
i

Master's thesis

Two ye

Master's thesis

Master of Science in Computer Engineering

Real-time face recognition using one-shot learning
A deep learning and machine learning project

Alex Darborg

ii

MID SWEDEN UNIVERSITY
Department of Information and Communication Systems

Examiner Tingting Zhang, tingting.zhang@miun.se
Supervisor: Johannes Lindén, johannes.linden@miun.se
Author: Alex Darborg, alda1502@student.miun.se
Degree programme: Master of Science in Computer Engineering, 120 credits
Main field of study: Computer Engineering
Semester, year: VT, 2020

1

Abstract
Face recognition is often described as the process of identifying and
verifying people in a photograph by their face. Researchers have recently
given this field increased attention, continuously improving the
underlying models. The objective of this study is to implement a real-time
face recognition system using one-shot learning. “One shot” means
learning from one or few training samples. This paper evaluates different
methods to solve this problem. Convolutional neural networks are
known to require large datasets to reach an acceptable accuracy. This
project proposes a method to solve this problem by reducing the number
of training instances to one and still achieving an accuracy close to 100%,
utilizing the concept of transfer learning.

Keywords: Face recognition, one-shot learning, machine learning, deep
learning, face expression, Inception-Resnet-v1, Squeezenet, web service

2

Acknowledgements
I would like to thank Knightec for giving me the opportunity to conduct
this project. A special thank you goes out to André Dankert for providing
me with frequent feedback and guidance throughout the project, always
happy to share his knowledge and experience.

I would also like to thank my supervisor, Johannes Linden at Mid Sweden
University for his helpful advice throughout the project.

3

Table of Contents
Abstract ... 1
Acknowledgements .. 2
Table of Contents ... 3
1 Introduction .. 7
1.1 Background and problem motivation ... 7
1.2 Overall aim ... 8
1.3 Concrete and verifiable goals ... 8
1.4 Scope .. 9
1.5 Outline .. 9
1.6 Detailed problem statement .. 9

2 Theory ... 11
2.1 One-shot learning ... 11
2.2 Transfer learning .. 11
2.3 Face Detection .. 12
2.4 Face Recognition .. 12
2.5 Convolutional Neural Network .. 12
2.5.1 Common CNN Architectures .. 13
2.6 Multi-Task Cascade Convolutional Neural Network 14
2.7 FaceNet .. 15
2.7.1 Triplet Loss ... 16
2.8 Siamese Neural Network .. 16
2.9 OpenCV Haar Cascades ... 16
2.10 OpenCV DNN .. 17
2.11 Support Vector Machine .. 17
2.12 Gaussian Naïve Bayes .. 19
2.13 K-Nearest Neighbors .. 19
2.14 Javascript algorithms .. 19
2.15 Related works ... 20

3 Methodology ... 22
3.1 Datamining Method ... 22
3.2 Dataset structure ... 23
3.3 Choice of algorithms .. 24
3.3.1 Face detection ... 24
3.3.2 Face recognition .. 25
3.3.3 Image classification .. 25
3.3.4 Web server .. 25
3.4 Evaluation .. 26

4

3.4.1 Evaluation of Images .. 26
3.4.2 Evaluation metrics .. 26
3.5 Libraries ... 27
3.6 Hardware .. 29
4 Implementation .. 31
4.1 Enhancing the dataset ... 32
4.1.1 Cropping function ... 33
4.2 Face detection - Mtcnn ... 34
4.2.1 Face recognizer – InceptionResnetv1 ... 35
4.2.2 Image classification - SVM .. 37
4.2.3 Webserver ... 37
4.2.4 Face expressions ... 38
4.3 Routes of the web server .. 38

5 Results ... 40
5.1 One-shot learning results of InceptionResnetv1 40
5.2 One-shot learning results more face recognizers 44
5.2.1 One-shot 50 classes ... 44
5.2.2 50-shot 50 classes with augmentation .. 45
5.3 Face detection results ... 46
5.3.1 Execution time .. 46
5.3.2 Total number of faces found ... 47
5.4 FPS results .. 48
5.5 Web server results .. 48

6 Discussion .. 52
6.1 Discussion one-shot learning InceptionResnetv1 52
6.2 Discussion results face detection ... 53
6.2.1 Total number of faces found ... 54
6.2.2 Execution time .. 54
6.3 Discussion one-shot learning results .. 54
6.3.1 Training time ... 54
6.3.2 Accuracy ... 55
6.4 Discussion of augmented dataset ... 55
6.4.1 Execution time .. 55
6.4.2 Accuracy ... 55
6.5 Discussion FPS... 56
6.6 Discussion web server .. 56

7 Conclusions ... 57
7.1 Ethical aspects .. 58
7.2 Future work .. 58

5

References ... 60

6

Terminology

Abbreviations Description

CNN Convolutional Neural Network

Mtcnn Multi-Task Cascaded
Convolutional Networks

SVM Support Vector Machine

k-NN k-Nearest Neighbors

GPU Graphics Processing Unit

CPU Central Processing Unit

TP True Positive

TN True Negative

FP False Positive

FN False Negative

FPS Frame Per Second

PCA Principal Component Analysis

7

1 Introduction
This thesis is divided in seven parts and will present a how to implement
real-time face recognition using one-shot learning. This chapter will go
through the background and problem motivation for the thesis, followed
by its goal and scope.

1.1 Background and problem motivation
The field of face recognition has been a topic of study since the 1960s. It
has stayed relevant both due to the practical importance of the topic and
the theoretical interest from cognitive scientists. Face recognition aims to
verify or identify the identity of an individual using their face, either from
a single image or from a video stream. Face recognition systems are used
in many contexts, such as within security and healthcare where it is used
to accurately track patient medication consumption and support pain
management procedures.

Researchers have recently given this field an increased attention,
conducting a multitude of studies and continuously improving the
models that already exists. Convolutional Neural Networks (CNNs) are
commonly used in computer vision and significantly improves the state
of art in many applications. One of the most important ingredients is the
availability of large quantities of training data.

Building a face recognizer can be challenging, especially when the dataset
is limited, as oftentimes is the scenario in real world applications. One of
the major challenges when the dataset is limited is that an individual’s
face may look different if various lightning, but also that different persons
may have similar looking faces. Suppose a mobile ID unlocking
recognizer should be developed. It would not be feasible to require that
the person should upload millions of images for building the face
recognizer system. In this scenario one-shot learning, where the
algorithm learns by using only one or few training samples, would be a
suitable technique.

A face recognizer comprises two main components where the first one is
a face detection algorithm. The task of face detection is to find a face in a
single image or in a video stream. The second step is to verify or identify

8

the identity. There are several techniques in order to accomplish this.
[1][2][3]

In this paper a face recognizer will be implemented using one-shot
learning. Several suitable deep learning algorithms will be presented and
evaluated, and in the final system a face recognition system will be
implemented on a Jetson Nano together with a web service.

1.2 Overall aim
The goal of this project is to implement a real-time face recognition system
using one-shot learning. This as it proceeds from the assumption that
there is only one image available to learn from. Algorithms should be
evaluated based on accuracy and time required to train.

The system should be easy to interact with and keep up to date. Therefore,
a web service will also be implemented. This facilitates when a user wants
to add more people to the system, such as when a company hires new
employees. Since it is a real-time face recognition system it is important
to focus on the speed of the system as well. The goal of all algorithms is
to find a person in the video frame and classify it in real-time.

It should be possible to apply the system in various contexts. One
example could be to install the system in the entrance of a company,
where it should be able to recognize employees entering the doorway.
Other contexts where the system could be used include security
applications or autonomous cars where the system recognizes the person
behind the steering wheel and adapts the driving settings accordingly.

1.3 Concrete and verifiable goals
The goal of this study is to evaluate and select different algorithms to
solve the following requirements:

 Research and find different approaches in order to solve the one-
shot learning problem

 Implement a face recognition system with only one sample per
class

9

 Implement a suitable face detection algorithm

 Implement algorithms that can classify the age, gender, face
landmarks and facial expressions of a person

 Implement a webserver with all algorithms included

 Possibility to add a new user to the system and re-train the
network

 Implement the entire system on a Jetson Nano and optimize it.

This thesis will use various programming languages, such as Python for
backend and HTML, CSS and Javascript for frontend.

1.4 Scope
This thesis has several limitations in scope. There are multiple solutions
to implement a face recognition system. In this thesis the scope is to solve
the one-shot learning problem, meaning that there will only be one
sample per class to train the algorithm. Therefore, solutions that require
large quantities of data, such as implementing a convolutional neural
network from scratch, are outside the scope of this study.

1.5 Outline
In the next chapter of this thesis, the theoretical framework is presented,
along with a short section of related works. Subsequently follows chapter
3, which describes the methods that are used to fulfil the study’s goals.
Thereafter follows chapter 4 which presents the final implementation of
the system. Chapter 5 presents the results obtained by the algorithms and
the web server that is implemented, and chapter 6 discusses the results.
Lastly, chapter 7 describes the conclusions and discusses ethical aspects
and presents suggestions of future research.

1.6 Detailed problem statement
This system is divided in three parts: face detection, face recognition and
face classification. The face detection detects the face in the image, which

10

is to be used for further analysis. The purpose of the face recognition
algorithm is to produce feature maps which is a representation of the face.
These maps contain important information about the user’s face, such as
the width between the eyes. Then, a supervised learning algorithm will
be used to classify the feature maps and provide the user with a predicted
name.

Evaluation is an important part of this project since multiple networks are
to be compared. It will be important to measure how well they perform.
Commonly known accuracy functions will be implemented, namely F1-
Score, Precision and Recall.

11

2 Theory
This chapter describes the key concepts and the theory behind the thesis.
This section will cover important methods that are used during the
project followed by different algorithms that are used and evaluated. The
basics of deep learning and machine learning will not be presented here
since it is assumed to be familiar concepts for the reader.

The chapter begins with an introduction of the methods that has been
used followed by a briefly description of convolutional neural networks
(CNNs) and common architectures of them. Then the chapter continues
with a description of face detection, face recognition and image
classification.

2.1 One-shot learning
This is an object categorization problem and usually machine learning
algorithms require training on hundreds or thousands of samples which
results in a large dataset. However, one-shot learning aims to learn
information from one or few samples. Learning from few samples
remains a key challenge in machine learning. Therefore the task is
challenging since there might be limited instances per class which means
limited number of training instances and in some cases only one image
for each of them. This challenge naturally exists in many real scenarios.
[4][5]

2.2 Transfer learning
Transfer learning (TL) is an approach that focuses on storing knowledge
gained while solving one problem and applying it to a different but
related problem. For instance, suppose that a system should recognize
human faces in an image. By utilizing models that already have been
trained on millions of faces, often referred to as pre-trained models,
related problems can be solved without the need of large quantities of
data. [6]

12

2.3 Face Detection
Face detection is a technique to detect and find a face in an image or a
video stream. There are different methods to accomplish the tasks. Either
a convolutional neural network (CNN) can be implemented from scratch,
which will require huge amounts of data, or a pre-trained model that
already has been trained on millions of faces can be used. The later
approach is an effective method when the dataset is small or if the
problem that is going to be solved is related to the problem of the pre-
trained model. All algorithms have different sizes. Therefore, some
algorithms are more suitable for webpages and mobile phones, for
instance.

Face detection can be challenging in unconstrained environments due to
various poses, illuminations and occlusions. A photography that contains
human faces can easily be spotted by humans. However, for computers
this is a challenging task. But, studies have shown that deep learning can
achieve good results in this area. [4][5]

2.4 Face Recognition
A face recognition system is capable of identifying or verifying a person
from an image or video frame. There are different methods of face
recognition systems but in general, they work by comparing images from
a given image within a database. All images in the database are known
by the model. Euclidean distance is a common function that can be used
in order to classify a given image from the images in the database. A face
recognition system can be used in various contexts. For instance, they are
commonly used in security applications. They can also be used in
autonomous cars where the purpose is to predict the person behind the
steering wheel and change all car settings for them. [7]

2.5 Convolutional Neural Network
A common and a well-known method for image classification is called
convolutional neural network (CNN). There are various CNNs and they
all have the same underlying structure but they can have different
architectures. The underlying structure is the same for all CNNs. All of
the CNNs uses three types of layers, convolutional, pooling, fully
connected layers and output layer. There are multiple kernels in the
convolutional layers and they have the responsibilities to calculate

13

feature representations of the image. The feature representation is called
feature maps and the feature maps contain values of the face. Thereafter
a pooling layer aims to reduce the resolution of the feature maps. Usually
there are multiple convolutional and pooling layers. To summarize, the
first convolutional layer spots edges in an image and this is called low-
level features. Thereafter, the upcoming convolutional layer is
responsible for extracting more abstract features. The convolutional and
pooling layers are often followed by fully connected layers. The task of
the fully connected layers is to create a communication line between
neurons. The final layer of the CNN is known as the output layer. Softmax
function is one example of a function that can be used in the last layer.
Figure 2.1 illustrates a CNN architecture. [10][11]

Figure 2.1: CNN architecture. [11]

2.5.1 Common CNN Architectures
Section 2.5 presents an introduction of the convolutional neural networks.
As mentioned, there are various CNNs and they all have different
architectures. The following section will present a list of common CNN
architectures.

InceptionResnetv1 is a convolutional neural network and a hybrid
Inception module. The computational cost in InceptionResnetv1 is similar
to Inception-v3. The computational cost describes how much processing
power the network needs. However, in InceptionResnetv1 a residual
connection is added on the output of the convolutional operations. This
means that the output from the Inception module is added as an input to
the residual connection. For this to work the dimensions need to be the
same for the input and output after the convolutional operations.
Therefore, a 1x1 convolutional is added to the original convolutional. In
InceptionResnetv1 the pooling operations from the Inception module is
replaced with the residual connection. [12]

14

Inception-v3 is a convolutional neural network consisting of a 42-layer
deep network. A pre-trained model that has been trained on millions of
images, on the ImageNet database, is available for use. Compared to the
previous Inception architectures this is more efficient since it has fewer
parameters. This architecture becomes the first runner up for image
classification in the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) 2015. There are two earlier versions namely,
Inception-v1 and Inception-v2. It got a low error rate and performed good
during the competition. ImageNet consists of 15 million labeled high-
resolution images with 22.000 categories. [13]

Resnet18 is a convolutional neural network. This CNN has multiple
variants of different sizes for instance, Resnet18, Resnet34, Resnet50,
Resnet101 and Resnet152. The networks can be chosen after the size of the
dataset. For instance, if the dataset is small a network with fewer layers
may be more suitable. [14]

Alexnet is a convolutional neural network and is introduced in ImageNet
Classification with Deep Convolutional Neural Networks. Alexnet was
the first successfully convolutional neural network according to the
ImageNet dataset. The network has eight layers where five layers are
convolutional and three fully-connected layers. [15]

Squeezenet is a convolutional neural network that is described in the
paper AlexNet-level accuracy with 50% fewer parameters and < 0.5MB
model size. This network has 18 layers. Squeezenet is a network that is
suitable for small datasets. For instance, a dataset that contains two
classes, ants and bees. [16]

Densenet121 is a convolutional neural network and is described in the
paper Density Connected Convolutional Networks. Densenet121 is a 121
layered deep convolutional network. There are different networks with
this architecture to choose from. [17]

2.6 Multi-Task Cascade Convolutional Neural Network
Multi-Task Cascade Convolutional Neural Network is a state-of-art face
detection algorithm that is called Mtcnn. The network is able to
simultaneously propose bounding boxes, five-point facial landmarks and
detection probabilities. This model is a deep cascaded multi-task

15

framework which exploits the inherent correlation between them in order
to boost up the performance. The network breaks down the task into three
stages namely, P-Net, R-Net and O-Net. P-Net produces candidate
window by a shallow convolutional network. R-Net has the objective to
reject as many non-face windows as possible. O-Net uses a more complex
network to further refine the output of R-Net. In particular, the model has
a cascaded structure with three stages of carefully designed deep
convolutional networks that classify face and landmark locations. The
network achieved superior accuracy in the challenging FDDB and
WIDER FACE benchmark for face detection. It keeps real time
performance which make it possible to use the network in a real time
system. Figure 2.2 shows the structure of the network. [9]

Figure 2.2: The architecture of Mtcnn. [9]

2.7 FaceNet
FaceNet provides a unified embedding for face recognition, verification
and clustering tasks. Another commonly used term to describe
embedding is feature map which corresponds to a vector representation
of information on the face. It maps each face image into a Euclidean space
such that the distance in that space corresponds to face similarities. More
specifically, an image of person X will be placed closer to all the other
images of person X and person Y will have a large distance to person X.
The main difference between Facenet and other networks is that it learns
the mapping from the images and creates embeddings. To summarize,
the created embeddings can be used directly for face recognition,
verification and clustering using for instance, Support Vector Machine
(SVM) or K-Nearest Neighbors (K-NN). Facenet uses Triplet loss function
to learn, which is further described in section 2.7.1. [18]

16

2.7.1 Triplet Loss
The functionality of triplet loss is that it minimizes the distance between
an anchor and a positive where the positive represents the same person
in the dataset. Thus, it maximizes the distance between the anchor and a
negative where the negative represents a different identity. Thereby, an
image of an anchor (person A) should be closer to the positive images (all
images of person A) and have larger distances to any negative images (all
other images). Figure 2.3 shows an illustration of the Triplet Loss. [18]

Figure 2.3: Triplet loss. [18]

2.8 Siamese Neural Network
Siamese Neural Network is an artificial neural network that uses the same
weights while working in tandem on two different input vectors to
compute comparable output vectors. Therefore it is also called a twin
neural network. The architecture of the network uses two input images
which are forwarded to the neural networks. The model then produces
two feature maps, in other words two vectors, which have the
representations of the faces. Thereafter, these vectors are computed with
a distance function in order to calculate the similarities between the two
feature maps. While the network is training the idea is to minimize the
distance function for similar classes and maximize the distance between
un-correlated classes. [19]

2.9 OpenCV Haar Cascades
Different from a convolutional neural network, Haar Cascade is a
classifier but somewhat related to convolutional neural networks. A Haar
Feature is similar to a kernel that CNN uses. Thus, in a CNN the values
of the kernel are determined by the training while Haar-Feature is
manually determined. Figure 2.4 illustrates Haar-Features.

17

Figure 2.4: Line and edge features.

This approach makes it effective in detecting face since Haar-Feature are
good at detecting edges and lines. [20]

2.10 OpenCV DNN
This is a module in the Opencv which is described in section 3.5. It is
possible to use a pre-trained model from Tensorflow which also is
described in section 3.5. However, this is a deep neural network which
can be used for inference using a pre-trained model. OpenCV DNN has
support for several frameworks such as Caffe, Tensorflow, Darknet and
PyTorch. It is possible to create various applications with this module
including face detection and object detection. [21]

2.11 Support Vector Machine
Support Vector Machine, commonly denoted SVM, is a supervised
learning model that learns from data. This model can be used for
classification and regression. SVM uses a linear separating hyperplane
which separates the data into two classes, see figure 2.5. [21]

18

Figure 2.5: Support Vector Machine, two classes that are linear

separable.

The figure above illustrates two classes, the grey dots belongs to one class
and the blue squares belongs to another class. There is a hyperplane in
the middle that separates these two classes. It is important to find an
optimal hyperplane that can do this separation. Often SVM uses kernels
and there are different kernels that can be applied depending on the
dataset and the context of the application. Generally in machine learning
a kernel refers to a kernel trick. It is a method which uses a linear classifier
to solve non-linear problems. Figure 2.6 illustrates this and Table 2.1
shows two common kernels.

Figure 2.6: (From left) Non-linear separable data and separable data.

Kernel functions Formula

Linear 𝑘 𝑥 , 𝑥 = 𝑥 , 𝑥

Polynomial 𝑘 𝑥 , 𝑥 = 𝑘(𝛾𝑥 , 𝑥 + 𝑟) , 𝛾 > 0

Table 2.1: Common kernel functions.

19

2.12 Gaussian Naïve Bayes
Gaussian Naïve Bayes (GNB) is a supervised learning algorithm which
produces a linear classifier. GNB is divided into three parts. First, when
it handles real-time data with continuous distribution it assumes that the
data is generated with a normal distribution. Second, Multinomial Naïve
Bayes can be applied in multinomial distribution which means that the
features are represented as frequencies. Third, if the features are
independent or Boolean the feature are generated through a Bernoulli
process therefore a Bernoulli Naïve Bayes classifier can be applied. See
equation 2.12 for the linear classifier. [22]

𝑃(𝐴 |𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

∑ 𝑃(𝐴)𝑃(𝐵|𝐴)

 (2.12.1)

2.13 K-Nearest Neighbors
K-Nearest Neighbors is a supervised learning algorithm which is used for
regression and classification problems. In the scenario of a classification
problem the output is a class membership. Thus, an object is classified by
a vote of its neighbors. For instance, if k = 1 the object is assigned to the
class that are nearest the neighbor. However, if it is a regression problem,
the output is the property value for the object. The value for the object is
the average values of k nearest neighbors. [19] Equation 2.13 shows the
formula for Euclidean distance. The method for calculating the distance
between the points is denoted as,

 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝)

= (𝑞 − 𝑝) + (𝑞 − 𝑝) + ⋯ + (𝑞 − 𝑝)

= (𝑞 − 𝑝)

(2.13.1)

2.14 Javascript algorithms
Age and Gender Recognition Model is a model that predicts age and
gender in an image or a video stream. It employs a feature extraction
layer, an age regression layer and a gender classifier. The size of this
model is 420kb and it is similar to an Xception architecture. [21]

20

Face Expression Recognition Model is a lightweight model it is fast and
provides good accuracy. The size of this model is 310kb and it employs
depth wise separable convolutions and densely connected blocks. [21]

Face Recognition Model has an architecture similar to ResNet-34 which is
a convolutional neural network. It is implemented to compute a face
descriptor and the output is a feature vector with 128 values. [21]

68 Point Face Landmark Detection Models is a lightweight landmark
detector. The detector is fast and accurate. The model has various sizes to
choose from. For instance, the default model has a size of 350kb and the
tiny model is only 89kb. [21]

Tiny Face Detector is a real time face detector and has good performance.
It is a mobile and web friendly model. The model size is roughly 190 KB.
[21]

2.15 Related works
In [25], Yandong Guo and lei Zhang presents the problem of one-shot
learning in a face recognition context. Their goal is to build a large-scale
face recognition that is able to recognize several different identities. The
used approach is a novel super vision signal namely, underrepresented-
classes promotion (UP) loss term. This technique aligns the norms of the
weight vectors in order address the problem of unbalanced data. The new
loss term (UP) is efficient since it promotes the un-represented classes in
the learn model. This improves the performance of a face recognition
system.

In their development of the one-shot learning phase they used a dataset
consisting of 21.000 classes which they use in order to train a classifier.
The technique is a multinomial logistic regression based on a 34-layer
residual network. The results of this study shows 99% for
underrepresented classes and 99.8% for normal classes. [25]

Another study on face recognition is presented by Zhao et al. In the paper
they present a face recognition method based on Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA). The technique
consists of two steps where they first use PCA in order to project the
original vector of the face image to a face subspace. Then they use LDA

21

which act as a linear classifier. The combination of these techniques
improves the capability of classifying classes from a model that has been
trained on a small dataset. [26]

In [27] they present a face recognition system using convolutional neural
network and principal component analysis (CNN-PCA). Edy et al
describe their system of a face recognition and they use a hybrid feature
extraction method (CNN-PCA). The idea is to combine these two
techniques to get a better feature extractor method which leads to a more
accurate model. The idea of their system is to produce a system that is
reliable and powerful to identify human faces in real-time. The results of
their study shows that their method has an accurate data processing and
high accuracy. They present that adding a CNN to PCA increases the
accuracy. In 50 objects they get 98% accuracy instead of 96% when using
PCA only. [27]

Another research is from [28] where they implement a face recognition
system. They first start with pre-processing the images by performing
noise removal and hole filling. After this they use viola jones algorithm
in order to extract faces from the image. They compute the SURF features
of the extracted face in order to use feature matching to recognize
identities. M-estimator Sample Consensus (MSAC) is used in order to
remove outliers. In this study they get an accuracy of 95.9% in Graz 01
dataset. [28]

22

3 Methodology
This chapter presents the methodologies used in this study. After
research, multiple suitable algorithms were found. However, all of them
are not evaluated. This chapter describes the algorithms that are
evaluated and implemented. Chapter 3.1 presents the datamining
methodologies. Thereafter follows the structure of the dataset. It then
continues with Chapter 3.3 and its sub chapters presents the algorithms
that are used and evaluated. Thereafter follows chapter 3.4, which
describes the evaluation metrics. It describes how the project is evaluated
and it also describes common methods in order to evaluate the models.
Chapter 3.5 presents all libraries that are used during the project. Lastly,
chapter 3.6 goes through the hardware that is used.

Agile methodologies are used during the project and small releases are
presented throughout the project in order to establish the direction and
the next releases. This project uses a sprint of a seven days interval.
However, some sprints use a longer interval since unexpected delays
occurred. The project uses a backlog that is updated on a daily basis and
a scrum board is used as well. Before starting a new backlog, each ticket
is estimated.

3.1 Datamining Method
This section presents the datamining methods which are used to
overcome the challenges of producing a face recognition system with one-
shot learning. Each paragraph represents the steps taken to process and
solve the challenges.

Problem identification is a way to research and identify the problem with
different techniques that currently are used. For instance, convolutional
neural networks are powerful and can be very accurate. The goal is to
implement a face recognition system with one-shot learning therefore
building a convolutional neural network from scratch is not an
alternative. However, existing pre-trained convolutional neural network
models is a solution for this project. The final solution for this project is
presented in chapter 4.

23

Literature study is a method to collect as much relevant information
about the topic as possible, to understand and take previous learnings
into account.

Understanding of the business is important since the final solution is
given to the company and therefore the final system need to be formed
by their guidelines.

Understanding the data means to analyze the data and understand it.
This is important as this will be used as basis for the preparation of the
data.

Preparing the data means to prepare it for the networks for instance,
when then input image is forwarded to the face recognition algorithm it
needs to be cropped and in a right format (png, jpg o jpeg).

Modelling all networks are performed on the data that was mentioned in
the previous step.

Evaluation is in this study the process of comparing multiple networks
and discarding some of them, due to their low accuracy, overfitting or too
skewed results.

Deployment is the final step, when the networks have been evaluated
correctly with good results.

3.2 Dataset structure
Several networks are evaluated during the project and they all have
identical data structures. All images are cropped and resized before they
are put in separate folders specifically created for each class. Figure 3.1
presents the structure of the dataset.

24

Figure 3.1: Folder structure.

3.3 Choice of algorithms
In order to achieve the objective of this study, three main methods are
required, namely face detection, face recognizer and face classification.
Section 3.3.1, 3.3.2, 3.3.3 presents this further.

3.3.1 Face detection

To evaluate which face detection algorithms work best, several face
detection algorithms are implemented on a specific video clip, results are
registered and compared. The video clip contains several different faces
and lasts around one minute.

In order to find face detection algorithms to compare and evaluate, a
study of various papers was conducted. Facenet, Mtcnn, Opencv_Dnn

25

and Opencv_Haar all showed reasonable results. Thus, these four
algorithms were chosen to be evaluated for the face detection.

3.3.2 Face recognition
Several face recognizer networks are evaluated, namely
InceptionResnetv1, Resnet18, Alexnet, VGG11, Squeezenet, Densenet121
and Inceptionv3. These seven pieces are all deep learning networks which
are evaluated under the same conditions. They are all evaluated using the
same datasets which are presented in section 4.1. One reasoning why
these networks are chosen to be evaluated is that previous papers present
good results of them. Another reasoning why InceptionResnetv1 and
Squeezenet are selected is because they are suitable for small datasets.
[7][8][9][10][11]

3.3.3 Image classification
The last part is image classification and the reasoning why image
classification is needed in this project is that the face recognizer networks
that are mentioned in section 3.3.2 produce feature maps. Each feature
map is mapped to a face and contains information about each identity.
More precisely, person A has a feature map and person B has another
feature map.

The purpose of using feature maps is to classify them, more precisely get
the name of the person in the image. This can be achieved with a
classification algorithm or to use Euclidean distances function.

The classification algorithms that are chosen are SVM, k-NN and
Gaussian Naïve Bayes. Euclidean distance will also be evaluated.
[16][17][18]

3.3.4 Web server

One of the goals in this paper is to create the functionality to upload new
individuals to the system, which can be required if a new employee has
been hired at the company. Therefore, a web server is created which gives
the functionality to add a new user to the system when required. Several
algorithms from each part for example, one algorithm from section 3.3.1,
one algorithm from section 3.3.2 and one algorithm from section 3.3.3 are
implemented and this is presented in section 4. Moreover, several other
algorithms are implemented such as, face landmarks, gender, age and
face expression. [20]

26

3.4 Evaluation
This project is divided into 3 parts, face detection, face recognition and
face classification. The first part is evaluated based on research and
commonly known challenges. Face recognition models and the face
classification algorithms are evaluated with commonly known methods
which is described in section 3.4.2.

3.4.1 Evaluation of Images

The task of image classification can be accomplished in various ways. One
approach is to predict each sample in other words each image. There are
multiple performance metrics that can be used during the evaluation of a
classification task. The approaches that are used in this project is
presented in section 3.4.2. When predicting a label, it can result in four
outcomes, namely True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN). Table 3.1 presents the outcomes.

Actual Class Ant Bee
Ant True Positive (TP)

Correct predicted as ant
False Negative (FN)

Incorrectly predicted as bee
Bee False Positive (FP)

Incorrectly predicted as ant
True Negative (TN)

Correctly predicted as bee

Table 3.1: Illustrates the different outcomes.

3.4.2 Evaluation metrics

It is interesting to measure and visualize the networks that are described
in section 2.5.1. There are different methods in order to evaluate a model
but common approaches are Recall, F1-Score, Precision. All of these
methods are important to understand. Since the last example gives an
accuracy but it does not give information about if the model predicted all
samples wrong in one class and all correct for the remaining classes even
if it gives an accuracy. However, F1-Score is a measure that can be
interesting to look at. Below is a list of the different approaches that are
included in this project.

F1 – score: [30] also known as F-measure, is a measure of a test’s accuracy.
This method considers precision p and recalls r of the test in order to
calculate the score. Number of correct positive results divided by number
of all positive results is denoted as p. Thus, r is denoted as, number of
correct positive results divided by the number of all relevant samples.

27

Thereby, F1-score is the harmonic mean of the precision and recall that
will be listed below. It reaches its best value at 1.

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(3.4.1)

Precision: [30] describes the accuracy of classified classes. In order words
it is the ratio between correct classified classes and the total number of
predictions.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3.4.2)

Recall: [30] the ratio between correct classified samples of a class and the
total number of instances of that class.

 𝑅𝑒𝑐𝑎𝑙𝑙 =

(3.4.3)

3.5 Libraries
During the project different libraries have been used in order to
implement machine learning algorithms and the web server. Most of the
algorithms are Python libraries that are commonly used in Machine
learning. However, not only machine learning libraries are used. For
instance, a library called Split-folders is used in order to split the data into
a certain percentage. The libraries will be presented in the section below.

Tensorflow [30] is a Python open source artificial intelligence library. It is
well documented and it allows developers to create large-scale neural
network with multiple layers. It can be run on a CPU as well as GPU. This
library is used to load the inception models.

Numpy [31] is a library for Python, adding support for large, multi-
dimensional arrays and matrices. This library is used to make array
operations.

28

Matplotlib [32] is a Python library for creating static, animated and
interactive visualizations in Python. It is a good tool for machine learning.
This library is used to sketch the accuracy from the machine learning
algorithms.

PyTorch [33] is a deep learning library similar as Tensorflow. This library
can be run on both CPU and GPU as well. The library is used to create the
dataset in this project such as, cropping and resize the images.

OpenCV [34] is an open source computer vision and machine learning
library. It is a huge library that contains more than 2500 optimized
machine learning algorithms. It supports C++ and Python, for instance.
This library has been widely used in this project for reading images,
resizing images, convert images to RGB, saving images and is also used
to make the live face recognition system work in real-time.

Jupyter Notebook [35] is a web-based interactive development
environment for Jupyter Notebook, code and data. This environment is
used to implement and test the software.

SKlearn [36] is an open source machine learning algorithm that supports
functionalities such as multi-dimensional arrays. This library also has
support for high-level mathematical functions in the arrays. It also
supports machine learning algorithms.

Flask [37] is a micro web framework, flask is a Python class datatype.
Thus, it is used to create instances of web application or web applications.
It is a simple and a good tool that is well documented on the web. This
library is used for creating the webpages.

Glob [38] is used to find all the pathnames matching a specified pattern
according to the rules used by the Unix shell.

Albumentations [39] is a python open source library that makes it
possible to boost the dataset. This library has been used in this project in
order to boost the dataset by increasing the amount of data samples.

Pytube [40] is a lightweight dependency free Python library for
downloading online videos. It is used to download an online video
stream. The face recognition system uses this video stream in order to
classify the persons in the video stream.

29

Split-folders [41] is a python library that split folders into training,
validation and test. This library is used to split the folders and put images
in the subfolders for training and testing. This library is used to create the
datasets that have been tested in machine learning networks with
different amounts of images per class.

3.6 Hardware
The final system is implemented on the Jetson Nano but during the
project different algorithms have been trained and evaluated on different
machines. Jetson Nano has a GPU and the final system is implemented in
order to run on the GPU.

Term Specification

Graphical Processing Unit 128-core NVIDIA Maxwell™

Central Processing Unit Quad-core ARM® A57

Memory 4GB 64-bit LPDDR4

Connectivity Gigabit Ethernet

OS Support Linux for Tegra®

Table 3.2: Specifications for Jetson Nano

Term Specification

Graphical Processing Unit Intel® Xeon® 2.0GHz, 38.5MB cache

Central Processing Unit Tesla T4 16GB

Memory 13 GB

Disk storage 69 GB HDD

30

Table 3.3: Hardware used for face recognition.

The entire system is implemented on a Jetson Nano. To optimize the
system, GPU programming has been used. This is the process of
programming in such way that the GPU takes care of the code which
speeds up the time for all calculations compare to a CPU. Figure 3.1
illustrates the hardware.

Figure 3.1: Jetson Nano with an external camera.

31

4 Implementation
This section presents the final results of the system and how they are
implemented. All the networks and algorithms and how they are
implemented are presented. This section starts with an overview of the
entire system, see figure 4.1.

Figure 4.1: Overview of the face recognition system

Add person to the system: a person adds an image of its face to the
system. The image will be processed.

Face Detection: when the images are added into the system the face
detection algorithm will try to find a face in the image. If a face is found
it will then be cropped and saved in a database or be used for a prediction.
The face detection algorithm is presented in section 4.2.

Face recognizer: when a face is found and cropped this phase will be the
following step. Face recognizer will output a feature map representation
of the individual face and save it for uses in the future.

Predict image: during this step, the classification algorithm will predict
all images (all feature maps) and output the name of the individual.

32

Live face recognition: Several algorithms are implemented for live-face
recognition such as, face detection, face expression, age, gender and face
landmarks.

4.1 Enhancing the dataset
The dataset is divided into 7 various datasets where each dataset will be
evaluated for instance one-shot 30 classes means that the dataset consists
of 30 classes where every class has one instance. There are several datasets
and they are presented below:

 1 shot 30 classes

 2 shot 30 classes

 5 shot 30 classes

 1 shot 50 classes

 2 shot 50 classes

 5 shot 50 classes

 50 shot 50 classes

All of the datasets above are evaluated using the same method, described
in section 3.4.2. The main reason for evaluating the different datasets is to
see how the size of the training data can affect the performance. All
images are cropped to 160 x 160 pixels. The last evaluation test will first
use augmentation in order to increase the size of the dataset. For instance,
it will augment the one-shot 50 classes to 50-shot 50 classes in order to see
if the accuracy will improve, and if so, how much. Figure 4.2 illustrates
the augmentation phase.

33

Figure 4.2: Enhancing the dataset with augmentation.

4.1.1 Cropping function

Before the dataset can be forwarded to the network the dataset needs to
be pre-processed. This means that all images in the dataset need to be
cropped and also contain a face since it is a face recognition system which
will be implemented. It works by allowing the face detection algorithm
to spot a face in an image. Thereafter, the face detection algorithm
provides 4 points which gives information about the upper left, upper
right, down left and down right corners of the face. These points are then
used to crop the image, using a cropping function.

Figure 4.3 presents the cropping function. The function iterates through
the folder, as it crops and saves the new pictures into a new folder. In this
project the images are resized to 160 x 160 pixels.

34

Figure 4.3: Function that creates two folders (train,val) and crops the

images.

4.2 Face detection - Mtcnn
Four face detection algorithms are evaluated in this project. All face
detection algorithms have the responsibility to find a face in a single
image or in a video stream. However, one of the four evaluated face
detection algorithms which are presented in section 3.3.1 are used in the
final system.

Mtcnn is selected as this algorithm performs well, is accurate and speedy.
The entire project is implemented on a Jetson Nano which has a GPU.
Mtcnn performs also well on the Jetson Nano which makes it possible to
use the algorithm in real time. Figure 4.4 illustrates how the face detection
algorithm spots a face before the image has been cropped. The execution
time and accuracy are presented in section 5.3.

35

Figure 4.4: Mtcnn (Face detection).

4.2.1 Face recognizer – InceptionResnetv1

Several networks are evaluated in order to find an appropriate algorithm
for face recognizer. Namely InceptionResnetv1, Resnet18, Alexnet,
Squeezenet, VGG11, Densenet121 and Incpetionv3. The choice was
InceptionResnetv1 which is described in chapter 6.1. However, a
Tensorflow implementation is done and it has similar architecture as
Facenet but with one adjustment. Instead of using triplet loss, which is
used in Facenet, InceptionResnetv1 uses softmax. The pre-trained model
has been trained on VGG-Face2 dataset. Thereafter on my own dataset.
The idea of this face recognizer is not to use it as a classification, meaning
to predict the outcomes. Instead, the face recognizer will produce feature
maps. The training phase is done using the GPU. Figure 4.5 shows the
architecture of InceptionResnetv1.

36

Figure 4.5: (InceptionResnetv1) A piece of the architecture.

Two types of models can be used as can be seen in the top of the code,
namely vggface2 or casia-webface. Depending on which model that is
chosen it is either trained on vggface2 or casia-webface, and this is an
option that can be chosen.

However, in this project vggface2 is selected. Thereafter some
adjustments are needed, for instance the last layer of the network needs
to be changed in order to put my own dataset to it. The input of the
network is an image of size 160 x 160 pixels, and the output of this

37

network is a feature map meaning a vector containing information about
the face, more precisely a face representation. Thereafter the idea is to
implement a classification algorithm that can classify these feature maps,
it is fine to use Euclidean distance as well. But, in this project SVM is
chosen to classify the feature maps which is described in section 4.2.2.
Table 4.1. describes the parameters used in this project.

Parameters Values
Architecture IncpetionResnetv1

Batch size 10
Input size 160x160

Table 4.1: Parameters for InceptionResnetv1.

4.2.2 Image classification - SVM

This is the last part that is needed in order to classify or identify an
identity from a single image or a video stream. There are several
classification algorithms such as k-NN, SVM, Random Forest and a lot
more. This project uses SVM. The classifier is implemented with the
Python library SKlearn which is described in section 3.3. The parameters
of the SVM is presented in table 4.2.

Parameters Values
Classifier SVM

Kernel linear
gamma auto

Table 4.2: Parameters for SVM.

4.2.3 Webserver

One goal of the project was to have the ability to add a new user to the
system. The system should dynamically re-train the network when a new
user is added to the system. More specifically, InceptionResnetv1 will
train on the new image. Thus, a web server is implemented. It is possible
to access the web server from other networks and access it with a mobile
phone as well. For instance, a person that is located in another country
can access the web server and add its face to the system if wanted. The
project uses several programming languages in order to accomplish the
goals for instance, HTML, CSS, Javascript and Python.

38

4.2.4 Face expressions

The web server does not only include a face detection and a face
recognizer network. Also, face expression, face landmark, age, gender,
tiny face detector which are implemented for uses of live-face recognition.
These networks does not utilize the embeddings that are created with
InceptionResnetv1 for face recognition, since the embeddings from
InceptionResnetv1 are only responsible for creating embeddings for
image classification. Each of these algorithms are implemented with
Javascript and they are created by different CNNs architectures. Face
expression, face landmark, age, gender, tiny face detector is described
further below.

The Age and Gender Recognition Model accomplishes the task of
predicting the age and gender of a person a single image or a video
stream. It employs a feature extraction layer, an age regression layer and
a gender classifier. The size of this model is 420kb and it has an
architecture similar to Xception.

The Face Expression Recognition Model is fast and provides good
accuracy. The size of the model is 310kb and it employs depth
wise separable convolutions and densely connected blocks.

The 68 Point Face Landmark Detection Models is a lightweight landmark
detector. The detector is fast and accurate. The model has various sizes to
choose between for instance, the default model has a size of only 350kb
and the tiny model is only 89kb.

The Tiny Face Detector is a real time face detector and has good
performance. It is mobile and web friendly model. The model size is
roughly 190 KB.

4.3 Routes of the web server
The purpose of the web server is to make the algorithms available for the
users which are located on different networks. They have access to all
functionalities such as, add a new user to the system, predict with a face
and start real-time face recognition. Thus, the web server contains several
pages and in order to access them, several routes are created. For instance,
figure 4.4 illustrates the first route or entry point.

39

Figure 4.4: First entry point

Chapter 5.5 presents the content for this entry point further. From the first
entry point the user is able to navigate through the web server. For
instance /add_and_test in figure 4.5, is another entry point which means
that the user has navigated to a new web page in the web server.

Figure 4.5: Second entry point

This entry point has several options to choose between for instance, the
user can start a real-time face recognition, or the user can add a new face
to the system. The last entry point is illustrated in figure 4.6. One face
detection algorithm and a face recognizer network, namely Mtcnn and
InceptionResnetv1 are implemented on the video in order to illustrate the
system.

Figure 4.6: Navigates to the video page.

40

5 Results
This chapter present the results of all important pieces during the project.
It starts by presenting one-shot learning of InceptionResnetv1 which is
the network that is implemented in the final system. Thereafter, it shows
the results for the competitors to InceptionResnetv1, meaning the other
face recognizer networks which are not implemented in the final system.
Then follows a presentation of the results, in terms of accuracies and
execution times for several face detection algorithms. The execution time
is the time it takes for the algorithms to process the video. Thereafter
follows a presentation of the FPS of the face detection and face recognizer,
followed by a presentation of the web server.

5.1 One-shot learning results of InceptionResnetv1
One-shot learning and few-shot learning are evaluated with several
networks. The final system uses InceptionResnetv1 as the face recognizer.
Thus, this chapter presents the results of InceptionResnetv1 with various
datasets, namely one-shot 30 classes, two-shot 30 classes, five-shot 30
classes, one-shot 50 classes, two-shot 50 classes and five-shot 50 classes.
The tables below present the results.

Iterations 300 500 1000 2000 4000
Number of classes 30 30 30 30 30

Number of training images 30 30 30 30 30
Test Accuracy 88.7% 98.0% 98.4% 98.8% 99.3%
Training time ~4m ~10m ~19m ~39m ~86m

Table 5.1. One-shot 30 classes (InceptionResnetv1).

41

Figure 5.1: Accuracy of one-shot 30 classes using 4000 iterations

(InceptionResnetv1).

Iterations 300 500 1000 2000 4000
Number of classes 30 30 30 30 30

Number of training images 60 60 60 60 60
Test Accuracy 100% 100% 100% 100% 100%
Training time ~6m ~13m ~21m ~43m ~91m

Table 5.2. Two-shot 30 classes (InceptionResnetv1).

Figure 5.2: Accuracy of two-shot 30 classes using 1000 iterations

(InceptionResnetv1).

42

Iterations 300 500 1000 2000 4000
Number of classes 30 30 30 30 30

Number of training images 150 150 150 150 150
Test Accuracy 97% 100% 100% 100% 100%
Training time ~8m ~19m ~28m ~49m ~101m

Table 5.3. Five-shot 30 classes (InceptionResnetv1).

Figure 5.3: Accuracy of five-shot 30 classes using 500 iterations

(InceptionResnetv1).

Iterations 300 500 1000 2000 4000
Number of classes 50 50 50 50 50

Number of training images 50 50 50 50 50
Test Accuracy 74.4% 87.6% 95.2% 97.6% 99.2%
Training time ~12m ~25m ~51m ~100m ~202m

Table 5.4. One-shot 50 classes (InceptionResnetv1).

43

Figure 5.4: Accuracy of one-shot 50 classes using 4000 iterations

(InceptionResnetv1).

Iterations 300 500 1000 2000 4000
Number of classes 50 50 50 50 50

Number of training images 100 100 100 100 100
Test Accuracy 93.6% 99.2% 99.0% 100% 100%
Training time ~9m ~15m ~30m ~60m ~126m

Table 5.5. Two-shot 50 classes (InceptionResnetv1).

Figure 5.5: Accuracy of two-shot 50 classes using 2000 iterations

(InceptionResnetv1).

44

Iterations 300 500 1000 2000 4000
Number of classes 50 50 50 50 50

Number of training images 250 250 250 250 250
Test Accuracy 100% 100% 100% 100% 100%
Training time ~7m ~17m ~35m ~71m ~131m

Table 5.6. Five-shot 50 classes (InceptionResnetv1).

Figure 5.6: Accuracy of five-shot 50 classes using 300 iterations

(InceptionResnetv1).

5.2 One-shot learning results more face recognizers
This section presents the results of six networks, namely Resnet18,
Alexnet, VGG11, Squeezenet, Densenet121 and Inception-v3. They are
evaluated with one-shot 50 classes dataset. Since the accuracy of these
networks was less than InceptionResnetv1, evaluation of 300 iterations
was enough. The dataset one-shot 50 classes was increased with the
augmentation approach described further in chapter 4.1.

5.2.1 One-shot 50 classes

Algorithm Iterati
ons

Number
of training

samples

Test
Accuracy

Training
Time

Resnet18 300 1 49.6% ~9m
AlexNet 300 1 48.5% ~8m
VGG-11 300 1 49.1% ~12m

45

Squeezenet-v1 300 1 58.1% ~9m
Densenet-121 300 1 49.2% ~14m
Inception-v3 300 1 41.7% ~8m

Table 5.7: Accuracy and training time on several networks.

Figure 5.7: Accuracy of one-shot 50 classes using several different

networks.

5.2.2 50-shot 50 classes with augmentation

Algorithm Epoch
s

Number
of training

samples

Test
Accuracy

Training
Time

Resnet18 300 50 88.2% ~34m
AlexNet 300 50 87.1% ~38m
VGG-11 300 50 87% ~52m

Squeezenet-v1 300 50 97.2% ~33m
Densenet-121 300 50 92.2% ~85m
Inception-v3 300 50 93.1% ~39m
Table 5.8: Accuracy and training time on several networks with

increased dataset.

46

Figure 5.8: Accuracy of 50-shot 50 classes using increased dataset.

5.3 Face detection results
This section shows the results of the face detection algorithms based on
its total number of faces found and their computation times. The
computation time is the time it takes for the face detection algorithms to
process the video.

5.3.1 Execution time

Figure 5.9 presents the results of the different face detections algorithms.
The algorithms were processed on a video that was 1 minute and 12
seconds long. The video contains multiple persons and faces. The time
axis represents the time it took for the algorithms to process the video.

47

Figure 5.9: The time for each algorithm to process the video, in seconds.

5.3.2 Total number of faces found

Table 5.9 presents the number of faces the algorithms find. The number
of faces is evaluated on how many faces they found in a video. The length
of the video is 1 minute and 12 seconds and contains several persons and
faces. The purpose of this table is to compare the four face detection
algorithms in terms of how many faces they found in the video. See table
5.9.

FaceNet Mtcnn OpenCV_DNN OpenCV_Haar

1742 1736 747 638

Table 5.9: Number of faces found in the video.

48

5.4 FPS results
This section presents the results in FPS while the system was only
running with the face detection algorithm. Figure 5.10 shows that the FPS
is 16.54 on a resolution of 640 x 320 pixels. See figure 5.10.

Figure 5.10: FPS for face detection algorithm.

The FPS is shifting a lot. For instance, if only the face detection algorithm
is running it reaches an FPS of 16-17. However, if both the face detection
and the face recognizer are running simultaneously the FPS decreases to
6-11.

5.5 Web server results
This section presents the results from the web server. Figure 5.11
illustrates the front page meaning the first page that the users get into
when visiting the web server. Figure 5.11 illustrates which options the
user has to navigate to different pages or entry points.

49

Figure 5.11: Home page in the web server.

Figure 5.12 illustrates the contents that is shown in the next webpage. The
user can add a face to the system by either choosing an image from its
directory or by snapping an image from a web camera or mobile phone.
When the user has added a face to the system the next step is to test and
predict using the network. Thus, it is possible to upload a new image on
the same person in order to predict which is illustrated in figure 5.13.

Figure 5.12: User can add its face to the system.

50

Figure 5.13: Predict a new image.

As figure 5.13 shows there is also another option (referred to as B above).
When pressing this button, a real-time face recognition will start. During
this phase, several algorithms are running simultaneously. They all
predict in real time in the video stream. Face detection, face expression,
face landmarks, age and gender are all algorithms that are running
simultaneously. See figure 5.14.

Figure 5.14: Real-time face recognition.

51

Figure 5.15: (face detection) Mtcnn and (face recognition)
InceptionResnetv1. The video is from the TV series Friends.

Figure 5.15 illustrates the content presented in the last entry point.
InceptionResnetv1 and Mtcnn are the algorithms that are running
simultaneously on the video stream.

52

6 Discussion
This chapter discuss the results which is presented in chapter 5.

6.1 Discussion one-shot learning InceptionResnetv1
The final system has InceptionResnetv1 as the face recognizer. Several
evaluations are done with this network for instance, one-shot 30 classes,
two-shot 30 classes, five-shot 30 classes, one-shot 50 classes, two-shot 50
classes and five-shot 50 classes are all evaluated with InceptionResnetv1.
The idea of the evaluation is to compare the results with the different
datasets.

Table 5.1. One-shot 30 classes: As Table 5.1 presents it is clear that from
300 iterations compared to 4000 iterations there are differences between
the accuracies. With 300 iterations for one-shot 30 classes, the network
reaches an accuracy of 88.7% compared to 99.3% with 4000 iterations.

The training time for one-shot 30 classes is depending on iterations, see
table 5.1. For instance, it takes around 4 minutes for InceptionResnetv1 to
train during 300 iterations compared to 86 minutes with 4000 iterations.

Table 5.2. Two-shot 30 classes: However, table 5.2 presents the results
from two-shot 30 classes. The dataset contains two training instance per
class compared from table 5.1. With 300 iterations, the network reaches
an accuracy of 100%. Table 5.2 illustrates that the upcoming evaluations
reach an accuracy of 100% as well.

The training time for two-shot 30 classes took longer time compared to
table 5.1 (one-shot 30 classes). For example, in table 5.1 it takes around 4
minutes to train the network, compared to 6 minutes which table 5.2
shows.

Table 5.3. Five-shot 30 classes: The results show that five-shot 30 classes
reach an accuracy of 100%. The training time is not much longer
compared to the other evaluations.

Table 5.4. One-shot 50 classes: This table presents the results from One-
shot 50 classes meaning that the classes increase from 30 to 50. Table 5.4
presents that the network reaches an accuracy of 74.4% with 300
iterations. With 4000 iterations, it reaches an accuracy of 99.2%, see table
5.4.

53

The training time for one-shot 50 classes takes almost 3 times longer than
one-shot 30 classes with 300 iterations.

Table 5.5. Two-shot 50 classes: As the table illustrates, the network
reaches an accuracy of 93.6% which has improved a lot compared to one-
shot 50 classes with 300 iterations which table 5.4 shows. It also presents
that it reaches an accuracy of 99 % with 500 iterations.

The training time for two-shot 50 classes takes around 12 minutes with
300 iterations compared to 202 minutes with 4000 iterations.

Table 5.5. Five-shot 50 classes: As the table illustrates, the network
reaches an accuracy of 100%. It also presents that it reaches an accuracy
of 99 % with 500 iterations.

The training time for 50-shot 50 classes does not take much longer
compared to the other evaluations.

To summarize, several face recognizer networks are evaluated during
this project, namely InceptionResnetv1, Resnet18, Alexnet, Squeezenet,
VGG11, Densenet121 and Inceptionv3. It is clear that InceptionRensetv1
performs better than the rest. However, it can be noted that the other
algorithms perform much better when the amount of data is increased.
For instance, figure 5.8 shows that Squeezenet reaches an accuracy near
98% with the 50-shot 50 classes dataset. InceptionResnetv1 performs well
during all evaluations and does not require much data to get an accuracy
of 99% and above.

Since one of the goals was to reduce the data and implement a network
that still performs well with low amounts of data, InceptionResnetv1 is
used in the final project.

6.2 Discussion results face detection
This section presents the results of the face detection algorithms which
are responsible to find a face in a single image or in a video stream. The
section starts by presenting the results according to their total number of
faces found, followed by the execution time.

54

6.2.1 Total number of faces found

As table 5.9 illustrates, there are four different algorithms that are
evaluated. The total number of faces found is measured on a video
stream. In other words, the four algorithms predict simultaneously when
they spot a face in the video stream. As table 5.9 presents, Mtcnn and
Facenet perform best on this video followed by Opencv_Dnn and
Openv_Haar.

Given by the total number faces found, there are no large differences in
performance between Facenet and Mtcnn. But the final system uses
Mtcnn as the face detection algorithms due to the performance in speed
which is described below.

6.2.2 Execution time

The execution times between the four face detection algorithms are
varying. For instance, Mtcnn performs best and can process the video
faster than the rest of face detection algorithms. As figure 5.9 shows, the
slowest algorithm is Opencv_Haar which almost is 2x slower than Mtcnn
which is implemented in the final system.

However, I will not investigate which face detection algorithms are the
fastest existing in the world in this study, as I only compared four face
detections algorithms with each other. But according to several papers,
Mtcnn is a state-of art face detection algorithm and the fastest algorithm
that exists today.

6.3 Discussion one-shot learning results
In this section the result from chapter 5.2 is discussed.

6.3.1 Training time

Table 5.7 illustrates the results from the different algorithms that are
trained with one-shot learning. Several face recognizer networks are
evaluated using one-shot 50 classes and 50-shots 50 classes, generated
using augmentation. As Table 5.7 illustrates, two algorithms have the
same training time, namely Alexnet and Inception-v3. The slowest of
them all is Densenet121 which has a training time of 14 minutes. VGG11
had almost 2x the time in order to train compared to Alexnet and
Inceptionv3 One reasoning why some of the algorithms perform slower
than others is that they have different amounts of parameters which

55

increase the size of the networks. This make the size of the network
larger.

6.3.2 Accuracy

Figure 5.7 and 5.8 presents the accuracy of the algorithms. As it shows it
is clear that these algorithms needs more data in order to perform well.
In figure 5.7 where the algorithms are evaluated with one-shot 50 classes
they have an accuracy around 50% whereas when they are evaluated with
50-shot 50 classes they are improving in accuracy. For instance,
Squeezenet has an accuracy near 97%.

6.4 Discussion of augmented dataset
This section will present the execution time and the accuracy for the same
algorithms that were presented in section 6.3. However, the
difference is that the dataset has been enhanced and has been increased
from one sample to 50 samples per class.

6.4.1 Execution time

This section presents the results of the algorithms with an increased
dataset, namely 50 instances for each class, using the augmentation
method. A generating function is implemented in order to increase the
dataset. However, Table 5.8 shows that Densenet121 took 85 minutes to
train. Densenet121 is the slowest network and the fastest of them is
Resnet18 which had 34 minutes of training. Alexnet is not far behind as it
perform the training in 38 minutes.

6.4.2 Accuracy

The algorithms are evaluated with F1-Score. Figure 5.7 and 5.8 present
the results. It is an interesting result since the models that are evaluated
were trained with 50 instances per class, meaning that the accuracy has
been improved by the augmentation. However, InceptionResnetv1 still
performs best, with an accuracy of 100%, as illustrated in figure
5.8. However, it is interesting to see that all other algorithms namely
Resnet18, Alexnet, Squeezenet, VGG-11, Densenet-121 and Inception-v3
all improves with augmentation. Table 5.8 presents that Resnet18 has an
accuracy of 86% which is an increase compared to when it was trained
with a single instance, namely one-shot 50 classes.

56

6.5 Discussion FPS
Section 5.4 presents the result of the FPS on the face detection
algorithm. It is evaluated when Mtcnn is running and Figure 5.10
illustrates the result. It shows an FPS of 16.54 and the resolution of the
windows is set to 640 x 340 pixels. When the resolution of the windows is
increased, the FPS goes down. However, 640 x 340 pixels is a good
resolution in this project.

6.6 Discussion web server
Section 5.5 presents the web server and the server that was the final
system. It contains all of the algorithms that is presented in Chapter 4.
Mtcnn is used because the evaluation of the face detection illustrates that
it has the fastest performance while being accurate. The face recognition
algorithm that is used in the web server is Inceptionresnetv1 since it
performs best during the accuracy test and it is also fast relative to the
training.

57

7 Conclusions
There are several goals which are presented in section 1.3 and the first
goal is research and find different approaches in order to solve the one-shot
learning problem. The goal is achieved and the face recognizer algorithm
which is called InceptionResnetv1 presents accuracy up to 100% with
one-shot learning. Another approach to solve the one-shot learning
problem is to use augmentation meaning that a function generates more
images from one image in order to increase the dataset. All algorithms
that are evaluated during this project presents better results when they
got an enhanced dataset with augmentation. However, as mentioned in
the beginning of this section InceptionResnetv1 shows extremely good
results without augmentation. Therefore, this network is implemented in
the final system.

The next goal of this study is to implement a face recognition system with only
one sample per class. This goal is achieved with two different approaches.
The final system uses a face recognizer network that calls
InceptionResnetv1 and it shows good results. Thus, this network is
implemented in the final system. However, another approach that solves
the one-shot learning problem is with augmentation. The remaining face
recognition algorithms that are not used in the final system shows results
up to 85-97% with augmentation.

The third goal that section 1.3 presents is implement a suitable face detection
algorithm. This goal has been solved with a face detection algorithm
namely, Mtcnn. The final system uses this algorithm since it presented
best results due to the execution time and it have good accuracy as well.
From several paper it is also known that Mtcnn is a state-of-art algorithm.

The fourth goal is implement algorithms that can classify the age, gender, face
landmarks and facial expressions of a person. This goal has also been achieved
with several algorithms. These algorithms are activated and running on
the client side and are therefore implemented with Javascript. This
enables ability to several users from different networks to use the system.

The fifth goal is implement a webserver with all algorithms included. This goal
is achieved. A webserver is implemented and the entire face recognition
system is implemented within it. Namely InceptionResnetv1, Mtcnn, Face
landmarks, Face expression, age and gender. REST APIs are implemented

58

in order to communicate between the server and the clients. The server is
called Flask and it is implemented in Python.

The sixth goal is give the possibility to add a new user to the system and re-
train the network. This goal was achieved as the webserver gives the
possibility to add a new user to the system.

The last goal is to implement the entire system on a Jetson Nano and optimize
it. This goal is solved the entire system is implemented on the Jetson Nano
and it is optimized as well with GPU programming.

7.1 Ethical aspects
Photography ethics are the principles that guide how we take and share
images. Photography ethics are subjective, contextual and fluid, meaning
that every person’s ethics will be different since ethics are based on a
person's life and experience and values. This project suggests a solution
on a face recognition system with one-shot learning. Thus, it is important
to care about the ethics since there is a camera included in the system.
When the algorithms in the system spot a face of a person it will pre-
process the image and save it in a database. This can be infringement of
an individual’s privacy. For instance, if the system is implemented on a
public place where people are not aware about the system and its
potential power there will be a problem. Thus, it is important to create
awareness about the system to the users with warning signs or something
similar that inform the users. Photography ethics matter since no one
want to be photographed without knowing it.

To summarize, this paper suggests a solution on how to implement an
advanced and optimized face recognition system that can be used in
several fields and applications. Its strengths and its usefulness can help
people and companies on a daily basis. For instance, as a security system
to give entrance rights. However, beyond all benefits it can bring, it is
crucial to consider the ethical aspects if it should be deployed in a live
setting.

7.2 Future work
For future work, it could be interesting to investigate in more suitable
algorithms that can perform well on small amounts of data. The results of

59

this study indicate that InceptionResnetv1 performs well on one-shot
learning problems. However, the other algorithms that were tested can
still be improved. It would also be interesting to see how this project’s
solution would work when implemented as part of a full scale solution,
such as in a car. Another idea for future work could be to further develop
the applications for various devices. Algorithms could further be adapted
to the requirements of the different operating systems on the market, for
instance. This solution contains limitations in the use of real-time camera
for at least one of the operating systems, iOS. Furthermore, additional
efforts to improve user experience and adapt it to broader user groups,
for instance vision disabled users, could also be conducted.

60

References
[1] Tan, X., Chen, S., Zhou, Z. H., & Zhang, F. (2006). Face recognition

from a single image per person: A survey. Pattern recognition, 39(9),
1725-1745.

[2] Zhao, W. , Chellappa, R., Phillips, P. J. and Rosenfeld, A., Face
Recognition: A Literature Survey, ACM Computing Survey,
December Issue (2003) 399-458.

[3] Chellappa R, Wilson C L, Sirohey S. Human and machine
recognition of faces: a survey. Proceedings of the IEEE, 83(5) (1995)
705-740.

[4] Daugman J. Face and gesture recognition: Overview, IEEE Trans.
Pattern Analysis and Machine Intelligence, 19(7)(1997) 675-676.

[5] Guo, Y., & Zhang, L. (2017). One-shot face recognition by
promoting underrepresented classes. arXiv preprint
arXiv:1707.05574.

[6] Shao, L., Zhu, F., & Li, X. (2014). Transfer learning for visual
categorization: A survey. IEEE transactions on neural networks and
learning systems, 26(5), 1019-1034.

[7] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10), 1345-1359.

[8] Sharma, R., Kumar, D., Puranik, V., & Gautham, K. (2019, April).
Performance Analysis of Human Face Recognition Techniques.
In 2019 4th International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU) (pp. 1-4). IEEE.

[9] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection
and alignment using multitask cascaded convolutional
networks. IEEE Signal Processing Letters, 23(10), 1499-1503.

[10] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the
IEEE, 86(11), 2278-2324.

61

[11] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... &
Chen, T. (2018). Recent advances in convolutional neural
networks. Pattern Recognition, 77, 354-377.

[12] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-
v4, inception-resnet and the impact of residual connections on
learning. arXiv preprint arXiv:1602.07261.

[13] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016).
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2818-2826).

[14] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770-778).

[15] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems (pp. 1097-1105).

[16] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J.,
& Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360.

[17] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q.
(2017). Densely connected convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp.
4700-4708).

[18] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A
unified embedding for face recognition and clustering.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 815-823).

[19] Chopra, S., Hadsell, R., & LeCun, Y. (2005, June). Learning a
similaritymetric discriminatively, with application to face
verification. In 2005IEEE Computer Society Conference on
Computer Vision and PatternRecognition (CVPR'05) (Vol. 1, pp.
539-546). IEEE.

62

[20] Face Detection using Haar Cascades
https://docs.opencv.org/3.4/d7/d8b/tutorial_py_face_detection.htm
l
Accessed: 10 June 2020.

[21] Support Vector Machines
https://scikit-learn.org/stable/modules/svm.html
Accessed: 10 June 2020.

[22] Gaussian Naïve Bayes
https://scikit-learn.org/stable/modules/naive_bayes.html
Accessed: 13 June 2020.

[23] Nearest Neighbors
https://scikit-learn.org/stable/modules/neighbors.html
Accessed: 20 June 2020.

[24] Face-api.js
https://justadudewhohacks.github.io/face-api.js/docs/index.html
Accessed: 25 June 2020.

[25] Guo, Y., & Zhang, L. (2017). One-shot face recognition by
promoting underrepresented classes. arXiv preprint
arXiv:1707.05574.

[26] Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D. L., & Weng,
J. (1998). Discriminant analysis of principal components for face
recognition. In Face Recognition (pp. 73-85). Springer, Berlin,
Heidelberg.

[27] Edy, W., Imam Husni, A. A., Herny, F., Wiwien, H., Muchamad
Taufiq, A., & Prajanto Wahyu, A. ATTENDANCE SYSTEM BASED
ON FACE RECOGNITION SYSTEM USING CNN-PCA METHOD
AND REAL-TIME CAMERA. IEEE.

[28] Sameem, M. S. I., Qasim, T., & Bakhat, K. (2016, December). Real
time recognition of human faces. In 2016 International Conference on
Open Source Systems & Technologies (ICOSST) (pp. 62-65). IEEE.

[29] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep
learning (Vol. 1). Cambridge: MIT press.

63

[30] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... &
Kudlur, M. (2016). Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16) (pp. 265-283).

[31] NumPy
https://numpy.org/doc/stable/about.html
Accessed: 2 July 2020.

[32] Matplotlib
https://matplotlib.org/
Accessed: 10 July 2020.

[33] Paszke, A. Gross, S. , Chintala, S. , Chanan, G. , Yang, E. , DeVito,
Z., … & Lerer, A. (2017). Automatic differentiation in pytorch.

[34] OpenCV
https://docs.opencv.org/3.4/d7/d8b/tutorial_py_face_detection.htm
l
Accessed: 10 July 2020.

[35] Jupyter
https://jupyter.org/
Accessed: 10 July 2020.

[36] Scikit-learn “scikit-learn”,
https://scikit-learn.org/stable/
Accessed: 20 July 2020.

[37] Flask server
https://flask.palletsprojects.com/en/master/quickstart/
Accessed: 10 June 2020.

[38] Glob
https://docs.python.org/2/library/glob.html
Accessed: 17 July: 2020.

[39] Albumentations
https://albumentations.readthedocs.io/en/latest/
Accessed: 18 July 2020.

64

[40] Pytube3
https://python-pytube.readthedocs.io/en/latest/
Accessed: 2 August.

[41] Split-folders
https://pypi.org/project/split-folders/
Accessed: 10 August.

