection Strategies

When traversing the search tree, the node selected for
expansion will depend on the heuristic that is employed. If a
node with one previous visit is involved in one win, and the
heuristic was designed to prioritize winning nodes over
non-winning nodes, a node with one visit and zero wins
would never be visited again as a result. Contrary, if all
nodes were visited evenly, unpromising paths of the search
tree would have equal priority as promising paths, which
would impair the prospect of playing rational. Kocsis and
Szepesvári [1] used the UCB1 formula [3] to balance the
dilemma between exploration and exploitation. MCTS with
the UCB1 formula is called UCT (Upper Confidence
Bounds applied to Trees). It works in the following way; of
the child nodes 𝑉 (p), whose parent is p , the child v that will
be chosen for selection is the child that satisfies:

rgmax v* = a v∈V (p){ nv

sv + C√ nv

㏑(n)p } (1)

where s v is the total score of v , n v is the number of visits to v
and n p is the number of visits to p . C is a constant to tune the
balance between exploration and exploitation. Previous
unvisited nodes are given a maximum value, thus
prioritizing previous unvisited nodes.
MCTS has been proven to be Hannan consistent [25] with
the right tuning [26]. This means that for combinatorial
games, MCTS will converge to a Nash equilibrium [27].

V-I-II Expansion

As mentioned earlier, if l s isn't a terminal state, l will be
expanded. Depending on the domain and the demand on
memory requirements, one node up to all child nodes can be
expanded. It is however a common practice to expand all
child nodes of the root node immediately, since they
represent the actual actions that can be made in the current
game turn.

V-I-III Playout

During the playout, the MCTS-algorithm usually simulates
the game by selecting random moves until a terminal state is
reached. Instead of simulating the game until a terminal
state, Lorentz [15] proposed EPT, which effectively cuts the

simulation short. Since the game state in which the
simulation has stopped isn't necessarily a terminal state (for
most instances this is rather not the case), some evaluation
function must be applied to quantify the chances of winning
for each player.

V-II Stochastic environments and Hidden information

An environment containing one or more random events is
said to be stochastic. Its counterpart, a deterministic
environment, is however absent of any events that are a
product of chance or probability. The game of chess is an
example of a deterministic environment. Worth mentioning
is the quite common factor of hidden information in many
board- and card games. Unlike stochasticity, hidden
information isn't due to chance, but due to information
known to one agent but unknown to another agent. The
content of a closed hand of cards is only known to the player
holding the cards, not to the opponent.

V-II-I Determinization

When dealing with stochasticity or hidden information, the
game tree that is traversed by the MCTS-algorithm is by
default deficient; there is no way for the agent to know the
ordering of a shuffled deck of cards, or which cards the
opponent has in its hand. To overcome this, the procedure of
determinizing the environment is implemented [12]. This
means that the game tree is determined to one possible
outcome. To alleviate an eventual flaw in that the
determinized version of the game doesn't reflect the factual
turn of events, multiple agents can run parallel, each agent
returning their preferred action. The most frequent returned
action is then chosen as the actual move.

V-III How eurogames differ from combinatorial games

Combinatorial games, such as the previously mentioned Go,
are typically two-player, turn-based games where none of
the game events are a product of chance. Furthermore, both
players have access to the same information. Another
common denominator is that the games often aren't played
over a preset number of turns; they can end anytime, end
because of lack of valid moves, or sometimes go on forever.
Eurogames, on the other hand, is seldom focused on
two-player game mechanics. Chance events are almost
without exception included in the mechanics. They are in
many cases restricted to a preset number of turns, as
opposed to what was mentioned earlier concerning
combinatorial games. Moreover, the number of elements
that constitutes eurogames are often high; cards, multiple
game boards, resource markers, placeable structures,
multiple player markers etc. As a consequence, game states
are seldom bound to actions taking place on one specific
board. Winning conditions in eurogames are almost always
based on a game score track for each player. The score

6

could either be calculated only at the end of the game, but
for the most part scoring is handled as an in-game event as it
progresses, and finishing with a final scoring at game-end.
Player interaction in eurogames differs from that of
combinatorial games. The latter has a direct form of
interaction where one player's action is aimed at, and
against, the opposing player. Eurogames employs an indirect
interaction which focuses more on self-management.

V-III-I Carcassonne

Carcassonne is a 2-7 player game, where players take turns
drawing bricks (one at a time) from a shuffled deck and
placing the bricks on the table (abiding given restrictions for
brick placement). Over the course of the game, a commutual
landscape is built where the game takes place. Features such
as towns , roads , cloisters and fields (pasture) can be formed
into structures . By placing personal markers (called
meeples) at structures, players are rewarded points when the
structures are completed, thus moving forward on a scoring
track. The game ends when all bricks have been drawn, and
a final scoring takes place.
One ply goes as follows:
1. The phasing player (PP) draws a brick.
2. PP places the brick on the board abiding the following
rules:

a. the brick must be connected to some other brick
b. the brick has to fit with its neighbouring bricks

according to the neighbouring features.
3. If any structure is completed as a result of the just placed
brick, a scoring for each structure will take place (Iff
meeples was placed on the structure in question).
4. PP now has the option of positioning ONE meeple on any
one feature on the just placed brick Iff:

a. PP has any meeples left (All players have seven
each at their disposal at the start of the game)

b. The feature in question isn’t already belonging to a
structure where a meeple is placed.

5. If the meeple is positioned on a just finished structure,
scoring will take place and the meeple goes back to the
player bank.

Seeing as two structures of the same type can over time
become one larger structure (excluding cloisters), two or
more players can have meeples placed on a joint structure.
In that case, all the players with the most meeples on the
structure get a full score when the structure is completed
(with ties allowed).
Scoring in the game works as follows.

● Finished towns yield 2 points per brick involved in
the town structure. Town features with a shield
symbol on it yields 2 extra points.

● Finished roads yield 1 point per brick involved in
the road structure.

● Finished cloisters yield 1 point per brick involved
in the cloister (to a maximum of 9).

● During final scoring, every not-yet finished
structure yields 1 point per brick (and shield, in the
case of towns) to the player which has a meeple
placed on the given structure.

● During final scoring, the player which dominates a
field in terms of placed meeples earns 3 points for
every adjacent finished town structure. Note that
one town can be adjacent to multiple fields. Road-
and town features act as delimiters for different
fields.

VI. R ELATED W ORK

In this section, related works addressing reward policies and
playout terminations for MCTS are presented, as well as the
prospects for contribution to the field of study.

VI-I Score-based reward policies

For the combinatorial game BlokusDuo, when using a final
score as a reward policy for UCT, Shibahara and Kotani
[28] noted a diminishing win ratio against Win-or-Lose
reward policy when the number of playouts exceeded
100,000. This result can be considered expected, since
standard UCT converges to a Nash equilibrium [27], and
accordingly will get closer and closer to a perfect strategy as
iterations are increased. Following the discussions from
section II, the complexity of eurogames aren’t well fit for
that many iterations, and thus the strategy of abandoning a
win-loss policy is partly motivated by the data found in [28]

Further, [28] showed that a Sigmoid function [29], which
combined the multifaceted properties of score-based policy
with the binary nature of a win-loss policy, were
advantageous beyond 100,000 playouts. Pepels et al. [20]
also employed a Sigmoid function to alternate from the
conventional UCT policy of win-loss, with positive results.
In this case, a number of two-player games were examined,
all of them combinatorial.
The findings in the studies presented above gives credence
to a score-based reward policy. However, the need for
merging a reward policy based on score with one based on
win-loss seems more relevant in the case of combinatorial
games (for the reasons discussed earlier in section II).
Hence, a reward policy based only on final score,
backpropagated in a linear manner, is the primary interest
for this study.

VI-II Early Playout Termination

Lorentz [21] proposed EPT for the game Amazons with
favorable results. The cutoff point was set to 5-6 plies before

7

invoking a reward policy. Matsuzaki and Kitamura [30] also
found EPT to be effective when applied to the game of
Othello, with a depth set to 5 plies. A more thorough
investigation of how cutoff point affects performance in
relation to MCTS-iterations would however be of interest to
better understand the conditions for which EPT should be
employed depending on context.

VI-III Contribution to the field

The main contribution of this work is to get a better estimate
of the performance difference between agents using a
score-based reward policy to that of conventional UCT
reward policy. This work also presents more comprehensive
data on the performance of the EPT-enhancement, since a
multitude of cutoff points is implemented. Additionally,
there’s a hope to get a better estimate of how stochastic
environments affect the performance of the
MCTS-algorithm and, in extension, if any of the selected
enhancements have any diverging impact on an agents
performance with regards to stochasticity. Finally, this work
aims to provide knowledge concerning generalized (i.e.
domain independent) MCTS-methods for environments
such as eurogames and any environments which bears a
resemblance to the former.

VII. R ESEARCH M ETHODOLOGY
VII-I Game environment

The Carcassonne game environment was developed with the
Java Platform, Standard Edition (Java SE) [31] and executed
in Java Virtual Machine (JVM) [32]. The Swing toolkit [33]
was used for monitoring 1
The following changes to the standard rules was
implemented (for details on Carcassonne game mechanics,
see section V-III-I):

● Shields on town features were removed.
● Meeples could only be placed on town features or

roads (that is, no placements on fields or cloisters).
● The six bricks with cloisters were removed

altogether.
This left a game with 65 bricks plus one starting brick.

VII-II Agent setup

Five different agents were used in the experiment, playing
against each other as shown in table 7.1. Node expansion
was done as described in section III, with either A or B
expansion policy. The threshold for visit count for expansion
policy B was set to 20, based on Roschke and Sturtevant’s
work on Chinese Checkers [34]. All child nodes of the root
node were however expanded immediately (see section
V-I-II for the reason for this). UCT_A was standard UCT

with exploration/exploitation constant set to with 1/√2
reward values for win, draw and loss set to 1, 0 and -1
respectively. Child nodes for UCT were expanded one at a
time, as explained previously. PBRP implemented a linear
reward policy using the formula

RP L = G
200 (2)

where G was the final score. The exploration/exploitation
constant for all other agents except for UCT was set to 1/10.
An exception from the conventional way of traversing the
game tree (as explained in section V-I and V-I-I
respectively) was done as a leaf node was reached; if UCB1
yielded a higher score for the parent node, the parent node
was chosen for expansion instead. PBRP+EPT_A was
implemented with three different cutoff values during
playout; 5, 10 and 20 respectively. For EPT, eq. (3) was
modified as such that the current score was backpropagated
instead of the final score if the playout finished before the
last turn (as compared to calculating final score at an earlier
instance than the game end). In the stochastic game
environment, on each agents respective turn, the remaining
bricks in the deck where determinized.

VII-III Game setup

Five game modes, based on a time-limit per turn, were
conducted for each agent-vs-agent tryout; 1, 3, 6, 10 and 21
seconds respectively. For each game mode, two different
game environments were used; one where the agents didn't
know the order of the deck of bricks (stochastic), and
another where the deck order was known (deterministic).
First-move were evenly distributed between agents. The
number of games played for each game mode and
environment ranged between 118 up to 904, resulting in a
total of 11208 simulated games with an average of 224
games for each mode (see table 8.1 for details).

Table 7.1 Overview of competing agents.

1 A repository can be found at: https://bitbucket.org/philemonkey/exjobb/src/master/

Fig 7.1. An ongoing simulation of Carcassonne in the GUI.

 UCT_A PBRP_A PBRP_B PBRP+EPT_A

UCT_A x

PBRP_A x x x

PBRP_B x

PBRP+EPT_A x

https://bitbucket.org/philemonkey/exjobb/src/master/

8

I-IV Simulations

All simulations were executed on a desktop PC with Intel
Core i7 Processor quad-core 3.4 GHz and 16 GB DDR3
RAM.

VII-V Data post-processing

Since the smallest sample size for any of the dueling agents
was 118, the standard score for normal distribution was
used. Margin of error (MOE) with 95% confidence interval
was generated by the formula

OE XM = ± z s
√n [35](3)

Where was the average result, z was the score for 95% X
confidence interval, s was the sample standard deviation and
n was the sample size.

VIII. R ESULTS
The most dramatic difference in final score can be seen
between UCT_A and PBRP_A, as depicted in figure 8.1.
Both agents behave predictably in that the average final
score is increased as the time-limit is increased. But while
the average difference in lowest-to-highest score for
PBRP_A is 15.9 (43.1-59), it’s only a mere 4.3 (21.5-25.8)
for UCT_A (see table 8.1 for MOE). A noticeable difference
can also be observed when it comes to how the agents are
affected by environmental changes. UCT_A shows a
somewhat worsened performance in the stochastic
environment, which can be expected. PBRP_A performance
is however unaffected by the stochastic environment. The
win frequency, which can be seen in figure 8.2, shows that
PBRP_A has a higher win frequency in the stochastic
environment when compared to the deterministic one. This
behaviour also correlates with UCT_A’s worsened
performance in the stochastic environment, which is
recovered on the highest time-limit quota, consequently
reducing the win ratio for PBRP_A. However, the difference
in performance with respect to environmental changes can
all be attributed to MOE (see table 8.1 for details). Finally,
when observing the slope for PBRP_A, a logarithmic
increase in performance can be noticed.

Moving on to EPT, the average final score for the agents in
the deterministic and the stochastic environment can be seen
in figure 8.3 and figure 8.4 respectively. For time-limits
[1000 ms, 3000 ms] EPT performs better to that of PBRP,
regardless of the cutoff point for playout. The advantage
seen in EPT for these lower time-limits can not be attributed
to MOE. The average final score is somewhat lowered for
EPT on the higher time-limits, while PBRP on the contrary
sees an increase in final score as time per turn gets higher.
This shift in advantage performance-wise affects the
win-frequency accordingly, which is illustrated in figure 8.5.
At time-limit 6000 ms EPT and PBRP performs more or
less equally, regardless of which factor is considered,
including environment. No statistical significant difference
can be identified when comparing the deterministic and the

Fig 8.1. Showing how the UCT-agent is more affected by the change in
environment (“det” = deterministic, “sto” = stochastic).

Fig 8.2. PBRP_A win ratio is higher in the stochastic environment (with
the exception of time-limit 21000 ms).

9

stochastic environment, neither when comparing score nor
win frequency (see table 8.1 for details).

When comparing PBRP_B to PBRP_A, while the difference
in score isn’t that dramatic for time-limits in the range [1000
ms, 6000 ms], PBRP_B displays an obvious performance
gain over PBRP_A as the time-limit goes beyond 6 seconds.
PBRP_A performance stagnates from 6 seconds onward.
The win ratio for PBRP_B isn’t overly affected by the score
advantage for time-limits [1000 ms, 10000 ms], regardless

of the environment. For the highest time-limit, PBRP_B
however shows an almost 20% increase in win ratio,
winning about 75% of the games. This increase can be
observed for both environments.

Fig 8.3. EPT exhibits a higher average score for the lower time-limits.

Fig 8.4. Much alike figure 8.3, EPT has an advantage in the lower
time-limits.

Fig 8.5. Showing the slight difference in win frequency between EPT in
the deterministic and the stochastic environment.

Fig 8.6. PBRP_B diverges from PBRP_A from time-limit 10000 ms
onwards.

Fig 8.7. A substantial increase in win ratio is seen at time-limit 21000
ms.

10

Table 8.1 data from every simulation mode.
Player 1 is the first mentioned under “Competing agents”
table heading legend:
TPT = time per turn (ms)
P[½]S = player ½ avg. score
P[½]SMOE = player ½ score margin of error (95% conf.)
P1W = player 1 win freq.

WMOE = win freq. margin of error (95% conf.)
P[½]STDS = player ½ sample standard dev. for avg. score
STDW = sample standard dev. for win freq.
SS = sample size (no. games)

11

IX. D ISCUSSION
IX-I PBRP

As expected, PBRP outperformed UCT with a significant
margin. This confirms the findings in [28] and [20]. What’s
more, the result gives support to that an agent can ignore the
win-loss aspect of the game. Whether this type of “ignoring
wins and losses”-strategy could be preferable over a reward
policy that combines score with a win-or-loss outcome (like
the ones discussed in section VI) cannot be assessed at this
moment. A reasonable assumption can however be made
about eurogames in general; it seems feasible that a
score-based reward policy is preferable over a win-loss
policy. A more thorough investigation of eurogames would
be necessary to assess which factors are at play.

IX-II EPT

The improved performance as a result of EPT confirmed
earlier findings for the time-limits in the shorter range. A
somewhat surprising discovery concerning the cutoff values
was the lack of difference performance-wise. While EPT20
was indeed better suited for higher time-limits than EPT5,
the difference is marginal and lies within the MOE, both in
the stochastic and deterministic environment. The time-limit
of 1000 ms was the only game mode in which statistical
significance could be noticed; EPT5 and EPT10 both
performed better than EPT20, independent of environment.
As of now, there’s no way to determine if the performance
gain from EPT at the lower time-limits would have a
positive effect if it were to be implemented with some
altered mechanics for higher time-limits. Seeing as the
advantage for EPT wears off from 6000 ms onwards, a
progressive strategy for EPT, where the cutoff point for
playouts is successively increased with regard to elapsed
time, could be a possible way forward for future research.

IX-III Expansion strategies

The difference in average final score between PBRP_A and
PBRP_B was to the latters advantage for all time-limits.
Some of the results in the range [1000 ms, 6000 ms] fall
within MOE. Figure 8.6 suggests a convergence for
PBRP_A from time-limit 6000 ms onwards. This could
indicate that strategy B is more efficient at the lower
time-limits as well. The results for PBRP_A from figure 8.6
also correlates with the results for PBRP_A from figure 8.1,
which shows the most dramatic performance increase from
time-limits [1000 ms, 6000 ms] and a stagnation after that.
It would be of value to know if there are any drawbacks in
using a threshold. Additional studies which compare full
node expansion with and without a threshold is proposed.

IX-IV Comparing performance from the two environments

Surprisingly, none of the agents showed a statistical
significant difference in performance between the two
environments, neither with regards to score or win
frequency. An assumption would otherwise have been that
win frequency wouldn’ve remain intact but that the average
score would have lessened for all agents. However, there’s
nothing that suggests that the agents were the least affected
by the change of environment. A reason for this could be
that although the agents ran simulations down to the
terminal state (EPT excluded), the random actions during
playout didn’t provide a useful long-term strategy. Hence,
the agents decision could de facto have been based on the
limited reward obtained during final scoring by placing a
meeple at any feature.
Another reason for the marginal difference in performance
could be that the single chance event per ply just isn’t
intrusive enough to cause any detectable performance loss
with the sample size used. This explanation and the previous
explanation aren’t mutually exclusive though.
An in depth analysis of the agents decision-making with
respect to iterations would be needed to draw any further
conclusions.

IX-V Potential deficiencies within application

Since the Carcassonne environment was written for this
study, the guarantees for the application to provide reliable
data is much less than that of an already established
application. Potentially undetected bugs could skew the data
in a certain direction. It can be argued that the quantity of
simulations helps with suppressing less frequent bugs from
overshadowing a representative result. However, the biggest
threat to validity doesn’t necessarily reside in eventual bugs,
but more likely in a potential unbalance concerning
implementation of specific algorithms. For example, if the
process of final scoring would be disproportionately time
consuming, any agent which omits final scoring from its
implementation would have an advantage against agents
who don't.
To manifest the findings of this study, all agents should thus
be tested under the same premise, but with an
implementation of the environment that is independent of
the one used here.

IX-VI Ethical aspects

The ethical aspects of AI technology has been a recurrent
topic in present-day discourse. This author acknowledges
both the pitfalls and the existential questions that comes
with the field of study. With that said, it is the view of this
author that this particular study doesn’t pose an ethical
dilemma. The liberty to extrapolate findings and conclusions
should of course be an undertaking available to each and

12

everyone. The question whether such an activity has any
scientific validity remains an open one.

X. C ONCLUSIONS
UCT has exhibited strong performance in several
combinatorial games. A transposition of the algorithm
adapted for eurogames has often involved domain dependent
heuristics. This study has tried to identify general methods
for MCTS-based agents for eurogames. This has been done
by letting agents, employing the MCTS-algorithm with
different enhancements, play against each other in a
modified version of Carcassonne. The contributions of this
paper are summarized as follows.

1. In the examined environments, a reward policy for
MCTS which is exclusively based on final score is
far superior to that of conventional UCT, in terms
of average score and win frequency.

2. In the examined environments, EPT is preferable to
UCT when the number of simulations is limited,
which in this paper was represented through
time-limit.

3. In the examined environments, an expansion policy
which expands all of the parent node’s children
after the parent node’s visit count reaches a
threshold of 20 gave better result in terms of
average score and win frequency, than that of an
expansion policy which expand one child node at a
time (without a threshold for visit count)

No significant difference could be detected between the
agents performance in the deterministic and the stochastic
environment. Future research on environments with a higher
frequency of chance events are therefore proposed as a
method for further exploring.
The stagnation in performance from EPT as time-limit is
increased could eventually be counteracted by a proggresive
version of EPT which takes elapsed time (i.e. number of
iterations) into account.
To manifest the effectiveness of a delayed node expansion, it
is proposed that comparisons against a conventional node
expansion of all child nodes should be made.
Lastly, to better understand how different domain
independent MCTS-enhancements affect the performance of
agents with respect to the environment, further studies of
MCTS on eurogames should be conducted.

R EFERENCES
[1] L. Kocsis and C. Szepesvári, “Bandit Based

Monte-Carlo Planning,” in Machine Learning: ECML
2006 , Berlin, Heidelberg, 2006, pp. 282–293, doi:
10.1007/11871842_29.

[2] R. L. Harrison, “Introduction To Monte Carlo
Simulation,” AIP Conf. Proc. , vol. 1204, pp. 17–21,
Jan. 2010, doi: 10.1063/1.3295638.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time
Analysis of the Multiarmed Bandit Problem,” Mach.
Learn. , vol. 47, no. 2, pp. 235–256, May 2002, doi:
10.1023/A:1013689704352.

[4] “go | History & Rules,” Encyclopedia Britannica .
https://www.britannica.com/topic/go-game (accessed
Nov. 23, 2020).

[5] “AlphaGo | DeepMind.”
https://deepmind.com/research/case-studies/alphago-t
he-story-so-far (accessed Mar. 23, 2020).

[6] E. D. Demaine, “Playing Games with Algorithms:
Algorithmic Combinatorial Game Theory,” in
Mathematical Foundations of Computer Science
2001 , Berlin, Heidelberg, 2001, pp. 18–33, doi:
10.1007/3-540-44683-4_3.

[7] “Playing Cards & Board Games Market Size |
Industry Report, 2019-2025.”
https://www.grandviewresearch.com/industry-analysis
/playing-cards-board-games-market (accessed Nov.
23, 2020).

[8] S. Russell and P. Norvig, Artificial Intelligence - A
Modern Approach , 3rd ed. Prentice Hall, 2010.

[9] I. Szita, G. Chaslot, and P. Spronck, “Monte-Carlo
Tree Search in Settlers of Catan,” in Advances in
Computer Games , Berlin, Heidelberg, 2010, pp.
21–32, doi: 10.1007/978-3-642-12993-3_3.

[10] D. Robilliard, C. Fonlupt, and F. Teytaud,
“Monte-Carlo Tree Search for the Game of ‘7
Wonders,’” in Computer Games , Cham, 2014, pp.
64–77, doi: 10.1007/978-3-319-14923-3_5.

[11] R. Tollisen, J. V. Jansen, M. Goodwin, and S.
Glimsdal, “AIs for Dominion Using Monte-Carlo
Tree Search,” in Current Approaches in Applied
Artificial Intelligence , Cham, 2015, pp. 43–52, doi:
10.1007/978-3-319-19066-2_5.

[12] C. B. Browne et al. , “A Survey of Monte Carlo Tree
Search Methods,” IEEE Trans. Comput. Intell. AI
Games , vol. 4, no. 1, pp. 1–43, Mar. 2012, doi:
10.1109/TCIAIG.2012.2186810.

[13] M. Winands, Y. Björnsson, and J.-T. Saito, “Monte
Carlo Tree Search in Lines of Action,” IEEE Trans.
Comput. Intell. AI Games , vol. 2, pp. 239–250, Dec.
2010, doi: 10.1109/TCIAIG.2010.2061050.

[14] B. Arneson, R. B. Hayward, and P. Henderson,
“Monte Carlo Tree Search in Hex,” IEEE Trans.
Comput. Intell. AI Games , vol. 2, no. 4, pp. 251–258,
Dec. 2010, doi: 10.1109/TCIAIG.2010.2067212.

[15] R. Lorentz, “Using evaluation functions in
Monte-Carlo Tree Search,” Theor. Comput. Sci. , vol.
644, pp. 106–113, Sep. 2016, doi:
10.1016/j.tcs.2016.06.026.

[16] C. Heyden, “IMPLEMENTING A COMPUTER
PLAYER FOR CARCASSONNE,” p. 72.

[17] D. Pellier, B. Bouzy, and M. Métivier, “An UCT
Approach for Anytime Agent-based Planning,” Proc.

13

Int. Conf. Pract. Appl. Agents Multi. Syst. , p. 11.
[18] S. Gelly and D. Silver, “Monte-Carlo tree search and

rapid action value estimation in computer Go,” Artif.
Intell. , vol. 175, no. 11, pp. 1856–1875, Jul. 2011,
doi: 10.1016/j.artint.2011.03.007.

[19] R. J. Lorentz, “Improving Monte–Carlo Tree Search
in Havannah,” in Computers and Games , Berlin,
Heidelberg, 2011, pp. 105–115, doi:
10.1007/978-3-642-17928-0_10.

[20] T. Pepels, M. Tak, M. Lanctot, and M. Winands,
“Quality-based Rewards for Monte-Carlo Tree Search
Simulations,” Aug. 2014, vol. 263, doi:
10.3233/978-1-61499-419-0-705.

[21] R. J. Lorentz, “Amazons Discover Monte-Carlo,” in
Computers and Games , Berlin, Heidelberg, 2008, pp.
13–24.

[22] P. Nijssen and M. H. M. Winands, “Monte Carlo Tree
Search for the Hide-and-Seek Game Scotland Yard,”
IEEE Trans. Comput. Intell. AI Games , vol. 4, no. 4,
pp. 282–294, Dec. 2012, doi:
10.1109/TCIAIG.2012.2210424.

[23] J. V. Jansen and R. Tollisen, “An AI for dominion
based on Monte-Carlo methods,” III 86 P , 2014,
Accessed: Nov. 09, 2020. [Online]. Available:
https://uia.brage.unit.no/uia-xmlui/handle/11250/2213
82.

[24] W. Hoeffding, “Probability Inequalities for Sums of
Bounded Random Variables,” J. Am. Stat. Assoc. , vol.
58, no. 301, pp. 13–30, 1963, doi: 10.2307/2282952.

[25] V. Kovařík and V. Lisý, “Analysis of Hannan
consistent selection for Monte Carlo tree search in
simultaneous move games,” Mach. Learn. , vol. 109,
no. 1, pp. 1–50, Jan. 2020, doi:
10.1007/s10994-019-05832-z.

[26] V. Lisy, V. Kovarik, M. Lanctot, and B. Bosansky,
“Convergence of Monte Carlo Tree Search in
Simultaneous Move Games,” in Advances in Neural
Information Processing Systems 26 , C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2013, pp.
2112–2120.

[27] J. Nash, “Non-Cooperative Games,” Ann. Math. , vol.
54, no. 2, pp. 286–295, 1951, doi: 10.2307/1969529.

[28] K. Shibahara and Y. Kotani, “Combining final score
with winning percentage by sigmoid function in
Monte-Carlo simulations,” in 2008 IEEE Symposium
On Computational Intelligence and Games , Dec.
2008, pp. 183–190, doi: 10.1109/CIG.2008.5035638.

[29] “Sigmoid Function,” DeepAI , Sep. 27, 2020.
https://deepai.org/machine-learning-glossary-and-ter
ms/sigmoid-function (accessed Jan. 17, 2021).

[30] K. Matsuzaki and N. Kitamura, “Do evaluation
functions really improve Monte-Carlo tree search?:
Empirical analysis using Othello,” ICGA Journal. ,
vol. 40, no. 3, pp. 294–304, Mar. 2019, doi:

10.3233/ICG-180060.
[31] “Java SE Overview - General FAQs.”

https://www.oracle.com/java/technologies/faqs-jsp.ht
ml (accessed Jan. 17, 2021).

[32] “The Java® Virtual Machine Specification.”
https://docs.oracle.com/javase/specs/jvms/se7/html/
(accessed Jan. 17, 2021).

[33] “javax.swing (Java Platform SE 7).”
https://docs.oracle.com/javase/7/docs/api/javax/swing/
package-summary.html#related (accessed Jan. 17,
2021).

[34] M. Roschke and N. R. Sturtevant, “UCT
Enhancements in Chinese Checkers Using an
Endgame Database,” p. 14.

[35] “Confidence Intervals.”
https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/B
S704_Confidence_Intervals/BS704_Confidence_Inter
vals_print.html (accessed Dec. 19, 2020).

