
An examination of automated testing and Xray
as a test management tool

Simon Bertlin

Type of document — Computer Engineering BA (C), Final Project
Main field of study: Computer Engineering
Credits: 15 hp
Semester, year: Spring, 2020
Supervisor: Dr. Ulf Jennehag, ulf.jennehag@miun.se
Examiner: Jan-Erik Jonsson, jan-erik.jonsson@miun.se
Degree programme: Computer Engineering, 180 credits

mailto:ulf.jennehag@miun.se
mailto:jan-erik.jonsson@miun.se

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Abstract
Automated testing is a fast-growing requirement for many IT companies.
The idea of testing is to create a better product for both the company and
the customer. The goal of this study is to examine different aspects of au-
tomated testing and Xray as a test management tool. The literature study
considers information from several different scientific reports. It shows
that the benefits of automated testing include increased productivity and
reliable software but also pitfalls like a high initial cost and a maintenance
cost. Research suggests that automated testing is complementary to man-
ual testing. Manual testing is more suited for exploratory testing, while
automated testing is better for regression testing. Using historical data
manual tests can be placed into prioritised clusters. The coverage of each
test within a cluster determines its priority, where a test with high cover-
age has a high priority. A near-optimal solution for prioritising automated
tests is the combination of two well-known strategies, the additional cov-
erage strategy and the total coverage strategy. Tests are prioritised based
on how much of the code they uniquely cover. Code coverage is mea-
sured using statements, methods or complexity. Furthermore, this thesis
demonstrates a proof of concept for how the unified algorithm can pri-
oritise Xray tests. Xray is evaluated according to the ISO/IEC 25010:2011
standard together with a survey done on Xray practitioners. The evalua-
tion for Xray shows that Xray provides the necessary tools and functions
to manage a testing suite successfully. However, no official encryption
exist for the Jira server, and Xray lacks integrated documentation.

Keywords: Xray, testing, automated testing, manual testing, Jira, REST,
API, test prioritisation

i

Table of Contents
Abstract i

Terminology v

1 Introduction 1
1.1 Background and problem motivation 1
1.2 Overall aim . 2
1.3 Scope . 2
1.4 Concrete and verifiable goals 2
1.5 Outline . 3

2 Theory 4
2.1 Different types of tests . 4

2.1.1 Unit testing . 4
2.1.2 Integration testing 4
2.1.3 Exploratory testing 4
2.1.4 Black-box testing . 4
2.1.5 White-box testing . 5
2.1.6 Regression testing . 5

2.2 Test Case Prioritisation . 5
2.3 Jira . 5
2.4 HTTP Requests . 5
2.5 Xray . 6

2.5.1 How Xray interacts with Jira 6
2.6 Cucumber . 8
2.7 JUnit . 9
2.8 Code Coverage . 9
2.9 OpenClover . 9
2.10 Postman . 9
2.11 Jira REST Java Client Library 9
2.12 The ISO standard . 10
2.13 ISO/IEC 25010:2011 . 10
2.14 Confluence . 10
2.15 Google Lighthouse . 10
2.16 OAuth . 10
2.17 Maven . 11

2.17.1 Active profiles . 11
2.17.2 Maven Surefire Plugin 11

2.18 Continuous integration . 11
2.19 Continuous Delivery . 11

3 Methodology 12

ii

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

3.1 Literature study . 12
3.2 Procedures . 12

3.2.1 Pilot study . 12
3.2.2 Research . 12
3.2.3 Analysing Xray . 13

3.3 Test prioritisation algorithm testing 14
3.4 Survey . 15
3.5 Agile work . 15
3.6 Tools . 15

3.6.1 Version control . 15
3.6.2 Developing environment 15
3.6.3 Working with the REST API 16

4 Construction 17
4.1 Xray with Maven integration 17
4.2 Extracting coverage data from OpenClover 18
4.3 Implementing the unified test prioritisation algorithm . . . 18
4.4 Updating test priority with the Xray API 20
4.5 Automated tests in Jira . 20

4.5.1 Setting up Xray tests with Cucumber in Jira 20

5 Results 23
5.1 Automated tests . 23

5.1.1 Benefits and limitations of automated testing 23
5.1.2 Automatic testing and manual testing 26
5.1.3 Prioritising test cases 26

5.2 Testing the implementation of the prioritisation algorithm 28
5.3 Xray as a test management tool 29

5.3.1 Functional suitability 29
5.3.2 Reliability . 30
5.3.3 Usability . 30
5.3.4 Portability . 32
5.3.5 Security . 33
5.3.6 Survey results . 33

6 Analysis of Xray 35

7 Discussion 37
7.1 Goals . 37
7.2 Research study . 37
7.3 Xray as a test management tool 38
7.4 Implementation of the prioritisation algorithm 38
7.5 Method discussion . 38
7.6 Social, ethical and scientific aspects 39

iii

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

7.7 Future work . 39

A Appendix A 1
A.1 POM file for Maven integration 1
A.2 JSON file for Maven integration 2

B Appendix B 4
B.1 Implementation of the Jira REST client 4
B.2 Implementation of the prioritisation algorithm 6
B.3 Implementation of the test case class 9

iv

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Terminology / Notation

REST Representational State Transfer
API Application Programming Interface
CI Continuous integration
HTTP Hypertext Transfer Protocol
HTML HyperText Markup Language
XML Extensible Markup Language
TCP Test Case Prioritisation
APFD Average Percentage of Faults Detected
JRJC Jira REST Java Client
ADC Additional Coverage Strategy
TCS Total Coverage Strategy

v

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

1 Introduction
The demand from consumers on applications and software products are
higher than ever. Famous IT companies, such as Facebook push code
daily into production[1]. A core part of this fast development is auto-
mated testing. Automated testing allows code to be tested before being
pushed into production. Testing ensures correct operation, and that new
or modified code does not break any other code that is currently in pro-
duction. Thus testing is a critical component of serious IT companies.

The idea of automated tests is to create more value for both the company
and the customer. The customer gets a reliable product, and the company
can more easily maintain their product since the automated tests notify
the developers if changes to the codebase have broken some part of the
software.

This project is done with the company Knowit in Sundsvall, Sweden.
Knowit is in the process of incorporating automated testing and wants
to know what current research says about automated testing and how the
tool Xray can help to manage tests, both automated and manual.

1.1 Background and problem motivation
Tests give the customer some guarantee that the software is working cor-
rectly and is mostly bug-free. Tests can either be automated or manual.
The manual test is where a team or an individual manually operate the
software to make sure it’s operating correctly. In contrast, automated tests
run automatically to ensure correct operations.

There are several different types of tests a few examples are, unit tests,
system integration tests, and acceptance tests. Having all these tests to
keep track of creates a need for a tool to manage tests. The choice of in-
strument for this task is an important one since unmanaged testing can
be costly. Furthermore, a too complicated tool might frustrate the devel-
opers, and a too simple tool might not live up to the requirements of the
project.

Companies that perform testing on their products might have to adhere
to a testing budget. This budget consist of all the tests that a company can
afford to run. This budget creates a need for tests to be prioritised, such
that the most critical tests have a high priority.

1

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

1.2 Overall aim
This project aims to examine testing both in research and in practice. The
project examines the challenges with automated testing and what support
testing have in current research as well as how tests can automatically be
given a priority. Furthermore, the project investigates when manual test-
ing is needed and when it can be automated. Finally, the project analyses
if Xray is a suitable tool for test management.

1.3 Scope
This project examines current research on testing when you can move
manual testing to automated testing and how to prioritise tests. There
exist several strategies for prioritising tests. For test case prioritisation the
focus is on coverage-based and risk-based strategies. Another focal point
of the project is the technical challenges of automated testing, but a few
administrative challenges relevant to test management are also consid-
ered. Furthermore, the project examines current research to explore the
benefits and possible drawbacks of automated testing. As for tools, the
project is limited to the Jira server platform and examine Xray integra-
tion with Jira server and how Xray can help to manage different types of
tests, both manual and automated. The analysis of Xray is restricted to
the Maven integration and the REST API services of Xray

1.4 Concrete and verifiable goals
This project looks to answer the following questions.

• What role do automated tests have in the current software develop-
ment?

• Should a company abandon manual testing and only use automated
tests?

• Does existing research support that a company can increase produc-
tivity and efficiency by moving to automated testing?

• What does the research say about test prioritisation?

• Can Xray issues be prioritised automatically?

• Is Xray a suitable tool for handling automated testing?

2

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

1.5 Outline
Chapter 2 introduces the theory needed to understand the result. This
chapter contains more detailed information about the concepts and ideas
that are presented in the result. Chapter 3 talks about the methodology
used to achieve the result and complete this project. Chapter 4 presents
the construction of the software that was later tested with Cucumber tests
in Xray. Chapter 5 shows the result of the litterateur study and the evalu-
ation of Xray. Chapter 6 analyses the result of the external examination of
Xray and the result of the survey. Chapter 7 discusses the research study
along with future work and the goals of the project.

3

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

2 Theory
This chapter presents the theory that is relevant for the understanding of
the result and the conclusion.

2.1 Different types of tests
Manual and automated testing [2] are the two main categories for test-
ing. Manual testing means that a real person performs some tests on the
software. An example of a manual test is pressing a button and making
sure the button functions as intended. There is usually some visual indi-
cation that the button operates successfully. Navigation might happen, a
pop-up might appear, or text might be printed to the terminal. This way,
the tester that issued the button press gets verification that the test was
successful. Automated tests are performed by the machine running the
tests. The machine follows a set of precise steps that instruct the machine
how to complete the test. Tests are then split into more specialised forms.
Below a few of the more common types of tests are presented.

2.1.1 Unit testing
Unit tests [2] run at a low level, and they are designed to test a small piece
of code. A unit test usually asserts that function returns a specific value.
A class that has several functions can then have several unit tests.

2.1.2 Integration testing
Integration tests [2], like unit tests, run at a low level. The purpose of
integration testing is to see how well different components or modules of
the software work together. For example, the interaction with a database
through a REST API.

2.1.3 Exploratory testing
Exploratory testing [3] is a way to review a product from a user respective.
The tester manually explores the software looking for bugs or defects. It
gives the tester rapid feedback if something is missing or faulty.

2.1.4 Black-box testing
Black-box testing [4] ignores the internal mechanism of software and in-
stead focuses on verifying that the output is correct. Black-box testing is

4

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

generally used to test the whole system instead of some specific part. Or
how the system integrates with another system.

2.1.5 White-box testing
In contrast to black-box testing, white-box testing [4] takes into considera-
tion the internal working of the software. White-box testing usually mea-
sures some coverage, such as the tests coverage of statements or branches.

2.1.6 Regression testing
Regression testing [5] means to test if modifications to the software or
product have caused some unintended defects. Regression testing exists
to ensure correct operation after modification.

2.2 Test Case Prioritisation
Test case prioritisation (TCP) [6] is a tool that can be used to reduce the
cost of testing. This is done by only selecting specific tests to run instead of
running every test. To rank TCP algorithms, a metric called Average Per-
centage of Faults Detected (APFD) is used. The value from APFD range
from 0 to 100. A higher number means better fault detection.

2.3 Jira
Jira [7] is a software platform which supports the addition of plugins. A
plugin can be connected to Jira and change the way Jira functions. The
idea of Jira is to help manage teams and projects. Some common uses of
Jira are planning, issue tracking, reports and work management, Jira itself
it does not support tests. However, Jira defines a Representational State
Transfer application programming interface (REST API) to allow applica-
tions created by independent developers to interact with the Jira platform.

REST [8] is an architecture style that sets up rules for how web services
can safely communicate. API [9] is the endpoints that software can use
to get data or post data. APIs allows for software specialised in other
things such as testing to display and report the result of the tests to the
Jira platform[10] .

2.4 HTTP Requests
One of the usage areas for the Hypertext Transfer Protocol (HTTP) [11]
is to interact with a REST API. Some of the more relevant ones for this

5

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

project is this GET and POST request. When a GET request is executed,
it requests a transfer of data from some destination. In contrast, when
a POST request is executed, it requests that the destination processes its
payload.

2.5 Xray
Xray [12] was created to manage tests and integrate with Jira. Xray sup-
ports both manual and automated testing. Xray defines several REST API
endpoints which can be used to export tests created in Jira or import test
results to Jira [13]. An example of this is shown in figure 1.

Figure 1: Overview of interaction between Jira and Xray.

2.5.1 How Xray interacts with Jira
Xray complements Jira by adding new Jira issue types [12]. Jira uses issues
to represent things that need to be done. Such as a task that needs to be
completed or a bug a that needs to be fixed [14]. A goal of Xray is to allow
it’s users to manage the entire test process in Jira. Xray adds five new
issue types available in Jira [15]. These issues are meant to help the user
follow the test life cycle shown in figure 2.

6

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Figure 2: Test life cycle. [15]

When setting up a test suite, the following issues are defined as follows:

1. Pre-condition
A pre-condition [16] is something that needs to be true before a test
can be executed. For example, the user might need to be authenti-
cated before using some service.

2. Test issue
Xray defines a test issue [17] that support both automated and man-
ual tests. For automated tests, there exist two types Cucumber and
generic. Cucumber is described in 2.6. Manual tests require a guide-
line for how the test should be performed. Similar to Cucumber, the
test issuer defines a set of steps for the tester to go through. The Test
issue in Jira can be used for both automated and manual tests.

3. Test Set
A test set [18] is a Jira issue that handles the organising of tests. It
is a way to group two or more tests into a logical collection. For
example, a test set called "security" might contain all tests that deal
with security.

4. Planning tests
The idea of the test plan [19] issue is to help the user manage their
test suite. A test plan can contain several test executions, tests and
test sets.

5. Test Execution
A test execution [20] issue provides a context for tests that have
been or should be executed. When a test belongs to a test execu-
tion, that test becomes a test run. A test run is then an instance of
a test within the context of a test execution. The definition of a test
can be changed without changing the test run. By keeping the test
run and the test definition separate the test runs become consistent
with the test execution. An example of this is shown in figure 3

7

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Figure 3: Test execution.

2.6 Cucumber
Cucumber [21] allows a user to write tests in plain text. Cucumber then
reads each step of the test and verify that it executes correctly . An exam-
ple of a Cucumber test is shown below.

1 Feature: Add two integers
2 Scenario: User wants to calculate a sum
3 Given the application is running
4 When the user input integer A
5 And the user input integer B
6 Then calculate the sum A+B

The feature [22] keyword gives a high-level overview of some system fea-
ture. In this example, the feature is adding two integers. One feature can
contain several scenarios. A scenario is an example of software usage. The
example above shows an example of a user wanting to calculate a sum.

A scenario [23] can contain several steps. Steps are keywords that describe
some event, context or outcome. The example above contains four steps.
Given is a step that initiates the system. When defines some action or event
that occurs. For example, a user interacting with the system. Then is a step
that should describe the expected outcome of the previous steps. And is a
helper step that makes the scenario read more fluidly.

These steps are part of Gherkin[21]. Gherkin is a language that defines
the grammar rules that the scenario must follow such that Cucumber can
understand the scenario.

8

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

2.7 JUnit
JUnit [24] is a test framework for writing tests. JUnit consists of three
main pillars the first is Assertion. Assertions enable testers to assert that
some function or statement produces an excepted result. Next is the test
fixtures, these are used to share test data. The final pillar is test runners.
The runner executes all tests in the same package as the runner itself.

2.8 Code Coverage
Code coverage [25] is some the % of code that is covered by automated
tests. Code coverage is obtained by analysing the running program and
combine that information with the test suite to create a report on the code
coverage.

2.9 OpenClover
OpenClover [26] is a tool that measures code coverage in Java. The code
coverage report supports different formats such as XML or HTML[27].
OpenClover combines three types of coverage [28] statement, branch and,
method coverage:

• Statement - Checks if a statement in the code is executed or not.

• Branch - Measures if the flow control branches. For example, if state-
ments. This type then checks if the tests cover all paths.

• Method - Analysis if a method was executed or not during execu-
tion.

2.10 Postman
Postman [29] is a platform that allows users to analyse REST APIs. The
idea is to streamline the API development process so that developers do
not have to write any code to test an API. Instead, developers can directly
test the API with for example GET or POST requests in Postman.

2.11 Jira REST Java Client Library
The Jira REST Java Client (JRJC) [30] is an external java library developed
to abstract the REST API and HTTPS needed for communication between
the Jira server and the REST API.

9

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

2.12 The ISO standard
ISO standards [31] are agreed upon best practices developed by experts
in different fields to create a unified approach to solve common problems.
For example how to measure the quality of software or how to secure
sensitive data.

2.13 ISO/IEC 25010:2011
The ISO/IEC 25010:2011 standard [32] defines a product quality model
which categorises a system into eight characteristics. For each character-
istic, there exists one or more sub-characteristics. These are distinct com-
ponents that aim to create a measure for software quality. The standard
notes that it is not practical to try and measure every characteristic and
its related sub-characteristic. Instead, the model should be tailored and
based around the requirements of the user. The model can then be used
as a checklist to see how many relevant sub-characteristics the system or
product upholds.

2.14 Confluence
Confluence [33] is a tool that exists within the Jira platform to share knowl-
edge and documentation. Documentation for Jira plugins such as Xray is
available in the Confluence workspace [12].

2.15 Google Lighthouse
Google Lighthouse [34] is an open-source tool that can perform audits on
web pages. The Lighthouse gives the web page a score based on five cat-
egories that can be turned on or off. The scoring system aims to evaluate
how well well a web-page lives up to certain characteristics such as con-
trast ratio or screen reader friendliness. The score is ranked 0 to 100 where
100 is the best possible score for each category.

2.16 OAuth
OAuth [35] is an open-source protocol that uses public-key cryptography
for user authentication. The idea is to use OAuth to transfer user privi-
leges to some client, such as a REST API client. That client is then allowed
to make requests on behalf of the user.

10

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

2.17 Maven
Maven [36] is a tool based on the Project Object Model(POM). POM [37]
is an XML file that contains project information and configurations that
are needed to build the Maven project. The idea of Maven is to simplify
and uniform the build process. Maven also helps developers share and
publish there project information and configuration [38].

2.17.1 Active profiles
A profile [39] is a set of configurations parameters for plugins that execute
at build time. An active profile is a profile that is configured inside the
activeProfiles section in the settings.xml file. This profile is activated by
default.

2.17.2 Maven Surefire Plugin
Surefire [40] is a plugin for Maven that can run the unit tests of an appli-
cation. After test execution, the plugin then constructs a report showing
the results of the tests. When the plugin finishes the report outputs an
XML and a plaintext file containing the result.

2.18 Continuous integration
Continuous Integration (CI) [41] means to merge several developers local
branches into a single software stored in a system that implements ver-
sion control. The merging of branches makes sure that each developer
has an up to date branch and that their work remains updated. Before
merging CI asserts that the software is functioning correctly by the use of
automatic tools. These tools are usually automated tests but can also be
code reviews or syntax style checks.

2.19 Continuous Delivery
Continuous delivery [42] streamlines the release process. The aim is to de-
liver changes to the end-user as quickly as possible. The process becomes
streamlined by automating every step of the process. Code changes are
delivered to a staging environment where automated tests make sure the
changes don’t negatively affect other code. The changes are then pushed
to the release environment and available to the customer.

11

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

3 Methodology
This chapter describes the workflow of the project. The workflow in-
cludes how the project divides into phases, how the software was anal-
ysed, evaluated and finally, the tools used to complete the project.

3.1 Literature study
For the literature study to be source-critical, a source criticism checklist
was used [43]. The checklist defines a few points that the reader should
follow when reading information online. The points are as follows:

• Who is the author of the source?

• Why was the source created?

• Is the source authentic?

• Is the information provided by the source relevant or outdated?

• Is the source independent, or does it rely on other sources?

• Is the information provided by the source biased? Do other sources
contradict the information provided?

3.2 Procedures
The project follows the funnel model described in [44], which defines a
funnel where the top of the funnel is the most general relevant data, and
as the project moves through the funnel, it gets more specific.

The project was divided into four phases. A pilot study, research, con-
struction and analysis of the software.

3.2.1 Pilot study
The pilot study aims to build a basic understanding and vocabulary that
is needed to understand research and discuss ideas at a higher level with
the company.

3.2.2 Research
In this phase, current academic research is studied with a systematic liter-
ature examination to gain knowledge about manual and automated test-
ing. This project follows the information retrieval process suggested in

12

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

[44] so that the process can be effective and correct. The process defines
six steps that are summarised in figure 4.

Figure 4: Research process.

The research was conducted by scanning scientific databases such as Google
Scholar, IEEE, and, Elsevier and various internet sources.

3.2.3 Analysing Xray
To evaluate the quality of the Jira plugin Xray the ISO/IEC 25010:2011
standard is used. For this evaluation, five out of the eight characteristics
defined in the standard are selected. One or more questions or exami-
nations have been created that are relevant to the definition of the sub-
characteristics. A sub-characteristics is relevant if it can be measured by
an external analysis and is of interest to Knowit. These examinations and
questions are later used in the report to evaluate Xray. The definitions and
related examinations are as follows:

1. Functional suitability
Functional suitability aims to examine how appropriate, correct and
complete a product or system is for the users of said product or sys-
tem [32]. The relevant sub-characteristic is:

• Functional completeness: How complete is the set of functions?
That is, to what degree can a user perform test management in
Xray?

2. Usability
The usability characteristic examines how accessible a product is. A
product has high usability if a user can achieve specified goals with
reasonable effectiveness, efficiency and satisfaction. Usability has
several sub-characteristics [32]. The relevant ones for this analysis
are:

• Learnability: How can a user learn the product? Does product
documentation exist? Are there user guides with examples?

• Operability: How is the product controlled? Keyboard shortcut,
clicking, drag and drop?

• User error protection: Can a user delete important data by acci-
dent?

13

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

• Accessibility: Is the default options accessible for people with
disabilities?

3. Reliability
Reliability is a measure of how a product behaves over time and
how it handles and recovers from faults [32]. The relevant sub-
characteristics are:

• Recoverability: How does the product deal with faults? Can lost
data be recovered?

4. Security
To have security means that a users information and data is pro-
tected and a user is only allowed to read/write data that is appropri-
ate to the user’s privilege level [32]. The following sub-characteristics
are relevant:

• Confidentiality: Is the data in the Jira platform encrypted? What
encryption does Jira use?

• Integrity: How does Jira prevent unauthorised access? What
types of authentications are there?

5. Portability
Portability examines how well environments can interact with each
other and how data can move from one environment to another[32].

• Adaptability: Can the data in Xray be transferred and used in
other environments? How can Xray interact with other sys-
tems?

• Installability: Is the installation process for Xray straight for-
ward or are there unnecessary steps?

Some characteristics were left out because it was not feasible to examine
them from the perspective of the end-user. An external analysis of the
product examined the characteristics that were chosen.

3.3 Test prioritisation algorithm testing
The operational correctness of the test prioritisation algorithm was en-
sured by constructing four cucumber tests. Each Cucumber test contained
several JUnit tests which assert that methods were returning correct val-
ues and that XML data was correctly extracted.

14

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

3.4 Survey
Reliable survey questions were designed by following three primary prin-
cipals defined in [45]. Adequate wording, consistent meaning and well-
defined terms. The idea is that the questions posed in the survey should
mean the same thing to all participants. Also, the words should be chosen
such that they are relevant and understandable by the participants.

To create an electronic survey and get data from participants, the online
service Qualtrics was used. The survey has seven open questions regard-
ing Xray that would take participants with some experience with Xray
about 5-10 minutes to answer. This survey was sent as an electronic mail
and distributed to different companies who are in the process of moving
from manual to automated testing.

3.5 Agile work
At the beginning of the project, a Gant chart was made to create structure
and break the project up into tasks. A timeline was used to keep track
of the progress made and what needs to be done. The chart was created
with the online application TeamGantt. Jira was used to create a Scrum
board and divide the tasks in the Gant chart into smaller, more manage-
able pieces.

3.6 Tools
The tools used to achieve the result are presented below.

3.6.1 Version control
The online service Github was used to store the source code for the project.
This was done so the project could be worked on independent of the
workstation.

3.6.2 Developing environment
To produce the work presented in chapter 4 the integrated development
environment IntelliJ was used together with the operating system Win-
dows 10. The software was written in the programming language Java.
For API calls to the REST API, the project uses Jira REST client for Java.
Test design was achieved in the Jira platform using Xray issues with Cu-
cumber and later implemented in Java with the JUnit framework. To com-
pile the Java code Maven was used.

15

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

3.6.3 Working with the REST API
In order to test and learn the REST API provided both by Jira and Xray,
the Postman application for Windows was used. Postman was used for
sending GET, and POST to the REST API. These requests were then anal-
ysed and studied to learn the REST API.

16

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

4 Construction
This chapter demonstrates Xray integration with Maven and the REST
API. Furthermore, this chapter presents an implementation of the algo-
rithm found for prioritising automated test cases in chapter 5.1.3. Finally,
this chapter shows how prioritised test cases can be uploaded to Jira with
the Xray API.

4.1 Xray with Maven integration
Maven integration was achieved with the Xray-Maven-Plugin. An active
Maven profile was created to avoid having to type log credentials. Before
running tests with the Maven plugin, an Xray Test Project have to be cre-
ated in Jira. The test project creates a project key which is a requirement for
the Xray-Maven-Plugin. A project named MavenIntegration with the key
MAV was thus created. A Maven projects pom.xml was edited to enable
the Xray-Maven-Plugin along with JUnit and Surefire. See appendix A.1
for details on how the pom.xml was configured. Standing in the Maven
project directory, a user can run the following command to upload test
results to the MavenIntegration project:

1 mvn com.xpandit.xray:xray-maven-plugin:xray

In order to run all the tests and then upload the results, the following
command can be used:

1 mvn clean package surefire:test com.xpandit.xray:xray-maven-plugin:xray

Tests result can be uploaded to a specific test execution and / or test plan
by specifying the Xray properties xray.projectKey and xray.testPlanKey in
the pom.xml file

To create a new issue with custom values in Jira, a user can use the mul-
tipart endpoint can be used. Before running the command, a JSON file
needs to created. This JSON file contains the issue field values that are
needed by Jira. See appendix A.1 for details on an example configuration.
Furthermore, the following lines need to be added to the pom.xml file

1 <xray.testExec-fields.path>${basedir}/info.json</xray.testExec-field.path>

The edit specifies the path to the JSON file. Now the user can run the
following command to create a new Jira Issue with predefined values for
the issue fields:

1 mvn clean package surefire:test
com.xpandit.xray:xray-maven-plugin:xray_multipart↪→

17

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

4.2 Extracting coverage data from OpenClover
OpenClover outputs several HTML files containing the test coverage in-
formation. This information was collected and stored in an XML file. The
XML file could then be parsed into the Java application and used as input
for the test case prioritisation algorithm described in 4.3

For the implementation of the prioritisation algorithm, a unit represents
a class method. A custom class was created to store the test cases. The
primary function of this class is to store the methods it covers in a hash
map. The hash map key is the unit name, the occurrence of that unit
together with the statement coverage, is stored as a Pair and mapped to
the previously mentioned key. The test prioritisation algorithm can use
the function get from the hash map to fetch the number of occurrence for
a given unit in O(1) time.

4.3 Implementing the unified test prioritisation
algorithm

This sub-chapter shows the implementation of the test case prioritisation
algorithm presented in chapter 5.1.3.

The algorithm consists of four major steps. The first step is the initiali-
sation step. Variables and data containers are set to their initial state. In
the second step, the algorithm finds any not previously selected test case
tk. After tk is found, the algorithm checks the number of occurrences of
each unit covered by tk. If a unit m is covered by tk then the value fp is
normalised in the range 0.6 <= fp <= 0.95 and used to calculate the
probability that tk contains any undetected faults. In the third step, the
algorithm looks through the remaining test cases and searches for a test
case tl that has a higher probability of containing undetected faults than
tk. If it finds such a test case, tl then tl is set to have the highest priority.
Then the probability that a unit covered by tl contains an undetected fault
is updated. The algorithm then restarts at step two and finds the test case
with the second-highest priority. The process continues until all test cases
have been evaluated. The flow chart for the algorithm is shown in figure
5 and for full implementation details see appendix B.2

18

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Figure 5: Test prioritisation algorithm.

19

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

4.4 Updating test priority with the Xray API
To connect to the Xrays REST API, the implementation uses the officially
supported JRJC Library. An instance of the REST client was obtained with
the Asynchronous Jira Rest Client Factory method call. The method call cre-
ates a factory for the JRJC. The factory then authenticates the user with
basic HTTP authentication. The JRJC have a method for getting the Issue
Client this method can update the priority of an Xray issue given the issue
key and input to be sent to the REST API.

For implementation details see appendix B.1.

4.5 Automated tests in Jira
A project was created in Jira to enable the Xray issue types. The purpose
of the project was to test the three major components of the software. The
major components are the XML parser, the prioritisation algorithm and
the Jira REST client.

4.5.1 Setting up Xray tests with Cucumber in Jira
To test the XML parser in chapter 4.2 one Test issues, and a Test Execution
issue of the type Cucumber was created as well as a mock file containing
data on which the XML parser can be tested. The Cucumber scenario
created in Jira looks as follows:

1 Feature: XML parser
2 Scenario: Testing the XML parser.
3 Scenario Outline: As a user I want to be able to extract tests from

an XML file↪→

4 Given That a user wants to parse a XML file
5 When Test cases have been extracted
6 Then A test case <nr> should have a "<key>"
7 And A test case <nr> should have "<units>" in them

A requirement for the Scenario Outline is too have a data table filled with
test data.

Table 1: Test data for the XML parser test.
nr key units
0 AP-1 XMLParser.getProjectStatements
1 AP-2 TestCase.TestCase

20

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

In table 1 the "nr" column will replace the <nr> variable in the test sce-
nario. Same goes for "key" and "units". This test case parses an XML file,
extract test cases and then check if those test cases are valid.

For the prioritisation algorithm, an additional test issue is created and
added to the test execution created previously.

1 Feature: Prioritisation algorithm
2 Scenario: Test the prioritisation algorithm
3 Scenario Outline: As a user, I want to be able to priorities my

tests.↪→

4 Given That the XML has been loaded test cases correctly.
5 Then A test case "<key>" should have a <priorityWeight> after

being prioritised↪→

Table 2: Test data for the prioritisation algorithm.
key priorityWeight

AP-1 2.52
AP-2 1.92

The prioritisation algorithm needs input data, so a mock XML was cre-
ated in order to supply it with input. The XML is then parsed and test
cases extracted. The test cases are then prioritised with the prioritisation
algorithm. If successful, the test case with the mentioned keys in table 2
should have a corresponding priority weight.

To test the JRJC a pre-condition was constructed. This pre-condition gets
valid user credentials from a file. Then a test for the JRJC was created and
added to the test execution previously created.

1 Feature: Jira REST Client.
2 Background:
3 Given That there exists a file for user credentials
4 Then fetch the credentials.
5

6 Scenario: Test that the Jira REST Client can change the priority
of an XRAY issue↪→

7 Scenario Outline: As a user, I want to be able to update my Xray
issues.↪→

8 When A user wants to give a test a new priority.
9 Then A <priorityWeight> should be mapped to a <XrayPriority>

10 And A test case "<test key>" should be given a <XrayPriority>

21

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Table 3: Test data for the Jira REST client
test key priority weight Xray priority

DEMO-1 1 5
DEMO-2 3 4
DEMO-2 5 3
DEMO-1 7 2
DEMO-1 9 1

In table 3 in the column "Xray priority" a 5 represent the lowest Xray pri-
ority and a 1 represents the highest priority.

Testing the JRJC was done by creating a, a mock user and having the mock
users credentials stored in a file. Those credentials were fetched in the pre-
condition and authenticated to the Jira server. The two tests, DEMO-1 and
DEMO-2, were updated with new priorities with data from the data table.

Finally, a test was created for the test case container class. This test re-
quired no mock data since all the data from table 4 could be used in order
to test if the class functions correctly. Implementation of the class can be
found in appendix B.3.

1 Feature: TestCase container
2 Scenario: Tests the TestCase container class
3 Scenario Outline: As a developer, I want to be able to store test

cases in a container class↪→

4 Given that a developer wants to create a test case with a
"<key>", "<units>", <coveredStatements> and a <priorityWeight>↪→

5 Then A developer should be able to retrieve the test case
"<key>".↪→

6 And A developer should be able to see how much <priorityWeight> a
test case have.↪→

Table 4: Test data for the test case container
Test key Units Covered statements priority weight
DEMO-1 method1 5 2.4
DEMO-2 method2 6 3.5

All tests were then exported from Jira in there corresponding .feature files
and implemented.

22

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

5 Results
This chapter shows the result of the literature study and the examination
of Xray. The aim of the sub-chapter 5.1 is to present the findings regard-
ing what the role of automated testing is. Sub-chapter 5.2 shows the result
from testing implementation of the prioritisation algorithm. Sub-chapter
5.3 gives the result of the examination of Xray and a survey done on prac-
titioners that are moving from manual to automated testing and using
Xray as a test management tool.

5.1 Automated tests
A study on CI [46] shows that automated testing has a central role in suc-
ceeding with CI. The goal of CI is to provide both productivity and qual-
ity. Productivity is improved since more code can be merged into produc-
tion and automatically tested to be compliant with the current codebase.
Quality is an attribute that comes from running tests on the codebase and
reducing human error and providing some guarantee that the software is
bug-free.

Automated tests are a core concept in the test-first methodology[47]. The
idea of this methodology is first to write an automated test then write code
that passes the test. There are a few software development processes that
have adopted this methodology. One of these is Test-driven development.
Another is Behaviour-driven development[48].

5.1.1 Benefits and limitations of automated testing
A quantitative study [46] done in 2015 examined 246 GitHub projects and
how CI has affected those. The focus was on how productivity and quality
were affected by adopting CI and in turn, automated testing. The result
achieved in this study points to CI helps both with increasing productiv-
ity and quality. The study noticed a significant increase in merging pull
requests and attributes this to the usage of CI. Furthermore, the study no-
ticed an increase in bug reports after adopting CI, which suggests that CI
improves the quality of code by bringing more bugs to the developer’s
attention.

An analysis of automated testing in a Continuous Delivery (CD) approach
done at a company with six years of experience of CD [42] shows that
there exist several pitfalls when a company makes a move to automated
testing.

23

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Among the most crucial pitfalls are:

1. Abandoning manual testing:
When moving to automated testing, companies should not abandon
manual testing. Manual testing still has use cases where automatic
testing falls short. Such as exploratory testing in complex systems.

2. Failing to write testable code: The software needs to be easily testable.
Attempting to write automatic tests for code that is hard to test can
cause the pipeline to be blocked and ruin profits gained by auto-
matic testing.

3. Managing the test environment: A lack in configuration management
can send bugs to the production pipeline that are very hard to re-
produce in the test environment.

A study conducted in 2016 [49] analysed how manual testing compares to
automated testing with a focus on cost, time and, software quality. It ex-
amines different versions of the three different software. The study finds
that the initial cost of implementing and maintaining automated tests in
the three software is high. Furthermore, the research shows that given
time, testing automation improves both reliability and maintainability of
the software, which result in higher software quality. The increase in soft-
ware quality was attributed to the code running through a suite of tests
ensuring correct operations and reducing the risk of human error.

A comparative study [50] between research and practice shows that auto-
mated testing can improve reusability, repeatability and reduce the effort
required when executing tests. However, the study also found that the ini-
tial cost for implementing automatic testing is high due to staff requiring
training, cost of test automation tool and the maintenance of automatic
testing. The study then suggests that this cost balances out with time, and
the company can expect some return on investment.

An empirical analysis[51] of discussion boards for support issues regard-
ing implementation of test automation frameworks examining 8769 posts
shows that setting up the framework and test system was the primary
source of problems for test automation. The two most significant thread
types presented in the study were: problem reports, they are defined as:
"Execution fails for some unknown reason". Another thread type, help re-
quests were defined as: "Where the user asks for help on how to perform
a certain task". In the problem threads, the most common issues were:
38% had problems developing tests scripts and problems with tool usage.
21.7% had difficulties understanding how to configure and implement
the test framework. 29.9% had problems with there IT environment. In

24

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

the help request threads, the two most common requests were: Requests
wanting help with developing the test script or tool usage covered 91.5 %
of all help requests, 3.3 % wanted information about configuration for the
test framework, the remaining 5.2% where miscellaneous help requests.

Summary of benefits
Improved software quality: Automated tests allows developers to get no-
tified if modified code have stopped the software from working.[46],
[49] , [50], [52]

Increased productivity: Since the tests run automatically developers
have more time to develop the codebase.[46], [53]

Reliable software: Automated tests can act as a proof that the software
is free from a percentage of bugs.[49], [46], [50]

The software is easier to maintain: Code becomes easier to maintain,
tests runs automatically and developers can be certain that the code
is working as intended.[49], [50], [52]

Reduction of cost: As companies becomes more familiar with testing
and developers gain more experience with the tools the overall cost
goes down. Automated testing also leaves more time for developers
to focus on developing. [53], [50], [52]

Summary of limitations
High inital cost: The codebase might be untestable, and in need of sig-
nificant refactoring, automated tests have to be created. Developers
also require training and experience with the tools that automated test-
ing requires.[49], [50], [53]

Framework complexity: Depending on the framework used for auto-
matic testing, difficulties can arise from implementing automatic test-
ing if the framework is complex. [51], [52]

Proper management and team commitment is required: There needs to exist
the knowledge of the risks and requirements at both the management
and developer level. [42], [54], [50], [53]

Difficult to maintain automated tests: Developers needs to keep up with
the updates of the tools they are using as well as updates in the soft-
ware they are developing to keep the tests working as intended. [50],
[42], [52], [53]

25

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

5.1.2 Automatic testing and manual testing
Two studies [54], [50] examines companies moving from manual to auto-
mated testing and the lessons learned. Most companies have a defined
budget for testing, the number of automated tests, manual test executions
and their expenditure are all part of this budget. Their combination can
not exceed the budget. The authors suggest that the cost of automated
testing is the number of different tests. The cost of manual tests is the
number of test executions. This difference suggests that to keep the cost
down and gain the most benefit. Automated tests should be used for
evaluating modified but previously working code because the test is al-
ready written and need only needs to be executed. Manual tests are more
suited to explore new features and find defects or bugs but also helps the
software follow specific requirements such as the look and feel of a user
interface. Thus the study suggests that the maximum benefit comes from
doing a combination of manual and automatic testing.

In an industrial case study [52], the company Saab AB wanted to make
a move from a manual system test suite to automated testing. The auto-
mated tests covered the same code blocks as the manual tests. What the
researches found was that automated testing found more bugs than the
manual tests. Thus automated testing improves code quality. However,
automated tests can not completely replace manual testing as manual test-
ing allows exploratory testing and uncovering new faults or defects. The
study also shows that its challenging to make automated testing work for
large complex system because of the many variables involved.

5.1.3 Prioritising test cases
Studies show that manual test case prioritisation based on historical test
case data can be an efficient method to prioritise manual tests.[55], [56]
The empirical study conducted in [55] suggests that a risk-driven ap-
proach can outperform the more traditional prioritisation methods for
manual testing in a rapid release environment. Manual tests are usually
performed in a black-box environment. That is, the testers don’t have ac-
cess to the source code. The study examines four older releases of the
web browser Mozilla Firefox. It suggests that the proposed risk-driven
approach is 65 % more effective than the traditional alternatives presented
in the study. The idea proposed is to cluster tests based on if they have
detected errors or not in the past. A test that fails often is noted as risky
and have a higher priority. Tests that failed in the previous version be-
comes part of the cluster with the highest priority. Then comes the tests
that failed two releases ago but not the most recent version. If the tests
does not exist in highest-priority clusters they are put in the cluster with

26

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

second-highest priority and so on. After all the failing tests have been
assigned the successful tests from the previous release are append to the
highest priority cluster and the successful tests from the release before to
the second-highest priority cluster if they do not already exist in the high-
est priority cluster and so on. Several Test Case Prioritisation (TCP) tech-
niques to prioritise test cases within a given cluster exist. A more recent
one is diversity-based TCP which tries to obtain maximum test diversity
by prioritising tests that uniquely covers as much code as possible. This
technique was noted as the most efficient and reliable when prioritising
manual test cases in the above study.

A common algorithm for white-box testing is the Additional Coverage
Strategy (ADC) this is a greedy algorithm. When the algorithm selects a
test case, it takes into consideration how much coverage previously se-
lected test cases have already covered. The algorithm then selects the test
case that covers the most units not previously covered. A unit can be a
statement, method or complexity. That is, a unit should be something
that can indicate coverage. The processes repeats until all units have been
covered by at least one test case. Once all units have been covered, all
coverage information is reset, and the algorithms process the remaining
test cases. [57]

Several studies [58], [59], [60], [57] have shown that the additional strat-
egy is close and sometimes even with an optimal coverage-based solution
that is measured using the Average Percentage of Faults Detected (APFD)
metric.

A study from 2013 [61] suggested that there exists a weakness in generic
ADC. Suppose a test case t that covers a fault f. If t can not detect f then
the there is a significant delay before ADC considers a test case t’ that
can detect f. To solve this, the author suggests combining additional with
total coverage. The Total Coverage Strategy (TCS) does not share the pre-
viously stated weakness since for every test case t it considers all units.
However, the total coverage strategy only counts the number of units each
test covers and does not consider units covered by other test cases. The
algorithm that the author suggests was revised and improved in 2014 in
the paper [62].

The algorithm suggested in [62] unifies the ADC and TCS. This is done
by defining a parameter fp. The parameter is updated for every unit in
order to instruct the algorithm how close it should run to pure ADC or
pure TCS. fp = 1 is the ADC and fp = 0 is the TCS. The authors suggests
that the fp parameter should have a value in the range 0.6 <= fp <= 0.95
for optimal APFD. This was according to the empirical study carried out
in the report.

27

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Furthermore, the empirical study shows that by differentiating the fp
value, this approach can be more effective than the ADC or TCS with
the same cost as the ADC. That is, for each unit a new fp value is calculate
in the range 0.6 <= fp <= 0.95 and used to determine the probability of
the unit containing undetected faults.

5.2 Testing the implementation of the prioriti-
sation algorithm

The result from running the tests described in 4.5 are shown in figure 6.
The green checkmark indicates that the test successfully completed. The
time to the right indicates the time it took to run the tests in milliseconds.
In figure 6 some tests appear several times, this is because the same tests
are executed but with the different values found in the data tables in chap-
ter 4.5.

Figure 6: Result of automated testing

28

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Table 5 shows how the prioritisation algorithm gives a test a priority
weight and what Xray priority that priority weight is mapped too. Xray
defines five priorities, where 1 is the highest, and 5 is the lowest. As men-
tioned in chapter 5.1.3, each unit has a value between 0 and 1 that number
is the probability for that unit to contain an undetected fault. The priority
weight is the sum of all units probabilities covered by a Xray test. Figure
7 shows which methods are covered by which tests.

Table 5: Tests and their priority weight mapped to an Xray priority
Test name Priority weight Xray priority

PrioritisationTest 5.4 1
JiraClientTest 2.96 3
TestCaseTest 2.73 3

XMLParserTest 0.44 5

Figure 7: Tests and their covered methods.

5.3 Xray as a test management tool
This sub-chapter presents an external examination of the Xray plugin for
the Jira server using the ISO/IEC 25010:2011 standard.

5.3.1 Functional suitability
Xray exists in the Jira platform, and Xray uses Jira issues for test man-
agement. This connection allows users to connect the Xray tests to other

29

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

tools within Jira. Xray also provides the users with an overview of the
testing suite with the Xray Report, which lets the user analyse status and
success rate of tests in the testing suite. Another Xray feature in Jira is the
Test Plan Board. This feature aims to help the user create plans for there
testing. The planning board does this by letting the user organise tests in
directories. A summary report is presented to the user when a directory
is clicked. The Xray test repository is similar to the test plan board instead
of organising test plans a user can organise regular test cases.

Xray test issues can have three different types of manual, Cucumber and
generic. These types enable both automated testing and manual testing.

Xray allows its user to set a test priority manually for the following issues:
Test, Test Plan, Test Execution, and Test set. Since Xray provides a REST
API, the algorithms presented in 5.1.3 can be used together with a POST
request to the REST API to create a test and set a priority automatically.

5.3.2 Reliability
• Recoverability

The responsibility of storing and backing up data falls on the user.
Jira can enable a user to create a backup of the application data. This
backup does not cover attachments, Jira configurations or Jira plu-
gin installation files. The backup is by default, a manual process.
However, the user can create a "Backup Service" which automates
the process and creates backups at specified intervals. A stored
backup can then be imported to the Jira server to recover from fault
or loss of data.

5.3.3 Usability
• Learnability

The main documentation for the Xray plugin exists in Confluence.
A user can not view the documentation from the Jira platform but
must instead navigate away from Jira to read the documentation.
The Xray issue types do have a short description in the Jira platform,
but it provides little information. For example a test set is described
as follows "Test Set - Represents a Test Set"

The documentation at Confluence contains step-by-step guides for
installation and usage. Here a user can get a more rich explanation
of the different issue types that the Xray plugin adds to the Jira plat-
form.

• Operability
From the perspective of the Jira platform, a user can navigate it and

30

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

manage Xray issues by either clicking or using the predefined key-
board shortcuts.

From a REST clients perspective, a user can manage their Xray is-
sues by, for example integrating with Maven as shown in chapter
4.1. A set of console commands then manages Xray issues. Using
the Xray REST API, a user can create there own tool for managing
Xray issues. An example of usage is shown in chapter 4.4 where the
REST API is being used to prioritise test cases automatically.

• User error protection
When attempting to delete an issue from the Jira platform, a warn-
ing displays for the user. The warning informs the user that the
action of deleting an issue is irreversible. However, a user requires
the privilege to perform this action. The delete privilege is only set
to administrators by default, and an administrator can configure the
privileges for all users.

Using the REST API, a user can delete issues without any warning.
However, performing the delete requires the appropriate user per-
missions.

If a user makes a mistake when creating an Xray issue, all fields for
that issue can be edited in the Jira platform. The REST API support
editing of most fields except the issue type.

• Accessibility
From the Jira settings, a user can choose to underline links to help
with visibility. The user can also turn on patterns for issue statuses.
This can help the user distinguish issue statuses without the need to
see the colour.

The Lighthouse tool was executed on the welcome page, dashboard,
project, and the Xray sub-pages. The audit score for the accessibility
category are presented in the table below:

31

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Page Score
Dashboard 93

Projects -> Summary 93
Projects -> Issues 88

Projects -> Issues -> Test Execution Details 84
Projects -> Xray Reports 81

Projects -> Xray Test Repository 84
Projects -> Xray Test plan 88

Projects -> Add-ons -> Tests 81
Projects -> Add-ons -> Test Sets 81

Projects -> Add-ons -> Tests Executions 80
Projects -> Add-ons -> Tests Plans 81

From the table, the average score for pages related to Xray is 85.

5.3.4 Portability
• Adaptability

Xray interacts with the Jira platform and adds new issues that the
user can manage. Jira can generate reports and chart with data from
the Xray issues. The user can also choose a plugin for Jira that in-
teracts with Xray issues. All Xray issues can be exported from the
Jira server to XML, Word and HTML. For the Test and Test execu-
tion issue, they can also be exported to CSV and Cucumber. A test
set can be exported to Cucumber as well. Xray issues can also be
exported using the REST API or the Maven integration. A Jira user
can also choose to customise visual fields, such as the navigation
bar, changing colour or contrast.

• Installability
To install Xray on a Jira server, the user must first have a Jira account.
The user can then download the installer for the server and launch
it. The installer follows a basic installation process and prompts
the user for basic configuration choices. Once the server has been
installed, Jira offers to help set up the servers configuration. The
setup involves creating an administrator account, language options
and showing a sample project to help the user get started. Once
that’s done, a user can head to the Jira market place and download
the Xray plugin. The installation process for Xray manages itself.
The user is presented with a short tutorial for how to use it once the
installation is done.

32

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

5.3.5 Security
Before connecting to the Jira server, a user has to tell the Jira server who
they are. Once the user has authenticated themselves, they need the nec-
essary authorisation to perform actions. To help with user integrity, a
user can authenticate to the Jira server with OAuth, basic authentication
or cookie-based authentication. The REST API can use any of these three.
The maven integration and default login to the Jira server is restricted to
basic authentication.

If a user fails to authenticate three times, a CAPTCHA is displayed. The
CAPTCHA prevents the REST API and maven integration from working.
The user needs to manually login to the server completing the CAPTCHA.

During the examination, there was no indication that the data on the Jira
server was encrypted. A member of the Atlassian team said the following
about encryption on Jira servers: "Natively, Jira is not able to encrypt data
such as issues/attachments. Jira does have the ability for you to use issue-level
security in order to further restrict users from seeing specific issues and their
attachments beyond the scope that the standard permission schemes encompass
on a per-project basis. But this isn’t truly encryption, but rather an additional
layer of permissions." [63]

While Jira does not offer encryption, plugins [64] for Jira do. For example,
a user can install the "Encryption for Jira" which provides well-known
encryption techniques.

5.3.6 Survey results
This sub-chapter presents the result of the survey. Participants were asked
the following eight questions regarding Xray:

1. What is your role within the company?

2. How many years of experience do you have with testing?

3. Are you experienced with automated or manual testing or both?

4. Do you think that Xray provides a sufficient environment for test
management? Please elaborate on your answer.

5. What pitfalls do you see when moving to automated testing? Does
Xray help solve any of these pitfalls?

6. What benefits do you see when moving to automated testing? Does
Xray improve upon or bring any of these benefits?

7. Have you noticed any major problems with Xray? If so, please elab-
orate

33

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

8. What changes are needed in Xray to make it a more applicable?

Q1-Q3:All participants had at least 5 years of experience with testing in a
management or leadership role. One participant had previous experience
with manual and automated testing where the others only had experience
with manual testing.

Q4: All participants agree that Xray serves as a sufficient tool for test
management. Many of the participants also made a note of how the inter-
action with Jira aids the test management process. This was attributed too
that the same tool is used for several parts of their development projects.

Q5: Four out of five participants felt that they didn’t have enough expe-
rience to answer this question. However, one participant said that man-
agement might have high expectation on automated tests and are not con-
sidering the negative aspects of moving to automated testing. The partici-
pant then goes on to say that Xray can help demonstrate both the negative
and positive aspects and thus help managers gain a clearer picture of the
testing situation.

Q6: Three out the five participants thinks that automated testing im-
proves productivity, regression testing and reduces the time spent on test-
ing. Two participants were not sure what benefits to expect from auto-
mated testing.

Q7: Three out of the five participants noted minor usage problems that
they attributed to having little experience with Xray and expected it to
get better with time. Two participants said that the reporting feature for
tests could use some improvement, and it was not always easy to see the
desired information.

Q8: Participants saw a few improvements that could be made to Xray
such as
Reading the reports on the Jira dashboard instead of having to view the
Xray reports separately.

Creating a link between Confluence and Xray such that an Xray issue can
be created and its description is directly linked from Confluence instead
of having to copy it.

Finally, some participants noted that better documentation of features and
best practices for Xray usage is needed.

34

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

6 Analysis of Xray
This chapter analyses the result presented in chapter 5.3

One of the limitations of automated tests shown in 5.1.1 is that proper
team management is required as well as the difficulty to main automated
tests. Since the Xray issues are Jira issues, this can help test leaders and
test managers manage their teams by assigning issues to developers when
something requires maintenance. Priorities can also be set for these issues,
and having test data and test status integrated with scrum boards can help
facilitate agile development.

As mentioned in 5.1.2 when a company moves to automated testing, man-
ual testing still plays an important role. Xray supports both so project
teams can manage both their manual and automated testing in Xray.

While Jira did offer the option to backup data, it was not on by default. If
this feature were to be a part of the introduction to Jira, user data becomes
more securely stored.

In the survey presented in chapter 5.3.6, Q7 participants attributed many
problems to their lacking experience with Xray. One of the issues partici-
pants found in Q8 were that documentation was lacking. If Xray were to
work towards integrated documentation in Jira, users might have a better
experience. Integrated documentation would enable a user to remain in
the Jira platform and have relevant documentation for the specific feature
they’re trying to use instead of having to look the feature up at another
web-page.

As shown in 5.3.3, the Xray pages in Jira got an average accessibility score
of 85. The score got a bit lower because the navigation bar was present
for all sub-pages and the audit tool noted on every test that the "create"
button had poor contrast ratio. Another note from Lighthouse was that
names and labels were missing from buttons, forms and links, making it
harder for a screen reader to assist the user.

In chapter 5.3.4, the adaptability of Xray is shown. The result shows one
of Xrays strengths. A user can call the REST API to manage almost every
Xray feature that exists in the Jira platform. Xray and Jira are customis-
able to individual user need increasing their accessibility. Such as making
test prioritisation automated as shown in 4.3.Since Xray supports several
different types of exports, a user can make custom graphs or charts en-
hancing customizability.

The installation for Xray and Jira was straightforward. There was al-
most no user interaction, and the installation process managed most of
the work, creating a plug & play experience.

35

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

Chapter 5.3.5 shows that there exist three types of authentication meth-
ods. The choice of authentication is up to the user, making it possible for
the user to make a bad decision. The Xray documentation is written for
basic authentication with only a brief mention of the OAuth. The docu-
mentation in its current state can cause some users to ignore the OAuth
since there exist no tutorials or guides for it with Xray. To improve this
Xray could provide documentation for different authentication methods
and inform the user about the strengths and weaknesses of each.

Furthermore, in chapter 5.3.5, the Jira server only encrypts passwords and
does not inform the user that the stored data is not encrypted. Unen-
crypted data brings to light some ethical aspects, such as when a customer
trust a company with there information. The company then uses the Jira
Server to create some product for the customer. Sensitive customer infor-
mation might be inferred from names, summaries or description of issues.
This leakage of information can violate the customer’s trust in the com-
pany. To better the user experience, Jira should be more clear about that
the user data is stored unencrypted. Thus it might be in the interest of
companies and customers for Jira to officially provide encryption.

36

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

7 Discussion
This chapter discusses the goals, research study, survey, prioritisation al-
gorithm implementation and future work.

7.1 Goals
The goals of the project have been successfully achieved. In chapter 1.4
six questions were asked. The project answers question one to four by
conducting a research study. Question five and six were answered by
examining the different parts of Xray and suggesting implementations of
test prioritisation.

7.2 Research study
Chapter 5.1.1 presents several benefits and limitations to automated test-
ing. A company can expect to see increased productivity, have reliable
software and improved software quality. These advantages are also what
most participants from the survey were expecting, according to Q6. How-
ever, there are also a few pitfalls that companies must watch out for such
as developers failing to write testable code. Bad code can make a move to
automated testing more difficult since most of the code would have to go
through a major refactor. A combination of bad code and inexperienced
developers can cause a high startup cost for automated testing. Several
studies showed in 5.1.1 that many companies don’t consider the startup
cost of automated testing. From the survey responses in chapter 5.3.6, Q5
shows that most participants who had test manager experience also don’t
consider the negative impact that automated testing might have. Neglec-
tion of the startup costs can be dangerous and exceed companies testing
budget if not considered. Developers also need to be assigned to maintain
these automated tests, or the tests might become obsolete and more of a
burden than a benefit. The expectation of test managers shows that there
is a need to educated both developers and managers about the pitfalls of
automated testing.

Chapter 5.1.2 showed that automated and manual tests are complemen-
tary. Manual tests are more suited for exploratory testing, while auto-
mated tests are better for regression testing.

In chapter 5.1.3, two methods were presented for test case prioritisation.
One for manual testing and one for automated. While both these meth-
ods show efficient ways of prioritising test cases. None of them considers
the human element. While the algorithms perform as instructed, the tests

37

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

are written and in the case of manual testing, executed by humans and
humans make errors and inefficient decisions. Consequently, the effec-
tiveness of these algorithms might be less in a real-world application then
presented by scientific research in a controlled environment.

7.3 Xray as a test management tool
All participants agreed in Q4 that Xray would be a sufficient tool for test
management. The analysis that is done in chapter 6 supports this but
also shed light on some drawbacks such as no encryption offered by Jira,
no integrated documentation and no warning that the user’s data is not
being backed up by default.

7.4 Implementation of the prioritisation algo-
rithm

In chapter 5.2 the implementation of the prioritisation algorithm was
tested. The tests show that the proof of concept operates correctly with
the Xray REST API. The results in table 5 and figure 7 show that the algo-
rithm correctly considers methods covered by other tests. In table 5 obser-
vations can be made that the two tests TestCaseTest and XMLParserTest
both contain more test methods than the test JiraClientTest. Yet, the two
previously mentioned tests get a lower priority. The tests get a lower
priority because the methods they cover are also covered by other tests,
as shown in figure 7. TestCaseTest contains two unique methods, but
they’re small methods such as the constructor and a setter for the pri-
ority weight. The size of the uniquely covered methods is another reason
for the TestCaseTest having a lower priority than JiraRestClientTest even
though TestCaseTest have covered more methods.

7.5 Method discussion
The methods used in this project have successfully been to achieve the
goals for the project. There are a few improvements to the methods used
that are worth mentioning.

The research study used three scientific databases, as mentioned in chap-
ter 3.2.2. Given more time, this study could have been expanded to sev-
eral other databases and contributed to the result.

A complete grading of Xray as a test management tool could have been
obtained by evaluating all eighth characteristics defined in the ISO/IEC
25010:2011 standard. However, doing such an evaluation would require

38

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

access to proprietary information. Even though only five out of the eighth
characteristics could be evaluated, the ISO/IEC 25010:2011 standard still
indicates the quality of Xray from the perspective of the user. Other meth-
ods for evaluation could have been combined with the ISO/IEC 25010:2011
standard to make up for the missing characteristics. But, there where not
enough time to research those methods and apply them to Xray.

The survey only had five responses. Unfortunately, it was harder than
expected to find companies willing to complete the survey. Given more
time, a more extensive survey could have been conducted, providing
more reliable results. Another improvement would be to replace the sur-
vey with interviews so that the responses of the participants could be im-
proved.

7.6 Social, ethical and scientific aspects
The result has social value because it can be used by companies to show
what research says about automated testing, how to implement a conven-
tional test case prioritisation algorithm and make that algorithm work
with Xray tests.

An ethical aspect has been to make sure that the survey participants and
the company they work with remain anonymous. This anonymity is needed
because the survey points out flaws in the reasoning of some of the par-
ticipants. Thus the companies and the participants are not described in
the report.

The project has followed a scientific approach by following a known search
process for collecting data, as shown in chapter 3. Thus the result is based
on scientific research. The analysis of Xray was conducted based on ex-
ternal analysis of the plugin with criteria from the ISO/IEC 25010:2011
standard mentioned in chapter 3.2.3 and later critically analysed.

7.7 Future work
A follow-up survey asking the same participants similar questions after
they’ve successfully moved to automated testing and gained more expe-
rience with the Xray tool could provide new information about Xray and
automated testing.

Getting the input for the prioritisation algorithm proved to be compli-
cated. The input that is needed is coverage data from the perspective of
a test case. Such as how many statements a specific test covered. Most
tools focus on the coverage data from the perspective of the application.
That is some method in the application is x% covered by tests. One area

39

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

of future work can be to examine different approaches to extracting data
from the perspective of test cases.

Another idea for future work can be to analyse how the human element
affects how test cases are prioritised and if other factors need to be con-
sidered to make test case prioritisation more effective.

40

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

References
[1] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. “Develop-

ment and deployment at facebook”. In: IEEE Internet Computing 17.4
(2013), pp. 8–17.

[2] Sten Pittet. The different types of software testing. URL: https://www.
atlassian.com/continuous-delivery/software-testing/types-
of-software-testing (visited on 2020-03-24).

[3] Deepak Parmar. Exploratory testing. URL: https://www.atlassian.
com / continuous - delivery / software - testing / exploratory -
testing (visited on 2020-04-06).

[4] Jerry Gao, H.-S. J. Tsao, and Ye Wu. Testing and Quality Assurance for
Component-based Software. Artech House, 2003.

[5] Anirban Basu. Software Quality Assurance, Testing and Metrics. Asoke
K. Ghosh, PHI Learning Private Limited, 2015.

[6] Gregg Rothermel, Roland H Untch, Chengyun Chu, et al. “Test case
prioritization: An empirical study”. In: Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Mainte-
nance for Business Change’(Cat. No. 99CB36360). IEEE. 1999, pp. 179–
188.

[7] Atlassian. A brief overview of Jira. URL: https://www.atlassian.
com/software/jira/guides/getting-started/overview#jira-
software-hosting-options (visited on 2020-03-24).

[8] Roy Thomas Fielding. Representational State Transfer (REST). URL:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm (visited on 2020-03-27).

[9] Red Hat. What is an API? URL: https : / / www . redhat . com / en /
topics/api/what- are- application- programming- interfaces
(visited on 2020-03-27).

[10] Atlassian. JIRA Server platform REST API reference. URL: https://
docs.atlassian.com/software/jira/docs/api/REST/8.5.4/
(visited on 2020-03-24).

[11] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. URL: https://tools.ietf.org/html/rfc7231
(visited on 2020-04-08).

[12] Bruno Conde. Xray Cloud Documentation Home. URL: https://confluence.
xpand-it.com/display/XRAYCLOUD/Xray+Cloud+Documentation+
Home (visited on 2020-03-24).

[13] Bruno Conde. REST API. URL: https://confluence.xpand- it.
com/display/XRAYCLOUD/REST+API (visited on 2020-03-27).

41

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.atlassian.com/software/jira/guides/getting-started/overview#jira-software-hosting-options
https://www.atlassian.com/software/jira/guides/getting-started/overview#jira-software-hosting-options
https://www.atlassian.com/software/jira/guides/getting-started/overview#jira-software-hosting-options
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://docs.atlassian.com/software/jira/docs/api/REST/8.5.4/
https://docs.atlassian.com/software/jira/docs/api/REST/8.5.4/
https://tools.ietf.org/html/rfc7231
https://confluence.xpand-it.com/display/XRAYCLOUD/Xray+Cloud+Documentation+Home
https://confluence.xpand-it.com/display/XRAYCLOUD/Xray+Cloud+Documentation+Home
https://confluence.xpand-it.com/display/XRAYCLOUD/Xray+Cloud+Documentation+Home
https://confluence.xpand-it.com/display/XRAYCLOUD/REST+API
https://confluence.xpand-it.com/display/XRAYCLOUD/REST+API

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

[14] Max Rehkopf. Working with issues in Jira Software. URL: https://
www.atlassian.com/agile/tutorials/issues (visited on 2020-03-
24).

[15] Bruno Conde. Test Process. URL: https://confluence.xpand-it.
com/display/XRAYCLOUD/Test+Process (visited on 2020-04-07).

[16] Bruno Conde. Pre-Condition. URL: https : / / confluence . xpand -
it.com/display/XRAY360/Pre-Condition (visited on 2020-04-07).

[17] Bruno Conde. Test. URL: https : / / confluence . xpand - it . com /
display/XRAY360/Test (visited on 2020-04-07).

[18] Bruno Conde and Isabel Moreira. Test Set. URL: https://confluence.
xpand-it.com/display/XRAY35/Test+Set (visited on 2020-04-07).

[19] Bruno Conde and António Melo. Test Plan. URL: https://confluence.
xpand-it.com/display/public/XRAY/Test+Plan (visited on 2020-
04-08).

[20] Bruno Conde and Diamantino Campos. Execute Tests. URL: https:
//confluence.xpand- it.com/display/public/XRAY/Execute+
Tests (visited on 2020-04-08).

[21] Cucumber. What is Cucumber? URL: https://cucumber.io/docs/
guides/overview/#what-are-step-definitions (visited on 2020-
03-27).

[22] Cucumber. Gherkin Reference. URL: https://cucumber.io/docs/
gherkin/reference/#example (visited on 2020-03-27).

[23] Cucumber. Gherkin Reference. URL: https://cucumber.io/docs/
gherkin/reference/#steps (visited on 2020-03-27).

[24] JUnit. Frequently Asked Questions. URL: https://junit.org/junit4/
faq.html#faqinfo_1 (visited on 2020-03-24).

[25] OpenClover. About Code Coverage. URL: https://openclover.org/
doc/manual/latest/general--about-code-coverage.html (vis-
ited on 2020-04-14).

[26] OpenClover. OpenClover. URL: https : / / openclover . org / index
(visited on 2020-04-14).

[27] OpenClover. Configuring reports. URL: https://openclover.org/
doc/manual/4.2.0/maven--configuring-reports.html (visited
on 2020-04-14).

[28] OpenClover. Features. URL: https://openclover.org/features
(visited on 2020-04-14).

[29] Postman. The Postman API Platform. URL: https://www.postman.
com/api-platform (visited on 2020-03-31).

42

https://www.atlassian.com/agile/tutorials/issues
https://www.atlassian.com/agile/tutorials/issues
https://confluence.xpand-it.com/display/XRAYCLOUD/Test+Process
https://confluence.xpand-it.com/display/XRAYCLOUD/Test+Process
https://confluence.xpand-it.com/display/XRAY360/Pre-Condition
https://confluence.xpand-it.com/display/XRAY360/Pre-Condition
https://confluence.xpand-it.com/display/XRAY360/Test
https://confluence.xpand-it.com/display/XRAY360/Test
https://confluence.xpand-it.com/display/XRAY35/Test+Set
https://confluence.xpand-it.com/display/XRAY35/Test+Set
https://confluence.xpand-it.com/display/public/XRAY/Test+Plan
https://confluence.xpand-it.com/display/public/XRAY/Test+Plan
https://confluence.xpand-it.com/display/public/XRAY/Execute+Tests
https://confluence.xpand-it.com/display/public/XRAY/Execute+Tests
https://confluence.xpand-it.com/display/public/XRAY/Execute+Tests
https://cucumber.io/docs/guides/overview/#what-are-step-definitions
https://cucumber.io/docs/guides/overview/#what-are-step-definitions
https://cucumber.io/docs/gherkin/reference/#example
https://cucumber.io/docs/gherkin/reference/#example
https://cucumber.io/docs/gherkin/reference/#steps
https://cucumber.io/docs/gherkin/reference/#steps
https://junit.org/junit4/faq.html#faqinfo_1
https://junit.org/junit4/faq.html#faqinfo_1
https://openclover.org/doc/manual/latest/general--about-code-coverage.html
https://openclover.org/doc/manual/latest/general--about-code-coverage.html
https://openclover.org/index
https://openclover.org/doc/manual/4.2.0/maven--configuring-reports.html
https://openclover.org/doc/manual/4.2.0/maven--configuring-reports.html
https://openclover.org/features
https://www.postman.com/api-platform
https://www.postman.com/api-platform

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

[30] Wojtek Seliga. JIRA REST Java Client Library. URL: https://ecosystem.
atlassian.net/wiki/spaces/JRJC/overview?homepageId=27164679
(visited on 2020-04-27).

[31] iso. STANDARDS. URL: https://www.iso.org/standards.html
(visited on 2020-04-27).

[32] International Standard ISO: ISO/IEC 25010–2011. “Systems and soft-
ware engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) — System and software quality models”.
In: 1 (2011).

[33] Atlassian. Confluence. URL: https://www.atlassian.com/software/
confluence (visited on 2020-04-27).

[34] Google. Lighthouse. URL: https://developers.google.com/web/
tools/lighthouse (visited on 2020-04-30).

[35] Atlassian. OAuth. URL: https://developer.atlassian.com/server/
jira/platform/oauth/ (visited on 2020-04-30).

[36] The Apache Software Foundation. Welcome to Apache Maven. URL:
https://maven.apache.org/index.html (visited on 2020-03-31).

[37] The Apache Software Foundation. Introduction to the POM. URL:
https://maven.apache.org/guides/introduction/introduction-
to-the-pom.html (visited on 2020-03-31).

[38] The Apache Software Foundation. What is Maven? URL: https://
maven.apache.org/what-is-maven.html (visited on 2020-03-31).

[39] The Apache Software Foundation. Introduction to Build Profiles. URL:
https://maven.apache.org/guides/introduction/introduction-
to-profiles.html (visited on 2020-04-15).

[40] The Apache Software Foundation. Maven Surefire Plugin. URL: https:
//maven.apache.org/surefire/maven-surefire-plugin/ (visited
on 2020-04-15).

[41] Max Rehkopf. What is Continuous Integration. URL: https://www.
atlassian.com/continuous-delivery/continuous-integration
(visited on 2020-03-31).

[42] Johannes Gmeiner, Rudolf Ramler, and Julian Haslinger. “Auto-
mated testing in the continuous delivery pipeline: A case study of
an online company”. In: 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE.
2015, pp. 1–6.

[43] Kristina Alexanderson. Källkritik på nätet. URL: https://internetstiftelsen.
se/guide/kallkritik-pa-internet/kallkritik-pa-natet/ (vis-
ited on 2020-03-27).

43

https://ecosystem.atlassian.net/wiki/spaces/JRJC/overview?homepageId=27164679
https://ecosystem.atlassian.net/wiki/spaces/JRJC/overview?homepageId=27164679
https://www.iso.org/standards.html
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse
https://developer.atlassian.com/server/jira/platform/oauth/
https://developer.atlassian.com/server/jira/platform/oauth/
https://maven.apache.org/index.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/guides/introduction/introduction-to-profiles.html
https://maven.apache.org/guides/introduction/introduction-to-profiles.html
https://maven.apache.org/surefire/maven-surefire-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://internetstiftelsen.se/guide/kallkritik-pa-internet/kallkritik-pa-natet/
https://internetstiftelsen.se/guide/kallkritik-pa-internet/kallkritik-pa-natet/

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

[44] Rainer Nyberg and Annika Tidström. Skriv vetenskapliga uppsater,
examensarbeten och avhandlingar. Studentlitteratur AB, 2012.

[45] jr Floyd J. Fowler. Survey Research Methods. SAGE publication Inc,
2014.

[46] Bogdan Vasilescu, Yue Yu, Huaimin Wang, et al. “Quality and pro-
ductivity outcomes relating to continuous integration in GitHub”.
In: 2015-08, pp. 805–816. DOI: 10.1145/2786805.2786850.

[47] ScottWambler. Introduction to Test Driven Development (TDD). URL:
http://agiledata.org/essays/tdd.html (visited on 2020-04-02).

[48] SmartBear. Behaviour-Driven Development. URL: https://cucumber.
io/docs/bdd/ (visited on 2020-04-02).

[49] Divya Kumar and KK Mishra. “The Impacts of Test Automation on
Software’s Cost, Quality and Time to Market”. In: Procedia Computer
Science 79 (2016), pp. 8–15.

[50] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Pe-
tersen, et al. “Benefits and limitations of automated software test-
ing: Systematic literature review and practitioner survey”. In: 2012
7th International Workshop on Automation of Software Test (AST). IEEE.
2012, pp. 36–42.

[51] Kristian Wiklund, Daniel Sundmark, Sigrid Eldh, et al. “Impedi-
ments for automated testing–an empirical analysis of a user support
discussion board”. In: 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. IEEE. 2014, pp. 113–122.

[52] Emil Alegroth, Robert Feldt, and Helena H Olsson. “Transitioning
manual system test suites to automated testing: An industrial case
study”. In: 2013 IEEE Sixth International Conference on Software Test-
ing, Verification and Validation. IEEE. 2013, pp. 56–65.

[53] Ossi Taipale, Jussi Kasurinen, Katja Karhu, et al. “Trade-off between
automated and manual software testing”. In: International Journal of
System Assurance Engineering and Management 2.2 (2011), pp. 114–
125.

[54] Rudolf Ramler and Klaus Wolfmaier. “Economic perspectives in
test automation: balancing automated and manual testing with op-
portunity cost”. In: Proceedings of the 2006 international workshop on
Automation of software test. 2006, pp. 85–91.

[55] Hadi Hemmati, Zhihan Fang, and Mika V Mantyla. “Prioritizing
manual test cases in traditional and rapid release environments”. In:
2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST). IEEE. 2015, pp. 1–10.

44

https://doi.org/10.1145/2786805.2786850
http://agiledata.org/essays/tdd.html
https://cucumber.io/docs/bdd/
https://cucumber.io/docs/bdd/

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

[56] Emelie Engström, Per Runeson, and Andreas Ljung. “Improving
Regression Testing Transparency and Efficiency with History-Based
Prioritization–An Industrial Case Study”. In: 2011 Fourth IEEE In-
ternational Conference on Software Testing, Verification and Validation.
IEEE. 2011, pp. 367–376.

[57] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel.
“Test case prioritization: A family of empirical studies”. In: IEEE
transactions on software engineering 28.2 (2002), pp. 159–182.

[58] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, et al. “Adaptive ran-
dom test case prioritization”. In: 2009 IEEE/ACM International Con-
ference on Automated Software Engineering. IEEE. 2009, pp. 233–244.

[59] Dan Hao, Lu Zhang, Lei Zang, et al. “To be optimal or not in test-
case prioritization”. In: IEEE Transactions on Software Engineering 42.5
(2015), pp. 490–505.

[60] Qi Luo, Kevin Moran, and Denys Poshyvanyk. “A large-scale em-
pirical comparison of static and dynamic test case prioritization tech-
niques”. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 2016, pp. 559–570.

[61] Lingming Zhang, Dan Hao, Lu Zhang, et al. “Bridging the gap be-
tween the total and additional test-case prioritization strategies”.
In: 2013 35th International Conference on Software Engineering (ICSE).
IEEE. 2013, pp. 192–201.

[62] Dan Hao, Lingming Zhang, Lu Zhang, et al. “A unified test case pri-
oritization approach”. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 24.2 (2014), pp. 1–31.

[63] Andy Heinzer. Encryption options. URL: https://community.atlassian.
com / t5 / Jira - Core - questions / Encryption - options / qaq - p /
661897 (visited on 2020-04-30).

[64] Adaptavist. Encryption for Jira. URL: https://docs.adaptavist.
com/encryption/jira/server/latest/ (visited on 2020-04-30).

45

https://community.atlassian.com/t5/Jira-Core-questions/Encryption-options/qaq-p/661897
https://community.atlassian.com/t5/Jira-Core-questions/Encryption-options/qaq-p/661897
https://community.atlassian.com/t5/Jira-Core-questions/Encryption-options/qaq-p/661897
https://docs.adaptavist.com/encryption/jira/server/latest/
https://docs.adaptavist.com/encryption/jira/server/latest/

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

A Appendix A
The pom.xml that used in 4.1

A.1 POM file for Maven integration
1 <?xml version="1.0" encoding="UTF-8"?>
2 <project xmlns="http://maven.apache.org/POM/4.0.0"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">↪→

5 <modelVersion>4.0.0</modelVersion>
6 <groupId>org.example</groupId>
7 <artifactId>MavenIntegrationTest</artifactId>
8 <version>1.0-SNAPSHOT</version>
9

10 <properties>
11 <maven.compiler.source>11</maven.compiler.source>
12 <maven.compiler.target>11</maven.compiler.target>
13 <junit.version>4.13</junit.version>
14 <xray.projectKey>MAV</xray.projectKey>
15 <xray.testEnvironments>Java</xray.testEnvironments>
16 <xray.revision>Build-1.0</xray.revision>
17 <xray.resultsFormat>JUNIT</xray.resultsFormat>
18

<xray.surefire.location>${basedir}/target/surefire-reports</xray.surefire.location>↪→

19 </properties>
20

21 <build>
22 <pluginManagement>
23 <plugins>
24 <plugin>
25 <groupId>org.apache.maven.plugins</groupId>
26 <artifactId>maven-surefire-plugin</artifactId>
27 <version>2.19.1</version>
28 <configuration>
29 <testFailureIgnore>true</testFailureIgnore>
30 </configuration>
31 </plugin>
32 </plugins>
33 </pluginManagement>
34 </build>
35

1

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

36 <reporting>
37 <plugins>
38 <plugin>
39 <artifactId>maven-surefire-report-plugin</artifactId>
40 </plugin>
41 <plugin>
42 <groupId>com.xpandit.xray</groupId>
43 <artifactId>xray-maven-plugin</artifactId>
44 <version>1.1.0</version>
45 </plugin>
46 </plugins>
47 </reporting>
48

49 <pluginRepositories>
50 <pluginRepository>
51 <id>xpand-plugins</id>
52 <name>xpand-plugins</name>
53 <url>http://maven.xpand-it.com/artifactory/releases</url>
54 </pluginRepository>
55 </pluginRepositories>
56 <dependencies>
57 <dependency>
58 <groupId>junit</groupId>
59 <artifactId>junit</artifactId>
60 <version>${junit.version}</version>
61 <scope>test</scope>
62 </dependency>
63 </dependencies>
64

65 </project>

A.2 JSON file for Maven integration
1 {
2 "fields": {
3 "project": {
4 "key": "MAV"
5 },
6 "summary": "Needs to be done",
7 "description": "This is a high priority test execution, now updated",
8 "priority":{
9 "name": "High"

10 },

2

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

11 "assignee":{
12 "name": "Siber92"
13 },
14 "issuetype": {
15 "name": "Test Execution"
16 }
17 }
18 }

3

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

B Appendix B

B.1 Implementation of the Jira REST client
1 import static utility.IssuePriority.*;
2 public class JiraClient {
3 private final String username;
4 private final String password;
5 private final String URL;
6 private final JiraRestClient restClient;
7 public JiraClient(String username, String password, String URL){
8 this.username = username;
9 this.password = password;

10 this.URL = URL;
11 this.restClient = getJiraRestClient();
12 }
13

14 private URI getJiraUri() {
15 return URI.create(this.URL);
16 }
17

18 /**
19 *
20 * @return A Jira rest client that can handle Jira requests.
21 */
22 private JiraRestClient getJiraRestClient() {
23 return new AsynchronousJiraRestClientFactory()
24

.createWithBasicHttpAuthentication(getJiraUri(),username,password);↪→

25 }
26

27 /**
28 * Updates the priority of a issue
29 * @param issueKey key to identify the issue to update.
30 */
31 public String updatePriority(String issueKey, Long priority){
32 try {
33 IssueInput input = new IssueInputBuilder()
34 .setPriorityId(priority)
35 .build();
36 restClient.getIssueClient()
37 .updateIssue(issueKey, input)
38 .claim();

4

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

39 }catch(RestClientException e){
40 if(e.getStatusCode().get().intValue() == 401){
41 System.out.println(username + " " + password + " " +

URL);↪→

42 return "error";
43 }
44 else{
45 System.out.println(e);
46 }
47 }
48

49 return "issue with key: " + issueKey + " was updated";
50 }
51

52 /**
53 * Maps the priority weight from the prioritisation algoirthm to an

Xray priority.↪→

54 * @param prioWeightMax The priority weight of the test with the
highest priority weight.↪→

55 * @param testPrioWeight The priority weight of the current test.
56 * @return an Xray priority
57 */
58

59 public static Long getPriroityMapping(double prioWeightMax, double
testPrioWeight){↪→

60 int nrOfpriorities = 5;
61 double prioWeightMin = prioWeightMax / nrOfpriorities;
62 if(testPrioWeight <= prioWeightMin){
63 return LOWEST.toLong();
64 }
65 else if(testPrioWeight > prioWeightMin && testPrioWeight <=

prioWeightMin*2){↪→

66 return LOW.toLong();
67 }
68 else if(testPrioWeight > 2*prioWeightMin && testPrioWeight <=

prioWeightMin*3){↪→

69 return MEDIUM.toLong();
70 }
71 else if(testPrioWeight > 3*prioWeightMin && testPrioWeight <=

prioWeightMin*4){↪→

72 return HIGH.toLong();
73 }
74 else if(testPrioWeight > 4*prioWeightMin && testPrioWeight <=

prioWeightMax){↪→

5

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

75 return HIGHEST.toLong();
76 }
77 return -1L;
78 }

B.2 Implementation of the prioritisation algo-
rithm

1 public class PrioritisationAlgorithm {
2 private final Vector<Double> probability; //contains the probability

of selecting units.↪→

3 private final Vector<Boolean> selected; //if a test case has been
selected its index will be true.↪→

4 private final Vector<TestCase> priority; // to stores the prioritized
test cases↪→

5 private final Vector<TestCase> input; //contains unprioritized test
cases.↪→

6 private final Vector<String> methods;
7

8 private final int nrOfUnits;
9 private final int nrOfTestCases;

10 private final int metricMin;
11 private final int metricMax;
12 private int testCaseIndex;
13 private int unit;
14

15 private double f_p;
16 private double sum;
17

18

19

20 public PrioritisationAlgorithm(ProjectData projectData,
Vector<TestCase> input) {↪→

21 probability = new Vector<>();
22 selected = new Vector<>();
23 priority = new Vector<>();
24 this.methods = projectData.projectMethods;
25 this.nrOfUnits = methods.size();
26 this.metricMin = projectData.metricMin;
27 this.metricMax = projectData.metricMax;
28 this.input = input;
29 this.f_p = 1;
30 nrOfTestCases = input.size();

6

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

31

32 for (int test = 0; test < nrOfTestCases; test++) {
33 selected.add(false);
34 }
35 for (int unit = 0; unit < nrOfUnits; unit++) {
36 probability.add(1.0);
37 }
38 }
39

40 /**
41 * Normalise the f_p to be in the range lowEnd <= highEnd
42 * @param testCaseMetric the metric used,
43 * in this example the number of statements a method covers is

used.↪→

44 * @return a normalised f_p
45 */
46 private double normalizeF_p(int testCaseMetric){
47 double numerator = testCaseMetric - metricMin;
48 double denominator = metricMax - metricMin;
49 if(denominator == 0){
50 denominator = 1;
51 }
52 double lowEnd = 0.6; //recommended range from the study is 0.65

<= f_p <= 0.95↪→

53 double highEnd = 0.95;
54 return 1 - ((highEnd-lowEnd) * (numerator / denominator));
55 }
56

57 /**
58 * Main loop for test case prioritization.
59 * @return a prioritised vector.
60 */
61 public Vector<TestCase> prioritize() {
62 for (int testCase = 0; testCase < nrOfTestCases; testCase++) {
63 findUnchosenTestCase();
64 checkForBetterFit();
65 updatePriority();
66 }
67 return priority;
68 }
69

70 /**
71 * Finds a previously not chosen test case and calculates the

probability that the units covered by↪→

7

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

72 * that test case contains undetected faults.
73 */
74 private void findUnchosenTestCase() {
75 testCaseIndex = 0;
76 while (selected.elementAt(testCaseIndex)) {
77 testCaseIndex++;
78 }
79 sum = 0;
80 TestCase current = input.get(testCaseIndex);
81 for (unit = 0; unit < nrOfUnits; unit++) {
82 String currentUnit = methods.elementAt(unit);
83 int nrOfOccurrences = current.occurrence(currentUnit);
84 if (nrOfOccurrences != 0) {
85 f_p =

normalizeF_p(current.getUnitStatementCoverage(currentUnit));↪→

86 sum += probability.elementAt(unit) *
(1-(Math.pow((1-f_p),nrOfOccurrences)));↪→

87 }
88 }
89 }
90

91 /**
92 * Checks the remaining test cases if there exist a test case with

higher probability, then the one first chosen↪→

93 * to contain undetected faults.
94 */
95 private void checkForBetterFit() {
96 for (int otherTestCase = testCaseIndex + 1; otherTestCase <

nrOfTestCases; otherTestCase++) {↪→

97

98 TestCase current = input.get(otherTestCase);
99 if (!selected.elementAt(otherTestCase)) {

100 double newSum = 0;
101 for (unit = 0; unit < nrOfUnits; unit++) {
102 String currentUnit = methods.elementAt(unit);
103 int nrOfOccurrences =

current.occurrence(currentUnit);↪→

104 if (nrOfOccurrences != 0){
105 f_p =

normalizeF_p(current.getUnitStatementCoverage(currentUnit));↪→

106 newSum += probability.elementAt(unit) *
(1-(Math.pow((1-f_p),nrOfOccurrences)));
//changes

↪→

↪→

107 }

8

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

108 }
109

110 if (newSum > sum) {
111 sum = newSum;
112 testCaseIndex = otherTestCase;
113 }
114 }
115 }
116 }
117

118 /**
119 * Updates the priority vector and sets new probabilities for already

covered units↪→

120 *
121 */
122 private void updatePriority() {
123 TestCase current = input.get(testCaseIndex);
124 current.setPriorityWeight(sum);
125 priority.add(current);
126 selected.set(testCaseIndex, true);
127 for (unit = 0; unit < nrOfUnits; unit++) {
128 String currentUnit = methods.elementAt(unit);
129 int nrOfOccurrences = current.occurrence(currentUnit);
130 if (nrOfOccurrences != 0){
131 f_p =

normalizeF_p(current.getUnitStatementCoverage(currentUnit));↪→

132 double prob = probability.get(unit) * Math.pow((1 -
f_p),nrOfOccurrences);↪→

133 probability.set(unit, prob);
134 }
135 }
136 }
137 }

B.3 Implementation of the test case class
1 /**
2 * A class that represents a test case. A test case contains methods

stored in the units map.↪→

3 * The pair stores occurrences of a method and how many statements the
method covers.↪→

4 */
5 public class TestCase {

9

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

6 private final String name;
7 private final Map<String,Pair<Integer, Integer>> units; //units and

there occurence↪→

8 private double priorityWeight;
9

10

11 public TestCase(String name, Map<String, Pair<Integer, Integer>>
units){↪→

12 this.name = name;
13 this.units = units;
14 this.priorityWeight = 0;
15 }
16

17 public void testCasePrinter(){
18 System.out.println("----- test cast printer -----");
19 System.out.println("name: " + name);
20 System.out.println("coverageSum: " + priorityWeight);
21 units.forEach((key,value) -> System.out.println(key + "

OCCOURENCE: " + value.getFirstValue()↪→

22 + "METHOD COVERAGE: " + value.getSecondValue()));
23 }
24

25 /**
26 *
27 * @param unit unit to check.
28 * @return occurrences for the given unit
29 */
30 public int occurrence(String unit){
31 if(units.get(unit) != null){
32 Pair<Integer, Integer> temp = units.get(unit);
33 return temp.getFirstValue();
34 }
35 return 0;
36 }
37 /**
38 *
39 * @param unit
40 * @return the statement coverage for the given unit.
41 */
42 public int getUnitStatementCoverage(String unit){
43 if(units.get(unit) != null){
44 Pair<Integer, Integer> temp = units.get(unit);
45 return temp.getSecondValue();
46 }

10

Examination of automated testing and Xray as a test management tool
Simon Bertlin 2020–06–08

47 return 0;
48 }
49 public String getName() {
50 return name;
51 }
52 public void setPriorityWeight(double priorityWeight){
53 this.priorityWeight = priorityWeight;
54 }
55 public double getPriorityWeight(){
56 return priorityWeight;
57 }
58 }

11

	Abstract
	Terminology
	Introduction
	Background and problem motivation
	Overall aim
	Scope
	Concrete and verifiable goals
	Outline

	Theory
	Different types of tests
	Unit testing
	Integration testing
	Exploratory testing
	Black-box testing
	White-box testing
	Regression testing

	Test Case Prioritisation
	Jira
	HTTP Requests
	Xray
	How Xray interacts with Jira

	Cucumber
	JUnit
	Code Coverage
	OpenClover
	Postman
	Jira REST Java Client Library
	The ISO standard
	ISO/IEC 25010:2011
	Confluence
	Google Lighthouse
	OAuth
	Maven
	Active profiles
	Maven Surefire Plugin

	Continuous integration
	Continuous Delivery

	Methodology
	Literature study
	Procedures
	Pilot study
	Research
	Analysing Xray

	Test prioritisation algorithm testing
	Survey
	Agile work
	Tools
	Version control
	Developing environment
	Working with the REST API

	Construction
	Xray with Maven integration
	Extracting coverage data from OpenClover
	Implementing the unified test prioritisation algorithm
	Updating test priority with the Xray API
	Automated tests in Jira
	Setting up Xray tests with Cucumber in Jira

	Results
	Automated tests
	Benefits and limitations of automated testing
	Automatic testing and manual testing
	Prioritising test cases

	Testing the implementation of the prioritisation algorithm
	Xray as a test management tool
	Functional suitability
	Reliability
	Usability
	Portability
	Security
	Survey results

	Analysis of Xray
	Discussion
	Goals
	Research study
	Xray as a test management tool
	Implementation of the prioritisation algorithm
	Method discussion
	Social, ethical and scientific aspects
	Future work

	Appendix A
	POM file for Maven integration
	JSON file for Maven integration

	Appendix B
	Implementation of the Jira REST client
	Implementation of the prioritisation algorithm
	Implementation of the test case class

