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Abstract 
Face recognition is often described as the process of identifying and 
verifying people in a photograph by their face. Researchers have recently 
given this field increased attention, continuously improving the 
underlying models. The objective of this study is to implement a real-time 
face recognition system using one-shot learning. “One shot” means 
learning from one or few training samples. This paper evaluates different 
methods to solve this problem. Convolutional neural networks are 
known to require large datasets to reach an acceptable accuracy. This 
project proposes a method to solve this problem by reducing the number 
of training instances to one and still achieving an accuracy close to 100%, 
utilizing the concept of transfer learning.  
 
Keywords: Face recognition, one-shot learning, machine learning, deep 
learning, face expression, Inception-Resnet-v1, Squeezenet, web service 
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Terminology 
 

Abbreviations  Description 

CNN   Convolutional Neural Network 

Mtcnn  Multi-Task Cascaded 
Convolutional Networks 

SVM   Support Vector Machine 

k-NN   k-Nearest Neighbors 

GPU   Graphics Processing Unit 

CPU   Central Processing Unit 

TP   True Positive 

TN   True Negative 

FP   False Positive 

FN   False Negative 

FPS   Frame Per Second 

PCA   Principal Component Analysis 
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1 Introduction 
This thesis is divided in seven parts and will present a how to implement 
real-time face recognition using one-shot learning. This chapter will go 
through the background and problem motivation for the thesis, followed 
by its goal and scope.  

 

1.1 Background and problem motivation 
The field of face recognition has been a topic of study since the 1960s. It 
has stayed relevant both due to the practical importance of the topic and 
the theoretical interest from cognitive scientists. Face recognition aims to 
verify or identify the identity of an individual using their face, either from 
a single image or from a video stream. Face recognition systems are used 
in many contexts, such as within security and healthcare where it is used 
to accurately track patient medication consumption and support pain 
management procedures.   

Researchers have recently given this field an increased attention, 
conducting a multitude of studies and continuously improving the 
models that already exists. Convolutional Neural Networks (CNNs) are 
commonly used in computer vision and significantly improves the state 
of art in many applications. One of the most important ingredients is the 
availability of large quantities of training data. 

Building a face recognizer can be challenging, especially when the dataset 
is limited, as oftentimes is the scenario in real world applications. One of 
the major challenges when the dataset is limited is that an individual’s 
face may look different if various lightning, but also that different persons 
may have similar looking faces. Suppose a mobile ID unlocking 
recognizer should be developed. It would not be feasible to require that 
the person should upload millions of images for building the face 
recognizer system. In this scenario one-shot learning, where the 
algorithm learns by using only one or few training samples, would be a 
suitable technique. 

A face recognizer comprises two main components where the first one is 
a face detection algorithm. The task of face detection is to find a face in a 
single image or in a video stream. The second step is to verify or identify 
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the identity. There are several techniques in order to accomplish this. 
[1][2][3] 

In this paper a face recognizer will be implemented using one-shot 
learning. Several suitable deep learning algorithms will be presented and 
evaluated, and in the final system a face recognition system will be 
implemented on a Jetson Nano together with a web service. 

 

1.2 Overall aim 
The goal of this project is to implement a real-time face recognition system 
using one-shot learning. This as it proceeds from the assumption that 
there is only one image available to learn from. Algorithms should be 
evaluated based on accuracy and time required to train.  

The system should be easy to interact with and keep up to date. Therefore, 
a web service will also be implemented. This facilitates when a user wants 
to add more people to the system, such as when a company hires new 
employees. Since it is a real-time face recognition system it is important 
to focus on the speed of the system as well. The goal of all algorithms is 
to find a person in the video frame and classify it in real-time.  

It should be possible to apply the system in various contexts. One 
example could be to install the system in the entrance of a company, 
where it should be able to recognize employees entering the doorway. 
Other contexts where the system could be used include security 
applications or autonomous cars where the system recognizes the person 
behind the steering wheel and adapts the driving settings accordingly. 

 

1.3 Concrete and verifiable goals 
The goal of this study is to evaluate and select different algorithms to 
solve the following requirements: 

 Research and find different approaches in order to solve the one-
shot learning problem 

 Implement a face recognition system with only one sample per 
class 
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 Implement a suitable face detection algorithm 

 Implement algorithms that can classify the age, gender, face 
landmarks and facial expressions of a person 

 Implement a webserver with all algorithms included 

 Possibility to add a new user to the system and re-train the 
network 

 Implement the entire system on a Jetson Nano and optimize it. 

This thesis will use various programming languages, such as Python for 
backend and HTML, CSS and Javascript for frontend.  

 

1.4 Scope 
This thesis has several limitations in scope. There are multiple solutions 
to implement a face recognition system. In this thesis the scope is to solve 
the one-shot learning problem, meaning that there will only be one 
sample per class to train the algorithm. Therefore, solutions that require 
large quantities of data, such as implementing a convolutional neural 
network from scratch, are outside the scope of this study.  

 

1.5 Outline 
In the next chapter of this thesis, the theoretical framework is presented, 
along with a short section of related works. Subsequently follows chapter 
3, which describes the methods that are used to fulfil the study’s goals. 
Thereafter follows chapter 4 which presents the final implementation of 
the system. Chapter 5 presents the results obtained by the algorithms and 
the web server that is implemented, and chapter 6 discusses the results. 
Lastly, chapter 7 describes the conclusions and discusses ethical aspects 
and presents suggestions of future research. 

 

1.6 Detailed problem statement 
This system is divided in three parts: face detection, face recognition and 
face classification. The face detection detects the face in the image, which 
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is to be used for further analysis. The purpose of the face recognition 
algorithm is to produce feature maps which is a representation of the face. 
These maps contain important information about the user’s face, such as 
the width between the eyes. Then, a supervised learning algorithm will 
be used to classify the feature maps and provide the user with a predicted 
name.  

Evaluation is an important part of this project since multiple networks are 
to be compared. It will be important to measure how well they perform. 
Commonly known accuracy functions will be implemented, namely F1-
Score, Precision and Recall.  
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2 Theory 
This chapter describes the key concepts and the theory behind the thesis. 
This section will cover important methods that are used during the 
project followed by different algorithms that are used and evaluated. The 
basics of deep learning and machine learning will not be presented here 
since it is assumed to be familiar concepts for the reader. 

The chapter begins with an introduction of the methods that has been 
used followed by a briefly description of convolutional neural networks 
(CNNs) and common architectures of them. Then the chapter continues 
with a description of face detection, face recognition and image 
classification.  

 

2.1 One-shot learning 
This is an object categorization problem and usually machine learning 
algorithms require training on hundreds or thousands of samples which 
results in a large dataset. However, one-shot learning aims to learn 
information from one or few samples. Learning from few samples 
remains a key challenge in machine learning. Therefore the task is 
challenging since there might be limited instances per class which means 
limited number of training instances and in some cases only one image 
for each of them. This challenge naturally exists in many real scenarios. 
[4][5] 

 

2.2 Transfer learning 
Transfer learning (TL) is an approach that focuses on storing knowledge 
gained while solving one problem and applying it to a different but 
related problem. For instance, suppose that a system should recognize 
human faces in an image. By utilizing models that already have been 
trained on millions of faces, often referred to as pre-trained models, 
related problems can be solved without the need of large quantities of 
data. [6] 
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2.3 Face Detection 
Face detection is a technique to detect and find a face in an image or a 
video stream. There are different methods to accomplish the tasks. Either 
a convolutional neural network (CNN) can be implemented from scratch, 
which will require huge amounts of data, or a pre-trained model that 
already has been trained on millions of faces can be used. The later 
approach is an effective method when the dataset is small or if the 
problem that is going to be solved is related to the problem of the pre-
trained model. All algorithms have different sizes. Therefore, some 
algorithms are more suitable for webpages and mobile phones, for 
instance.   
 
Face detection can be challenging in unconstrained environments due to 
various poses, illuminations and occlusions. A photography that contains 
human faces can easily be spotted by humans. However, for computers 
this is a challenging task. But, studies have shown that deep learning can 
achieve good results in this area. [4][5]  
 

2.4 Face Recognition 
A face recognition system is capable of identifying or verifying a person 
from an image or video frame. There are different methods of face 
recognition systems but in general, they work by comparing images from 
a given image within a database. All images in the database are known 
by the model. Euclidean distance is a common function that can be used 
in order to classify a given image from the images in the database. A face 
recognition system can be used in various contexts. For instance, they are 
commonly used in security applications. They can also be used in 
autonomous cars where the purpose is to predict the person behind the 
steering wheel and change all car settings for them. [7] 
 

2.5 Convolutional Neural Network 
A common and a well-known method for image classification is called 
convolutional neural network (CNN). There are various CNNs and they 
all have the same underlying structure but they can have different 
architectures. The underlying structure is the same for all CNNs. All of 
the CNNs uses three types of layers, convolutional, pooling, fully 
connected layers and output layer. There are multiple kernels in the 
convolutional layers and they have the responsibilities to calculate 
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feature representations of the image. The feature representation is called 
feature maps and the feature maps contain values of the face. Thereafter 
a pooling layer aims to reduce the resolution of the feature maps. Usually 
there are multiple convolutional and pooling layers. To summarize, the 
first convolutional layer spots edges in an image and this is called low-
level features. Thereafter, the upcoming convolutional layer is 
responsible for extracting more abstract features. The convolutional and 
pooling layers are often followed by fully connected layers. The task of 
the fully connected layers is to create a communication line between 
neurons. The final layer of the CNN is known as the output layer. Softmax 
function is one example of a function that can be used in the last layer. 
Figure 2.1 illustrates a CNN architecture. [10][11] 

 
Figure 2.1: CNN architecture. [11] 

2.5.1 Common CNN Architectures 
Section 2.5 presents an introduction of the convolutional neural networks. 
As mentioned, there are various CNNs and they all have different 
architectures. The following section will present a list of common CNN 
architectures.  

InceptionResnetv1 is a convolutional neural network and a hybrid 
Inception module. The computational cost in InceptionResnetv1 is similar 
to Inception-v3. The computational cost describes how much processing 
power the network needs. However, in InceptionResnetv1 a residual 
connection is added on the output of the convolutional operations. This 
means that the output from the Inception module is added as an input to 
the residual connection. For this to work the dimensions need to be the 
same for the input and output after the convolutional operations. 
Therefore, a 1x1 convolutional is added to the original convolutional. In 
InceptionResnetv1 the pooling operations from the Inception module is 
replaced with the residual connection. [12] 
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Inception-v3 is a convolutional neural network consisting of a 42-layer 
deep network. A pre-trained model that has been trained on millions of 
images, on the ImageNet database, is available for use. Compared to the 
previous Inception architectures this is more efficient since it has fewer 
parameters. This architecture becomes the first runner up for image 
classification in the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) 2015. There are two earlier versions namely, 
Inception-v1 and Inception-v2. It got a low error rate and performed good 
during the competition. ImageNet consists of 15 million labeled high-
resolution images with 22.000 categories. [13] 

Resnet18 is a convolutional neural network. This CNN has multiple 
variants of different sizes for instance, Resnet18, Resnet34, Resnet50, 
Resnet101 and Resnet152. The networks can be chosen after the size of the 
dataset. For instance, if the dataset is small a network with fewer layers 
may be more suitable. [14] 

Alexnet is a convolutional neural network and is introduced in ImageNet 
Classification with Deep Convolutional Neural Networks. Alexnet was 
the first successfully convolutional neural network according to the 
ImageNet dataset. The network has eight layers where five layers are 
convolutional and three fully-connected layers. [15] 

Squeezenet is a convolutional neural network that is described in the 
paper AlexNet-level accuracy with 50% fewer parameters and < 0.5MB 
model size. This network has 18 layers. Squeezenet is a network that is 
suitable for small datasets. For instance, a dataset that contains two 
classes, ants and bees. [16] 

Densenet121 is a convolutional neural network and is described in the 
paper Density Connected Convolutional Networks. Densenet121 is a 121 
layered deep convolutional network. There are different networks with 
this architecture to choose from. [17] 

 

2.6 Multi-Task Cascade Convolutional Neural Network 
Multi-Task Cascade Convolutional Neural Network is a state-of-art face 
detection algorithm that is called Mtcnn. The network is able to 
simultaneously propose bounding boxes, five-point facial landmarks and 
detection probabilities. This model is a deep cascaded multi-task 
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framework which exploits the inherent correlation between them in order 
to boost up the performance. The network breaks down the task into three 
stages namely, P-Net, R-Net and O-Net. P-Net produces candidate 
window by a shallow convolutional network. R-Net has the objective to 
reject as many non-face windows as possible. O-Net uses a more complex 
network to further refine the output of R-Net. In particular, the model has 
a cascaded structure with three stages of carefully designed deep 
convolutional networks that classify face and landmark locations. The 
network achieved superior accuracy in the challenging FDDB and 
WIDER FACE benchmark for face detection. It keeps real time 
performance which make it possible to use the network in a real time 
system. Figure 2.2 shows the structure of the network. [9]  

 

Figure 2.2: The architecture of Mtcnn. [9] 

 

2.7 FaceNet 
FaceNet provides a unified embedding for face recognition, verification 
and clustering tasks. Another commonly used term to describe 
embedding is feature map which corresponds to a vector representation 
of information on the face. It maps each face image into a Euclidean space 
such that the distance in that space corresponds to face similarities. More 
specifically, an image of person X will be placed closer to all the other 
images of person X and person Y will have a large distance to person X. 
The main difference between Facenet and other networks is that it learns 
the mapping from the images and creates embeddings. To summarize, 
the created embeddings can be used directly for face recognition, 
verification and clustering using for instance, Support Vector Machine 
(SVM) or K-Nearest Neighbors (K-NN). Facenet uses Triplet loss function 
to learn, which is further described in section 2.7.1. [18] 
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2.7.1 Triplet Loss 
The functionality of triplet loss is that it minimizes the distance between 
an anchor and a positive where the positive represents the same person 
in the dataset. Thus, it maximizes the distance between the anchor and a 
negative where the negative represents a different identity. Thereby, an 
image of an anchor (person A) should be closer to the positive images (all 
images of person A) and have larger distances to any negative images (all 
other images). Figure 2.3 shows an illustration of the Triplet Loss. [18] 

 
Figure 2.3: Triplet loss. [18] 

 

2.8 Siamese Neural Network 
Siamese Neural Network is an artificial neural network that uses the same 
weights while working in tandem on two different input vectors to 
compute comparable output vectors. Therefore it is also called a twin 
neural network. The architecture of the network uses two input images 
which are forwarded to the neural networks. The model then produces 
two feature maps, in other words two vectors, which have the 
representations of the faces. Thereafter, these vectors are computed with 
a distance function in order to calculate the similarities between the two 
feature maps. While the network is training the idea is to minimize the 
distance function for similar classes and maximize the distance between 
un-correlated classes. [19] 

 

2.9 OpenCV Haar Cascades 
Different from a convolutional neural network, Haar Cascade is a 
classifier but somewhat related to convolutional neural networks. A Haar 
Feature is similar to a kernel that CNN uses. Thus, in a CNN the values 
of the kernel are determined by the training while Haar-Feature is 
manually determined. Figure 2.4 illustrates Haar-Features. 
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Figure 2.4: Line and edge features. 

This approach makes it effective in detecting face since Haar-Feature are 
good at detecting edges and lines. [20] 

 

2.10 OpenCV DNN 
This is a module in the Opencv which is described in section 3.5. It is 
possible to use a pre-trained model from Tensorflow which also is 
described in section 3.5. However, this is a deep neural network which 
can be used for inference using a pre-trained model. OpenCV DNN has 
support for several frameworks such as Caffe, Tensorflow, Darknet and 
PyTorch. It is possible to create various applications with this module 
including face detection and object detection. [21] 

 

2.11 Support Vector Machine 
Support Vector Machine, commonly denoted SVM, is a supervised 
learning model that learns from data. This model can be used for 
classification and regression. SVM uses a linear separating hyperplane 
which separates the data into two classes, see figure 2.5. [21] 
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Figure 2.5: Support Vector Machine, two classes that are linear 

separable.  

The figure above illustrates two classes, the grey dots belongs to one class 
and the blue squares belongs to another class. There is a hyperplane in 
the middle that separates these two classes. It is important to find an 
optimal hyperplane that can do this separation. Often SVM uses kernels 
and there are different kernels that can be applied depending on the 
dataset and the context of the application. Generally in machine learning 
a kernel refers to a kernel trick. It is a method which uses a linear classifier 
to solve non-linear problems. Figure 2.6 illustrates this and Table 2.1 
shows two common kernels. 

 
Figure 2.6: (From left) Non-linear separable data and separable data. 

Kernel functions Formula 

Linear 𝑘 𝑥 , 𝑥 = 𝑥 , 𝑥  

Polynomial 𝑘 𝑥 , 𝑥 =  𝑘(𝛾𝑥 , 𝑥 + 𝑟)  , 𝛾 > 0 

Table 2.1: Common kernel functions. 
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2.12 Gaussian Naïve Bayes 
Gaussian Naïve Bayes (GNB) is a supervised learning algorithm which 
produces a linear classifier. GNB is divided into three parts. First, when 
it handles real-time data with continuous distribution it assumes that the 
data is generated with a normal distribution. Second, Multinomial Naïve 
Bayes can be applied in multinomial distribution which means that the 
features are represented as frequencies. Third, if the features are 
independent or Boolean the feature are generated through a Bernoulli 
process therefore a Bernoulli Naïve Bayes classifier can be applied. See 
equation 2.12 for the linear classifier. [22]   

𝑃(𝐴 |𝐵) =  
𝑃(𝐴 )𝑃(𝐵|𝐴 )

∑ 𝑃(𝐴 )𝑃(𝐵|𝐴 )
 

   (2.12.1) 

 

2.13 K-Nearest Neighbors 
K-Nearest Neighbors is a supervised learning algorithm which is used for 
regression and classification problems. In the scenario of a classification 
problem the output is a class membership. Thus, an object is classified by 
a vote of its neighbors. For instance, if k = 1 the object is assigned to the 
class that are nearest the neighbor. However, if it is a regression problem, 
the output is the property value for the object. The value for the object is 
the average values of k nearest neighbors. [19] Equation 2.13 shows the 
formula for Euclidean distance. The method for calculating the distance 
between the points is denoted as,  

  𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝)

=        (𝑞 − 𝑝 ) + (𝑞 − 𝑝 ) + ⋯ + (𝑞 − 𝑝 )

=            (𝑞 − 𝑝 )

 

 

(2.13.1) 

 

2.14 Javascript algorithms 
Age and Gender Recognition Model is a model that predicts age and 
gender in an image or a video stream. It employs a feature extraction 
layer, an age regression layer and a gender classifier. The size of this 
model is 420kb and it is similar to an Xception architecture. [21] 
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Face Expression Recognition Model is a lightweight model it is fast and 
provides good accuracy. The size of this model is 310kb and it employs 
depth wise separable convolutions and densely connected blocks. [21] 

Face Recognition Model has an architecture similar to ResNet-34 which is 
a convolutional neural network. It is implemented to compute a face 
descriptor and the output is a feature vector with 128 values. [21] 
 
68 Point Face Landmark Detection Models is a lightweight landmark 
detector. The detector is fast and accurate. The model has various sizes to 
choose from. For instance, the default model has a size of 350kb and the 
tiny model is only 89kb. [21] 

Tiny Face Detector is a real time face detector and has good performance. 
It is a mobile and web friendly model. The model size is roughly 190 KB. 
[21] 

 

2.15 Related works 
In [25], Yandong Guo and lei Zhang presents the problem of one-shot 
learning in a face recognition context. Their goal is to build a large-scale 
face recognition that is able to recognize several different identities. The 
used approach is a novel super vision signal namely, underrepresented-
classes promotion (UP) loss term. This technique aligns the norms of the 
weight vectors in order address the problem of unbalanced data. The new 
loss term (UP) is efficient since it promotes the un-represented classes in 
the learn model. This improves the performance of a face recognition 
system. 

In their development of the one-shot learning phase they used a dataset 
consisting of 21.000 classes which they use in order to train a classifier. 
The technique is a multinomial logistic regression based on a 34-layer 
residual network. The results of this study shows 99% for 
underrepresented classes and 99.8% for normal classes. [25] 

Another study on face recognition is presented by Zhao et al. In the paper 
they present a face recognition method based on Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA). The technique 
consists of two steps where they first use PCA in order to project the 
original vector of the face image to a face subspace. Then they use LDA 
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which act as a linear classifier. The combination of these techniques 
improves the capability of classifying classes from a model that has been 
trained on a small dataset. [26] 

In [27] they present a face recognition system using convolutional neural 
network and principal component analysis (CNN-PCA). Edy et al 
describe their system of a face recognition and they use a hybrid feature 
extraction method (CNN-PCA). The idea is to combine these two 
techniques to get a better feature extractor method which leads to a more 
accurate model. The idea of their system is to produce a system that is 
reliable and powerful to identify human faces in real-time. The results of 
their study shows that their method has an accurate data processing and 
high accuracy. They present that adding a CNN to PCA increases the 
accuracy. In 50 objects they get 98% accuracy instead of 96% when using 
PCA only. [27] 

Another research is from [28] where they implement a face recognition 
system. They first start with pre-processing the images by performing 
noise removal and hole filling. After this they use viola jones algorithm 
in order to extract faces from the image. They compute the SURF features 
of the extracted face in order to use feature matching to recognize 
identities. M-estimator Sample Consensus (MSAC) is used in order to 
remove outliers. In this study they get an accuracy of 95.9% in Graz 01 
dataset. [28] 
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3 Methodology 
This chapter presents the methodologies used in this study. After 
research, multiple suitable algorithms were found. However, all of them 
are not evaluated. This chapter describes the algorithms that are 
evaluated and implemented. Chapter 3.1 presents the datamining 
methodologies. Thereafter follows the structure of the dataset. It then 
continues with Chapter 3.3 and its sub chapters presents the algorithms 
that are used and evaluated. Thereafter follows chapter 3.4, which 
describes the evaluation metrics. It describes how the project is evaluated 
and it also describes common methods in order to evaluate the models. 
Chapter 3.5 presents all libraries that are used during the project. Lastly, 
chapter 3.6 goes through the hardware that is used. 

Agile methodologies are used during the project and small releases are 
presented throughout the project in order to establish the direction and 
the next releases. This project uses a sprint of a seven days interval. 
However, some sprints use a longer interval since unexpected delays 
occurred. The project uses a backlog that is updated on a daily basis and 
a scrum board is used as well. Before starting a new backlog, each ticket 
is estimated. 

 

3.1 Datamining Method 
This section presents the datamining methods which are used to 
overcome the challenges of producing a face recognition system with one-
shot learning. Each paragraph represents the steps taken to process and 
solve the challenges.  

Problem identification is a way to research and identify the problem with 
different techniques that currently are used. For instance, convolutional 
neural networks are powerful and can be very accurate. The goal is to 
implement a face recognition system with one-shot learning therefore 
building a convolutional neural network from scratch is not an 
alternative. However, existing pre-trained convolutional neural network 
models is a solution for this project. The final solution for this project is 
presented in chapter 4.  
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Literature study is a method to collect as much relevant information 
about the topic as possible, to understand and take previous learnings 
into account.  

Understanding of the business is important since the final solution is 
given to the company and therefore the final system need to be formed 
by their guidelines.  

Understanding the data means to analyze the data and understand it. 
This is important as this will be used as basis for the preparation of the 
data.  

Preparing the data means to prepare it for the networks for instance, 
when then input image is forwarded to the face recognition algorithm it 
needs to be cropped and in a right format (png, jpg o jpeg). 

Modelling all networks are performed on the data that was mentioned in 
the previous step. 

Evaluation is in this study the process of comparing multiple networks 
and discarding some of them, due to their low accuracy, overfitting or too 
skewed results. 

Deployment is the final step, when the networks have been evaluated 
correctly with good results. 

 

3.2 Dataset structure 
Several networks are evaluated during the project and they all have 
identical data structures. All images are cropped and resized before they 
are put in separate folders specifically created for each class. Figure 3.1 
presents the structure of the dataset.  
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Figure 3.1: Folder structure. 

 

3.3 Choice of algorithms 
In order to achieve the objective of this study, three main methods are 
required, namely face detection, face recognizer and face classification. 
Section 3.3.1, 3.3.2, 3.3.3 presents this further.  

3.3.1 Face detection 

To evaluate which face detection algorithms work best, several face 
detection algorithms are implemented on a specific video clip, results are 
registered and compared. The video clip contains several different faces 
and lasts around one minute.  

In order to find face detection algorithms to compare and evaluate, a 
study of various papers was conducted. Facenet, Mtcnn, Opencv_Dnn 
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and Opencv_Haar all showed reasonable results. Thus, these four 
algorithms were chosen to be evaluated for the face detection.  

3.3.2 Face recognition 
Several face recognizer networks are evaluated, namely 
InceptionResnetv1, Resnet18, Alexnet, VGG11, Squeezenet, Densenet121 
and Inceptionv3. These seven pieces are all deep learning networks which 
are evaluated under the same conditions. They are all evaluated using the 
same datasets which are presented in section 4.1. One reasoning why 
these networks are chosen to be evaluated is that previous papers present 
good results of them. Another reasoning why InceptionResnetv1 and 
Squeezenet are selected is because they are suitable for small datasets. 
[7][8][9][10][11]    

3.3.3 Image classification 
The last part is image classification and the reasoning why image 
classification is needed in this project is that the face recognizer networks 
that are mentioned in section 3.3.2 produce feature maps. Each feature 
map is mapped to a face and contains information about each identity. 
More precisely, person A has a feature map and person B has another 
feature map.  

The purpose of using feature maps is to classify them, more precisely get 
the name of the person in the image. This can be achieved with a 
classification algorithm or to use Euclidean distances function.  

The classification algorithms that are chosen are SVM, k-NN and 
Gaussian Naïve Bayes. Euclidean distance will also be evaluated. 
[16][17][18] 

3.3.4 Web server 

One of the goals in this paper is to create the functionality to upload new 
individuals to the system, which can be required if a new employee has 
been hired at the company. Therefore, a web server is created which gives 
the functionality to add a new user to the system when required. Several 
algorithms from each part for example, one algorithm from section 3.3.1, 
one algorithm from section 3.3.2 and one algorithm from section 3.3.3 are 
implemented and this is presented in section 4. Moreover, several other 
algorithms are implemented such as, face landmarks, gender, age and 
face expression. [20] 
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3.4 Evaluation 
This project is divided into 3 parts, face detection, face recognition and 
face classification. The first part is evaluated based on research and 
commonly known challenges. Face recognition models and the face 
classification algorithms are evaluated with commonly known methods 
which is described in section 3.4.2.  

3.4.1 Evaluation of Images 

The task of image classification can be accomplished in various ways. One 
approach is to predict each sample in other words each image. There are 
multiple performance metrics that can be used during the evaluation of a 
classification task. The approaches that are used in this project is 
presented in section 3.4.2. When predicting a label, it can result in four 
outcomes, namely True Positive (TP), True Negative (TN), False Positive 
(FP) and False Negative (FN). Table 3.1 presents the outcomes.  

Actual Class Ant Bee 
Ant True Positive (TP) 

Correct predicted as ant 
False Negative (FN) 

Incorrectly predicted as bee 
Bee False Positive (FP) 

Incorrectly predicted as ant 
True Negative (TN) 

Correctly predicted as bee 

Table 3.1:  Illustrates the different outcomes. 

3.4.2 Evaluation metrics 

It is interesting to measure and visualize the networks that are described 
in section 2.5.1. There are different methods in order to evaluate a model 
but common approaches are Recall, F1-Score, Precision. All of these 
methods are important to understand. Since the last example gives an 
accuracy but it does not give information about if the model predicted all 
samples wrong in one class and all correct for the remaining classes even 
if it gives an accuracy. However, F1-Score is a measure that can be 
interesting to look at. Below is a list of the different approaches that are 
included in this project. 

F1 – score: [30] also known as F-measure, is a measure of a test’s accuracy. 
This method considers precision p and recalls r of the test in order to 
calculate the score. Number of correct positive results divided by number 
of all positive results is denoted as p. Thus, r is denoted as, number of 
correct positive results divided by the number of all relevant samples. 
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Thereby, F1-score is the harmonic mean of the precision and recall that 
will be listed below. It reaches its best value at 1.  

                          𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(3.4.1) 

Precision: [30] describes the accuracy of classified classes. In order words 
it is the ratio between correct classified classes and the total number of 
predictions. 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(3.4.2) 

Recall: [30] the ratio between correct classified samples of a class and the 
total number of instances of that class.  

     

                                           𝑅𝑒𝑐𝑎𝑙𝑙 =  

 

 

     
(3.4.3) 

3.5 Libraries 
During the project different libraries have been used in order to 
implement machine learning algorithms and the web server. Most of the 
algorithms are Python libraries that are commonly used in Machine 
learning. However, not only machine learning libraries are used. For 
instance, a library called Split-folders is used in order to split the data into 
a certain percentage. The libraries will be presented in the section below. 

Tensorflow [30] is a Python open source artificial intelligence library. It is 
well documented and it allows developers to create large-scale neural 
network with multiple layers. It can be run on a CPU as well as GPU. This 
library is used to load the inception models.  

Numpy [31] is a library for Python, adding support for large, multi-
dimensional arrays and matrices. This library is used to make array 
operations. 
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Matplotlib [32] is a Python library for creating static, animated and 
interactive visualizations in Python. It is a good tool for machine learning. 
This library is used to sketch the accuracy from the machine learning 
algorithms. 

PyTorch [33] is a deep learning library similar as Tensorflow. This library 
can be run on both CPU and GPU as well. The library is used to create the 
dataset in this project such as, cropping and resize the images.  

OpenCV [34] is an open source computer vision and machine learning 
library. It is a huge library that contains more than 2500 optimized 
machine learning algorithms. It supports C++ and Python, for instance. 
This library has been widely used in this project for reading images, 
resizing images, convert images to RGB, saving images and is also used 
to make the live face recognition system work in real-time.  

Jupyter Notebook [35] is a web-based interactive development 
environment for Jupyter Notebook, code and data. This environment is 
used to implement and test the software. 

SKlearn [36] is an open source machine learning algorithm that supports 
functionalities such as multi-dimensional arrays. This library also has 
support for high-level mathematical functions in the arrays. It also 
supports machine learning algorithms. 

Flask [37] is a micro web framework, flask is a Python class datatype. 
Thus, it is used to create instances of web application or web applications. 
It is a simple and a good tool that is well documented on the web. This 
library is used for creating the webpages. 

Glob [38] is used to find all the pathnames matching a specified pattern 
according to the rules used by the Unix shell. 

Albumentations [39] is a python open source library that makes it 
possible to boost the dataset. This library has been used in this project in 
order to boost the dataset by increasing the amount of data samples. 

Pytube [40] is a lightweight dependency free Python library for 
downloading online videos. It is used to download an online video 
stream. The face recognition system uses this video stream in order to 
classify the persons in the video stream. 
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Split-folders [41] is a python library that split folders into training, 
validation and test. This library is used to split the folders and put images 
in the subfolders for training and testing. This library is used to create the 
datasets that have been tested in machine learning networks with 
different amounts of images per class.  

 

3.6 Hardware 
The final system is implemented on the Jetson Nano but during the 
project different algorithms have been trained and evaluated on different 
machines. Jetson Nano has a GPU and the final system is implemented in 
order to run on the GPU.  

Term Specification 

Graphical Processing Unit 128-core NVIDIA Maxwell™ 

Central Processing Unit Quad-core ARM® A57 

Memory 4GB 64-bit LPDDR4 

Connectivity Gigabit Ethernet 

OS Support Linux for Tegra® 

Table 3.2: Specifications for Jetson Nano 

 

Term Specification 

Graphical Processing Unit Intel® Xeon® 2.0GHz, 38.5MB cache 

Central Processing Unit Tesla T4 16GB 

Memory  13 GB 

Disk storage  69 GB HDD 
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Table 3.3: Hardware used for face recognition. 

The entire system is implemented on a Jetson Nano. To optimize the 
system, GPU programming has been used. This is the process of 
programming in such way that the GPU takes care of the code which 
speeds up the time for all calculations compare to a CPU. Figure 3.1 
illustrates the hardware.  

 
Figure 3.1: Jetson Nano with an external camera. 
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4 Implementation 
This section presents the final results of the system and how they are 
implemented. All the networks and algorithms and how they are 
implemented are presented. This section starts with an overview of the 
entire system, see figure 4.1.  

 

 

Figure 4.1: Overview of the face recognition system 

Add person to the system: a person adds an image of its face to the 
system. The image will be processed. 

Face Detection: when the images are added into the system the face 
detection algorithm will try to find a face in the image. If a face is found 
it will then be cropped and saved in a database or be used for a prediction. 
The face detection algorithm is presented in section 4.2. 

Face recognizer:  when a face is found and cropped this phase will be the 
following step. Face recognizer will output a feature map representation 
of the individual face and save it for uses in the future.  

Predict image: during this step, the classification algorithm will predict 
all images (all feature maps) and output the name of the individual. 
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Live face recognition: Several algorithms are implemented for live-face 
recognition such as, face detection, face expression, age, gender and face 
landmarks. 

  

4.1 Enhancing the dataset 
The dataset is divided into 7 various datasets where each dataset will be 
evaluated for instance one-shot 30 classes means that the dataset consists 
of 30 classes where every class has one instance. There are several datasets 
and they are presented below: 

 1 shot 30 classes 

 2 shot 30 classes 

 5 shot 30 classes 

 1 shot 50 classes 

 2 shot 50 classes 

 5 shot 50 classes 

 50 shot 50 classes 

All of the datasets above are evaluated using the same method, described 
in section 3.4.2. The main reason for evaluating the different datasets is to 
see how the size of the training data can affect the performance. All 
images are cropped to 160 x 160 pixels. The last evaluation test will first 
use augmentation in order to increase the size of the dataset. For instance, 
it will augment the one-shot 50 classes to 50-shot 50 classes in order to see 
if the accuracy will improve, and if so, how much. Figure 4.2 illustrates 
the augmentation phase.  
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Figure 4.2: Enhancing the dataset with augmentation. 

 

4.1.1 Cropping function 

Before the dataset can be forwarded to the network the dataset needs to 
be pre-processed. This means that all images in the dataset need to be 
cropped and also contain a face since it is a face recognition system which 
will be implemented. It works by allowing the face detection algorithm 
to spot a face in an image. Thereafter, the face detection algorithm 
provides 4 points which gives information about the upper left, upper 
right, down left and down right corners of the face. These points are then 
used to crop the image, using a cropping function.  

Figure 4.3 presents the cropping function. The function iterates through 
the folder, as it crops and saves the new pictures into a new folder. In this 
project the images are resized to 160 x 160 pixels. 



34 

 

 
Figure 4.3: Function that creates two folders (train,val) and crops the 

images. 

4.2 Face detection - Mtcnn 
Four face detection algorithms are evaluated in this project. All face 
detection algorithms have the responsibility to find a face in a single 
image or in a video stream. However, one of the four evaluated face 
detection algorithms which are presented in section 3.3.1 are used in the 
final system.  
 
Mtcnn is selected as this algorithm performs well, is accurate and speedy.  
The entire project is implemented on a Jetson Nano which has a GPU. 
Mtcnn performs also well on the Jetson Nano which makes it possible to 
use the algorithm in real time. Figure 4.4 illustrates how the face detection 
algorithm spots a face before the image has been cropped. The execution 
time and accuracy are presented in section 5.3.  
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Figure 4.4: Mtcnn (Face detection). 

 

4.2.1 Face recognizer – InceptionResnetv1 

Several networks are evaluated in order to find an appropriate algorithm 
for face recognizer. Namely InceptionResnetv1, Resnet18, Alexnet, 
Squeezenet, VGG11, Densenet121 and Incpetionv3. The choice was 
InceptionResnetv1 which is described in chapter 6.1. However, a 
Tensorflow implementation is done and it has similar architecture as 
Facenet but with one adjustment. Instead of using triplet loss, which is 
used in Facenet, InceptionResnetv1 uses softmax. The pre-trained model 
has been trained on VGG-Face2 dataset. Thereafter on my own dataset. 
The idea of this face recognizer is not to use it as a classification, meaning 
to predict the outcomes. Instead, the face recognizer will produce feature 
maps. The training phase is done using the GPU. Figure 4.5 shows the 
architecture of InceptionResnetv1. 
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Figure 4.5: (InceptionResnetv1) A piece of the architecture. 

 
Two types of models can be used as can be seen in the top of the code, 
namely vggface2 or casia-webface. Depending on which model that is 
chosen it is either trained on vggface2 or casia-webface, and this is an 
option that can be chosen. 
 
However, in this project vggface2 is selected. Thereafter some 
adjustments are needed, for instance the last layer of the network needs 
to be changed in order to put my own dataset to it. The input of the 
network is an image of size 160 x 160 pixels, and the output of this 
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network is a feature map meaning a vector containing information about 
the face, more precisely a face representation. Thereafter the idea is to 
implement a classification algorithm that can classify these feature maps, 
it is fine to use Euclidean distance as well. But, in this project SVM is 
chosen to classify the feature maps which is described in section 4.2.2. 
Table 4.1. describes the parameters used in this project. 
 

Parameters Values  
Architecture IncpetionResnetv1  

Batch size 10  
Input size   160x160  

Table 4.1: Parameters for InceptionResnetv1. 

4.2.2 Image classification - SVM 

This is the last part that is needed in order to classify or identify an 
identity from a single image or a video stream. There are several 
classification algorithms such as k-NN, SVM, Random Forest and a lot 
more. This project uses SVM. The classifier is implemented with the 
Python library SKlearn which is described in section 3.3. The parameters 
of the SVM is presented in table 4.2.  

Parameters Values 
Classifier SVM 

Kernel linear 
gamma auto 

Table 4.2: Parameters for SVM. 

4.2.3 Webserver  

One goal of the project was to have the ability to add a new user to the 
system. The system should dynamically re-train the network when a new 
user is added to the system. More specifically, InceptionResnetv1 will 
train on the new image. Thus, a web server is implemented. It is possible 
to access the web server from other networks and access it with a mobile 
phone as well. For instance, a person that is located in another country 
can access the web server and add its face to the system if wanted. The 
project uses several programming languages in order to accomplish the 
goals for instance, HTML, CSS, Javascript and Python. 
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4.2.4 Face expressions 

The web server does not only include a face detection and a face 
recognizer network. Also, face expression, face landmark, age, gender, 
tiny face detector which are implemented for uses of live-face recognition. 
These networks does not utilize the embeddings that are created with 
InceptionResnetv1 for face recognition, since the embeddings from 
InceptionResnetv1 are only responsible for creating embeddings for 
image classification. Each of these algorithms are implemented with 
Javascript and they are created by different CNNs architectures. Face 
expression, face landmark, age, gender, tiny face detector is described 
further below. 
 
The Age and Gender Recognition Model accomplishes the task of 
predicting the age and gender of a person a single image or a video 
stream. It employs a feature extraction layer, an age regression layer and 
a gender classifier. The size of this model is 420kb and it has an 
architecture similar to Xception. 
 
The Face Expression Recognition Model is fast and provides good 
accuracy. The size of the model is 310kb and it employs depth 
wise separable convolutions and densely connected blocks. 
 
The 68 Point Face Landmark Detection Models is a lightweight landmark 
detector. The detector is fast and accurate. The model has various sizes to 
choose between for instance, the default model has a size of only 350kb 
and the tiny model is only 89kb. 
 
The Tiny Face Detector is a real time face detector and has good 
performance. It is mobile and web friendly model. The model size is 
roughly 190 KB.  
 

4.3 Routes of the web server 
The purpose of the web server is to make the algorithms available for the 
users which are located on different networks. They have access to all 
functionalities such as, add a new user to the system, predict with a face 
and start real-time face recognition. Thus, the web server contains several 
pages and in order to access them, several routes are created. For instance, 
figure 4.4 illustrates the first route or entry point.   
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Figure 4.4: First entry point 

Chapter 5.5 presents the content for this entry point further. From the first 
entry point the user is able to navigate through the web server. For 
instance /add_and_test in figure 4.5, is another entry point which means 
that the user has navigated to a new web page in the web server. 

 
Figure 4.5: Second entry point 

This entry point has several options to choose between for instance, the 
user can start a real-time face recognition, or the user can add a new face 
to the system. The last entry point is illustrated in figure 4.6. One face 
detection algorithm and a face recognizer network, namely Mtcnn and 
InceptionResnetv1 are implemented on the video in order to illustrate the 
system. 

Figure 4.6: Navigates to the video page. 
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5 Results 
This chapter present the results of all important pieces during the project. 
It starts by presenting one-shot learning of InceptionResnetv1 which is 
the network that is implemented in the final system. Thereafter, it shows 
the results for the competitors to InceptionResnetv1, meaning the other 
face recognizer networks which are not implemented in the final system. 
Then follows a presentation of the results, in terms of accuracies and 
execution times for several face detection algorithms. The execution time 
is the time it takes for the algorithms to process the video. Thereafter 
follows a presentation of the FPS of the face detection and face recognizer, 
followed by a presentation of the web server. 

5.1 One-shot learning results of InceptionResnetv1 
One-shot learning and few-shot learning are evaluated with several 
networks. The final system uses InceptionResnetv1 as the face recognizer. 
Thus, this chapter presents the results of InceptionResnetv1 with various 
datasets, namely one-shot 30 classes, two-shot 30 classes, five-shot 30 
classes, one-shot 50 classes, two-shot 50 classes and five-shot 50 classes. 
The tables below present the results. 

Iterations 300 500 1000 2000 4000 
Number of classes 30 30 30 30 30 

Number of training images 30 30 30 30 30 
Test Accuracy 88.7% 98.0% 98.4% 98.8% 99.3% 
Training time ~4m ~10m ~19m ~39m ~86m 

Table 5.1. One-shot 30 classes (InceptionResnetv1). 
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Figure 5.1: Accuracy of one-shot 30 classes using 4000 iterations 

(InceptionResnetv1). 

 

Iterations 300 500 1000 2000 4000 
Number of classes 30 30 30 30 30 

Number of training images 60 60 60 60 60 
Test Accuracy 100% 100% 100% 100% 100% 
Training time ~6m ~13m ~21m ~43m ~91m 

Table 5.2. Two-shot 30 classes (InceptionResnetv1). 

 

 
Figure 5.2: Accuracy of two-shot 30 classes using 1000 iterations 

(InceptionResnetv1). 
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Iterations 300 500 1000 2000 4000 
Number of classes 30 30 30 30 30 

Number of training images 150 150 150 150 150 
Test Accuracy 97% 100% 100% 100% 100% 
Training time ~8m ~19m ~28m ~49m ~101m 

Table 5.3. Five-shot 30 classes (InceptionResnetv1). 

 

 
Figure 5.3: Accuracy of five-shot 30 classes using 500 iterations 

(InceptionResnetv1). 

 

Iterations 300 500 1000 2000 4000 
Number of classes 50 50 50 50 50 

Number of training images 50 50 50 50 50 
Test Accuracy 74.4% 87.6% 95.2% 97.6% 99.2% 
Training time ~12m ~25m ~51m ~100m ~202m 

Table 5.4. One-shot 50 classes (InceptionResnetv1). 
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Figure 5.4:  Accuracy of one-shot 50 classes using 4000 iterations 

(InceptionResnetv1). 

 

Iterations 300 500 1000 2000 4000 
Number of classes 50 50 50 50 50 

Number of training images 100 100 100 100 100 
Test Accuracy 93.6% 99.2% 99.0% 100% 100% 
Training time ~9m ~15m ~30m ~60m ~126m 

Table 5.5. Two-shot 50 classes (InceptionResnetv1). 

 

 
Figure 5.5:  Accuracy of two-shot 50 classes using 2000 iterations 

(InceptionResnetv1). 
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Iterations 300 500 1000 2000 4000 
Number of classes 50 50 50 50 50 

Number of training images 250 250 250 250 250 
Test Accuracy 100% 100% 100% 100% 100% 
Training time ~7m ~17m ~35m ~71m ~131m 

Table 5.6. Five-shot 50 classes (InceptionResnetv1). 

 

 
Figure 5.6:  Accuracy of five-shot 50 classes using 300 iterations 

(InceptionResnetv1). 

 

5.2 One-shot learning results more face recognizers  
This section presents the results of six networks, namely Resnet18, 
Alexnet, VGG11, Squeezenet, Densenet121 and Inception-v3. They are 
evaluated with one-shot 50 classes dataset. Since the accuracy of these 
networks was less than InceptionResnetv1, evaluation of 300 iterations 
was enough. The dataset one-shot 50 classes was increased with the 
augmentation approach described further in chapter 4.1. 

5.2.1 One-shot 50 classes  

Algorithm Iterati
ons 

Number 
of training 

samples 

Test 
Accuracy 

Training 
Time 

Resnet18  300 1 49.6% ~9m  
AlexNet  300 1 48.5% ~8m 
VGG-11  300 1 49.1% ~12m 
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Squeezenet-v1 300 1 58.1% ~9m 
Densenet-121  300 1 49.2% ~14m 
Inception-v3 300 1 41.7% ~8m 

Table 5.7: Accuracy and training time on several networks. 

 

 
Figure 5.7: Accuracy of one-shot 50 classes using several different 

networks.  

 

5.2.2 50-shot 50 classes with augmentation 

Algorithm Epoch
s 

Number 
of training 

samples 

Test 
Accuracy 

Training 
Time 

Resnet18  300 50 88.2% ~34m  
AlexNet  300 50 87.1% ~38m 
VGG-11  300 50 87% ~52m 

Squeezenet-v1 300 50 97.2% ~33m 
Densenet-121  300 50 92.2% ~85m 
Inception-v3 300 50 93.1% ~39m 
Table 5.8: Accuracy and training time on several networks with 

increased dataset. 
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Figure 5.8: Accuracy of 50-shot 50 classes using increased dataset. 

 

5.3 Face detection results 
This section shows the results of the face detection algorithms based on 
its total number of faces found and their computation times. The 
computation time is the time it takes for the face detection algorithms to 
process the video. 

5.3.1 Execution time 

Figure 5.9 presents the results of the different face detections algorithms. 
The algorithms were processed on a video that was 1 minute and 12 
seconds long. The video contains multiple persons and faces. The time 
axis represents the time it took for the algorithms to process the video. 
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Figure 5.9: The time for each algorithm to process the video, in seconds. 

 

5.3.2 Total number of faces found 

Table 5.9 presents the number of faces the algorithms find. The number 
of faces is evaluated on how many faces they found in a video. The length 
of the video is 1 minute and 12 seconds and contains several persons and 
faces. The purpose of this table is to compare the four face detection 
algorithms in terms of how many faces they found in the video. See table 
5.9. 

FaceNet Mtcnn OpenCV_DNN OpenCV_Haar 

1742 1736 747 638 

Table 5.9: Number of faces found in the video. 
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5.4 FPS results 
This section presents the results in FPS while the system was only 
running with the face detection algorithm. Figure 5.10 shows that the FPS 
is 16.54 on a resolution of 640 x 320 pixels. See figure 5.10. 

 
Figure 5.10: FPS for face detection algorithm. 

The FPS is shifting a lot. For instance, if only the face detection algorithm 
is running it reaches an FPS of 16-17. However, if both the face detection 
and the face recognizer are running simultaneously the FPS decreases to 
6-11.  

 

5.5 Web server results 
This section presents the results from the web server. Figure 5.11 
illustrates the front page meaning the first page that the users get into 
when visiting the web server. Figure 5.11 illustrates which options the 
user has to navigate to different pages or entry points. 
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Figure 5.11: Home page in the web server. 

Figure 5.12 illustrates the contents that is shown in the next webpage. The 
user can add a face to the system by either choosing an image from its 
directory or by snapping an image from a web camera or mobile phone. 
When the user has added a face to the system the next step is to test and 
predict using the network. Thus, it is possible to upload a new image on 
the same person in order to predict which is illustrated in figure 5.13. 

 
Figure 5.12: User can add its face to the system. 



50 

 

 
Figure 5.13: Predict a new image. 

As figure 5.13 shows there is also another option (referred to as B above). 
When pressing this button, a real-time face recognition will start. During 
this phase, several algorithms are running simultaneously. They all 
predict in real time in the video stream. Face detection, face expression, 
face landmarks, age and gender are all algorithms that are running 
simultaneously. See figure 5.14. 

 

Figure 5.14: Real-time face recognition. 



51 

 

 
Figure 5.15: (face detection) Mtcnn and (face recognition) 
InceptionResnetv1. The video is from the TV series Friends.  

Figure 5.15 illustrates the content presented in the last entry point. 
InceptionResnetv1 and Mtcnn are the algorithms that are running 
simultaneously on the video stream.  
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6 Discussion 
This chapter discuss the results which is presented in chapter 5. 

6.1 Discussion one-shot learning InceptionResnetv1 
The final system has InceptionResnetv1 as the face recognizer. Several 
evaluations are done with this network for instance, one-shot 30 classes, 
two-shot 30 classes, five-shot 30 classes, one-shot 50 classes, two-shot 50 
classes and five-shot 50 classes are all evaluated with InceptionResnetv1. 
The idea of the evaluation is to compare the results with the different 
datasets.  

Table 5.1. One-shot 30 classes: As Table 5.1 presents it is clear that from 
300 iterations compared to 4000 iterations there are differences between 
the accuracies. With 300 iterations for one-shot 30 classes, the network 
reaches an accuracy of 88.7% compared to 99.3% with 4000 iterations. 

The training time for one-shot 30 classes is depending on iterations, see 
table 5.1. For instance, it takes around 4 minutes for InceptionResnetv1 to 
train during 300 iterations compared to 86 minutes with 4000 iterations.  

Table 5.2. Two-shot 30 classes: However, table 5.2 presents the results 
from two-shot 30 classes. The dataset contains two training instance per 
class compared from table 5.1. With 300 iterations, the network reaches 
an accuracy of 100%. Table 5.2 illustrates that the upcoming evaluations 
reach an accuracy of 100% as well. 

The training time for two-shot 30 classes took longer time compared to 
table 5.1 (one-shot 30 classes). For example, in table 5.1 it takes around 4 
minutes to train the network, compared to 6 minutes which table 5.2 
shows. 

Table 5.3. Five-shot 30 classes: The results show that five-shot 30 classes 
reach an accuracy of 100%. The training time is not much longer 
compared to the other evaluations. 

Table 5.4. One-shot 50 classes: This table presents the results from One-
shot 50 classes meaning that the classes increase from 30 to 50. Table 5.4 
presents that the network reaches an accuracy of 74.4% with 300 
iterations. With 4000 iterations, it reaches an accuracy of 99.2%, see table 
5.4.   
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The training time for one-shot 50 classes takes almost 3 times longer than 
one-shot 30 classes with 300 iterations. 

Table 5.5. Two-shot 50 classes: As the table illustrates, the network 
reaches an accuracy of 93.6% which has improved a lot compared to one-
shot 50 classes with 300 iterations which table 5.4 shows. It also presents 
that it reaches an accuracy of 99 % with 500 iterations. 

The training time for two-shot 50 classes takes around 12 minutes with 
300 iterations compared to 202 minutes with 4000 iterations.  

Table 5.5. Five-shot 50 classes: As the table illustrates, the network 
reaches an accuracy of 100%. It also presents that it reaches an accuracy 
of 99 % with 500 iterations. 

The training time for 50-shot 50 classes does not take much longer 
compared to the other evaluations.   

To summarize, several face recognizer networks are evaluated during 
this project, namely InceptionResnetv1, Resnet18, Alexnet, Squeezenet, 
VGG11, Densenet121 and Inceptionv3. It is clear that InceptionRensetv1 
performs better than the rest. However, it can be noted that the other 
algorithms perform much better when the amount of data is increased. 
For instance, figure 5.8 shows that Squeezenet reaches an accuracy near 
98% with the 50-shot 50 classes dataset. InceptionResnetv1 performs well 
during all evaluations and does not require much data to get an accuracy 
of 99% and above.  

Since one of the goals was to reduce the data and implement a network 
that still performs well with low amounts of data, InceptionResnetv1 is 
used in the final project. 

 

6.2 Discussion results face detection 
This section presents the results of the face detection algorithms which 
are responsible to find a face in a single image or in a video stream. The 
section starts by presenting the results according to their total number of 
faces found, followed by the execution time. 
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6.2.1 Total number of faces found 

As table 5.9 illustrates, there are four different algorithms that are 
evaluated. The total number of faces found is measured on a video 
stream. In other words, the four algorithms predict simultaneously when 
they spot a face in the video stream. As table 5.9 presents, Mtcnn and 
Facenet perform best on this video followed by Opencv_Dnn and 
Openv_Haar.  

Given by the total number faces found, there are no large differences in 
performance between Facenet and Mtcnn. But the final system uses 
Mtcnn as the face detection algorithms due to the performance in speed 
which is described below. 

6.2.2 Execution time 

The execution times between the four face detection algorithms are 
varying. For instance, Mtcnn performs best and can process the video 
faster than the rest of face detection algorithms. As figure 5.9 shows, the 
slowest algorithm is Opencv_Haar which almost is 2x slower than Mtcnn 
which is implemented in the final system.  

However, I will not investigate which face detection algorithms are the 
fastest existing in the world in this study, as I only compared four face 
detections algorithms with each other. But according to several papers, 
Mtcnn is a state-of art face detection algorithm and the fastest algorithm 
that exists today. 

6.3 Discussion one-shot learning results 
In this section the result from chapter 5.2 is discussed. 

6.3.1 Training time 

Table 5.7 illustrates the results from the different algorithms that are 
trained with one-shot learning. Several face recognizer networks are 
evaluated using one-shot 50 classes and 50-shots 50 classes, generated 
using augmentation. As Table 5.7 illustrates, two algorithms have the 
same training time, namely Alexnet and Inception-v3. The slowest of 
them all is Densenet121 which has a training time of 14 minutes. VGG11 
had almost 2x the time in order to train compared to Alexnet and 
Inceptionv3 One reasoning why some of the algorithms perform slower 
than others is that they have different amounts of parameters which 
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increase the size of the networks. This make the size of the network 
larger. 

6.3.2 Accuracy 

Figure 5.7 and 5.8 presents the accuracy of the algorithms. As it shows it 
is clear that these algorithms needs more data in order to perform well. 
In figure 5.7 where the algorithms are evaluated with one-shot 50 classes 
they have an accuracy around 50% whereas when they are evaluated with 
50-shot 50 classes they are improving in accuracy. For instance, 
Squeezenet has an accuracy near 97%. 

6.4 Discussion of augmented dataset  
This section will present the execution time and the accuracy for the same 
algorithms that were presented in section 6.3. However, the 
difference is that the dataset has been enhanced and has been increased 
from one sample to 50 samples per class.   

6.4.1 Execution time 

This section presents the results of the algorithms with an increased 
dataset, namely 50 instances for each class, using the augmentation 
method. A generating function is implemented in order to increase the 
dataset. However, Table 5.8 shows that Densenet121 took 85 minutes to 
train. Densenet121 is the slowest network and the fastest of them is 
Resnet18 which had 34 minutes of training. Alexnet is not far behind as it 
perform the training in 38 minutes.  

6.4.2 Accuracy 

The algorithms are evaluated with F1-Score. Figure 5.7 and 5.8 present 
the results. It is an interesting result since the models that are evaluated 
were trained with 50 instances per class, meaning that the accuracy has 
been improved by the augmentation. However, InceptionResnetv1 still 
performs best, with an accuracy of 100%, as illustrated in figure 
5.8. However, it is interesting to see that all other algorithms namely 
Resnet18, Alexnet, Squeezenet, VGG-11, Densenet-121 and Inception-v3 
all improves with augmentation. Table 5.8 presents that Resnet18 has an 
accuracy of 86% which is an increase compared to when it was trained 
with a single instance, namely one-shot 50 classes.  
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6.5 Discussion FPS 
Section 5.4 presents the result of the FPS on the face detection 
algorithm. It is evaluated when Mtcnn is running and Figure 5.10 
illustrates the result. It shows an FPS of 16.54 and the resolution of the 
windows is set to 640 x 340 pixels. When the resolution of the windows is 
increased, the FPS goes down. However, 640 x 340 pixels is a good 
resolution in this project.  

6.6 Discussion web server 
Section 5.5 presents the web server and the server that was the final 
system. It contains all of the algorithms that is presented in Chapter 4. 
Mtcnn is used because the evaluation of the face detection illustrates that 
it has the fastest performance while being accurate. The face recognition 
algorithm that is used in the web server is Inceptionresnetv1 since it 
performs best during the accuracy test and it is also fast relative to the 
training.  
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7 Conclusions 
There are several goals which are presented in section 1.3 and the first 
goal is research and find different approaches in order to solve the one-shot 
learning problem. The goal is achieved and the face recognizer algorithm 
which is called InceptionResnetv1 presents accuracy up to 100% with 
one-shot learning. Another approach to solve the one-shot learning 
problem is to use augmentation meaning that a function generates more 
images from one image in order to increase the dataset. All algorithms 
that are evaluated during this project presents better results when they 
got an enhanced dataset with augmentation. However, as mentioned in 
the beginning of this section InceptionResnetv1 shows extremely good 
results without augmentation. Therefore, this network is implemented in 
the final system. 
 
The next goal of this study is to implement a face recognition system with only 
one sample per class.  This goal is achieved with two different approaches. 
The final system uses a face recognizer network that calls 
InceptionResnetv1 and it shows good results. Thus, this network is 
implemented in the final system. However, another approach that solves 
the one-shot learning problem is with augmentation. The remaining face 
recognition algorithms that are not used in the final system shows results 
up to 85-97% with augmentation.     
 
The third goal that section 1.3 presents is implement a suitable face detection 
algorithm.  This goal has been solved with a face detection algorithm 
namely, Mtcnn. The final system uses this algorithm since it presented 
best results due to the execution time and it have good accuracy as well. 
From several paper it is also known that Mtcnn is a state-of-art algorithm. 
 
The fourth goal is implement algorithms that can classify the age, gender, face 
landmarks and facial expressions of a person. This goal has also been achieved 
with several algorithms. These algorithms are activated and running on 
the client side and are therefore implemented with Javascript. This 
enables ability to several users from different networks to use the system. 
 

The fifth goal is implement a webserver with all algorithms included.  This goal 
is achieved. A webserver is implemented and the entire face recognition 
system is implemented within it. Namely InceptionResnetv1, Mtcnn, Face 
landmarks, Face expression, age and gender. REST APIs are implemented 
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in order to communicate between the server and the clients. The server is 
called Flask and it is implemented in Python.  
 
The sixth goal is give the possibility to add a new user to the system and re-
train the network. This goal was achieved as the webserver gives the 
possibility to add a new user to the system. 

The last goal is to implement the entire system on a Jetson Nano and optimize 
it. This goal is solved the entire system is implemented on the Jetson Nano 
and it is optimized as well with GPU programming.  

 

7.1 Ethical aspects 
Photography ethics are the principles that guide how we take and share 
images. Photography ethics are subjective, contextual and fluid, meaning 
that every person’s ethics will be different since ethics are based on a 
person's life and experience and values. This project suggests a solution 
on a face recognition system with one-shot learning. Thus, it is important 
to care about the ethics since there is a camera included in the system. 
When the algorithms in the system spot a face of a person it will pre-
process the image and save it in a database. This can be infringement of 
an individual’s privacy. For instance, if the system is implemented on a 
public place where people are not aware about the system and its 
potential power there will be a problem. Thus, it is important to create 
awareness about the system to the users with warning signs or something 
similar that inform the users. Photography ethics matter since no one 
want to be photographed without knowing it.  
 
To summarize, this paper suggests a solution on how to implement an 
advanced and optimized face recognition system that can be used in 
several fields and applications. Its strengths and its usefulness can help 
people and companies on a daily basis. For instance, as a security system 
to give entrance rights. However, beyond all benefits it can bring, it is 
crucial to consider the ethical aspects if it should be deployed in a live 
setting.  
 
 

7.2 Future work 
For future work, it could be interesting to investigate in more suitable 
algorithms that can perform well on small amounts of data. The results of 
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this study indicate that InceptionResnetv1 performs well on one-shot 
learning problems. However, the other algorithms that were tested can 
still be improved. It would also be interesting to see how this project’s 
solution would work when implemented as part of a full scale solution, 
such as in a car. Another idea for future work could be to further develop 
the applications for various devices. Algorithms could further be adapted 
to the requirements of the different operating systems on the market, for 
instance. This solution contains limitations in the use of real-time camera 
for at least one of the operating systems, iOS. Furthermore, additional 
efforts to improve user experience and adapt it to broader user groups, 
for instance vision disabled users, could also be conducted.  
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