
An Evaluation of Spring WebFlux

With focus on built in SQL features

Karl Dahlin

Thesis - Institution of Information Systems and Technology
Main field of study: Computer Engineering
Credits: 300
Semester, year: Spring, 2020
Supervisor: Johannes Lindén, Johannes.Linden@miun.se
Examiner: Tingting Zhang, tingting.zhang@miun.se
Course code/registration number: DT005A
Degree programme: Master of Science in Engineering Main field of study: Computer Engineering

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Abstract
In today’s society the need for more hardware efficient software since
somepeople think that the doubling of computer power for the sameprice
that Moore’s law predicted is no more. Reactive programming can be a
step in the right direction, this has led to an increase in interest in reactive
programming. This object of this thesis is to evaluate the possibility of
using reactive programming and R2DBC in Java to communicate with a
relation database. This has been done by creating two Spring applications
one using the standards JDBC and servlet stack and one using R2DBC and
the reactive stack. Then connecting them to aMySQLdatabase and select-
ing and inserting values in to and from it and measuring the CPU usage,
memory usage and execution time. In addition to this the possibilities to
handle BLOBs in a good enough way were researched. The study shows
that there are both advantages and disadvantages with using R2DBC it
has basic support and it is based on good idea but at the time of this the-
sis it still needs more development before it can be used fully.

Keywords: Reactive programming, SQL, database, Java, Spring, JDBC,
R2DBC.

ii

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Acknowledgments
I would like to thank Easit for supplying a laptop to work on, office space
to work in, an assignment to solve, SQL database to work with and guid-
ance in certain areas during the work.

iii

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Table of Contents
Abstract ii
Acknowledgments iii
Table of Contents v
Terminology vi
1 Introduction 1
1.1 Background and problem motivation 2
1.2 Overall aim . 2
1.3 Concrete and verifiable goals . 3
1.4 Scope . 3
1.5 Outline . 3
1.6 Contributions . 3
2 Theory 4
2.1 Spring Framework . 4
2.2 Spring Boot . 5
2.3 Model-view-Controller - MVC 5
2.4 Reactive programming . 6
2.5 Structured Query Language - SQL – Database 6
2.6 Java Database Connectivity – JDBC 7
2.7 Reactive Relational Database Connectivity - R2BDC 7
2.8 Related work . 8
3 Methodology 10
4 Choice of solution 12
4.1 Reactive Java . 12
4.1.1 Spring webflux . 13
4.1.2 RxJava . 13
4.2 SQL database . 14
4.2.1 PostgreSQL . 14
4.2.2 MsSQL . 15
4.2.3 MySQL . 16
4.3 Chosen solution . 16
5 Implementation 18
5.1 Hardware . 18
5.2 Programs . 19
5.2.1 Spring MVC program (Servlet) 19
5.2.2 Spring Webflux program (Reactive) 20
5.3 Measurements . 20

iv

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

6 Results 23
6.1 Programs . 23
6.1.1 JDBC program . 23
6.1.2 R2DBC program . 23
6.1.3 Reactive client . 24
6.2 Tests . 24
6.2.1 JDBC program . 26
6.2.2 R2DBC program . 30
6.3 R2DBC program - BLOB handling 46
7 Conclusions 48
7.1 Future work . 51
7.2 Ethical considerations . 51
References 53

v

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Terminology
Abbreviation Description
SQL StructuredQuery Language, programming language

for interacting with a relation database.
BLOB Binary Large OBject, a data type that can be stored in

a SQL database.
JDBC Java Database Connectivity, SQL database driver

specification
R2DBC Reactive Relational Database Connectivity, reactive

SQL database driver specification

vi

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

1. Introduction
More and more data is saved and accessed and there is no indication
of that trend turning, it is more likely that it will increase in the future
since there is continued development of technologies that generate
data, for example the Internet of Things and other smart devices.

Java is a programming language introduces in 1995 and it is cur-
rently (February 2020) ranked first on TIOBE’s index of programming
languages,the TIOBE rankings are based on the number of skilled
engineers world-wide, courses and third-party vendors, popular search
engines are used to calculate the ratings.[1] TIOBE is a company
specialized in tracking the quality of software, the quality is measured
by applying widely accepted coding standards and TIOBE checks more
than 1056 million lines of code in real-time every day. [2]

Javas TIOBE ranking indicates that Java is a popular programming
language and Java is still a growing programming language. There are
a lot of features that have come to java over the years and more are in
development. Note: Java lost the first place on the TIOBE’s index of
programming languages to C in May of 2020

The interest for more hardware efficient programs and technologies
have increased A cause of this might be that people start to doubt that
that Moore’s law will hold up going forward.[3] Moore’s law basically
means that a computers processing power doubles every other year but
the cost, power consumption and size stay the same.[4]

An idea for more hardware efficient programs is reactive applications,
the concept of reactive programming is not new it has been around
for quite some time but it has only been used by a small group
of reactive programmers and academics until recently. Observables
and Rx almost became buzz words.[5] Reactive application ”react” to
changes, a spreadsheet is a great example of this where cells dependant
on other cells automatically changes when a change to the cell they
depend on occur.[6]

1

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

1.1 Background and problem motivation
There is a big, general shift towards asynchronous, non-blocking
concurrency in applications. Traditionally, Java used thread pools
for the concurrent execution of blocking, I/O bound operations (e.g.
making remote calls).

This seems simple on the surface, but it can be deceptively complex for
two reasons: One, it’s hard to make applications work correctly when
you’re wrestling with synchronization and shared structures.

Two, it’s hard to scale efficiently when every blocking operation requires
an extra thread to just sit around and wait, and you’re at the mercy of
latency outside your control (e.g. slow remote clients and services).

In an ideal world nothing in the stack of an application would be
blocking. If an application is fully non-blocking it can scale with a
small, fixed number of threads. Node.js is proof you can scale with a
single thread only.

In Java we don’t have to be limited to one thread so we can fire enough
threads to keep all cores busy. Yet the principle remains – we don’t
rely on extra threads for higher concurrency.

1.2 Overall aim
The problem I will aim to solve in this project is to decide the benefits
of a Java program using R2DBC and a reactive stack compared to a
Java program using JDBC and a Servlet stack when working with large
result sets.

2

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

1.3 Concrete and verifiable goals
The objective of the thesis is:

1. Test the following capabilities of the programs when handling
large amounts of data:

1.1. CPU consumption of the programs.
1.2. Memory usage of the programs.
1.3. Measure the execution time.

2. Test if it is possible to handle large BLOBs in a reactive program.

3. Evaluate and present the result from the second, third goal and
potential other observations made during the tests and draw
conclusions.

1.4 Scope
This thesis will only consider the communication between a Java
program and a SQL database and not the rest of the changes that need
to be made to a Java program when rewriting it from using a servlet
stack to a reactive stack. It will also not test all the different ways of
communicating with a database.

1.5 Outline
Chapter 2 describes the relevant theory to the thesis. Chapter 3
describes the method that was used during the thesis. Chapter 4
presents the possible alternatives of frameworks for reactive Java, the
alternatives for SQL database and describes the chosen ones and why
they were chosen. Chapter 5 describes how the different programs
were implemented, the hardware and how the measurements were
conducted. Chapter 6 presents the results from the tests. Chapter 7
presents the conclusion based on the result, discussion of the result,
discussion of ethical aspects and presentations of suggestions for future
work.

1.6 Contributions
Rasmus Holm a fellow student constructed an unofficial LaTeX template
that was used when writing the report.

3

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

2. Theory
In this chapter information about subjects relevant to the study will be
presented and explained briefly. In addition some related work will be
presented.

2.1 Spring Framework
The Spring Framework was created in 2003 by Rod Johnson and it was a
response to the complexity that the J2EE specifications had at the time.

The Spring Framework integrates several technologies, such as Servlet
API, WebSocket API, concurrency utilities, JSON Binding API, bean
validation, JPA, JMS, and JTA/JCA and it also supports the dependency
injection and common annotation specifications that make development
easier.

The principles behind Spring Framework is:

• Provide choice at every level. Spring lets you defer design
decisions as late as possible.

• Accommodate diverse perspectives. Spring embraces flexibility
and is not opinionated about how things should be done.

• Maintain strong backward compatibility. Spring’s evolution has
been carefully managed to force few breaking changes between
versions.

• Care about API design. The Spring team puts a lot of thought
and time into making APIs that are intuitive and that hold up
across many versions and many years.

• Set high standards for code quality. The Spring Framework puts
a strong emphasis on meaningful, current, and accurate Javadocs.

Spring is not invasive and makes your application enterprise ready;
but you need to help it by adding a configuration to wire up all
dependencies and inject what’s needed to create Spring beans to execute
your application.It has two tracks one is Spring Web MVC and the other
Spring Webflux. [7]

4

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

2.2 Spring Boot
Spring Boot is a simplified way to create Spring applications and an
extension to Spring and not meant to replace it since it is Spring. One of
Spring Boot’s most important features is an opinionated runtime, which
helps you follow the best practices for creating robust, extensible, and
scalable Spring applications.[7]

There are a lot of configuration needed to run a Spring application
but Spring Boot auto configures these settings. To run Spring Boot three
things are needed[7]:

• A build/dependency management tool.

• The right dependency management and plugins within the build-
ing tool and the Spring Boot plugin, to use Spring Boot Starters

• A main class containing the @SpringBootApplication annotation
and the SpringApplication.run statement in the main method.

2.3 Model-view-Controller - MVC
Model-view-Controller (MVC) is a software architecture style invented
by a Prof. Trygve Reenskaug. The architecture style has three main
parts, those are the Model, the View and the Controller.

The Model is the unchanging essence of the application. In object-
oriented terms, this will consist of the set of classes which model and
support the underlying problem, this tends to be stable and should
have no knowledge about communication with the outside world.

The View or Views in plural. Is one or more interfaces with the Model
for a given situation and version. In object-oriented terms classes which
give us ”windows” onto the model although Views often are graphical
the do not have to be. Examples of Views:

• The GUI/widget view

• The CLI view

• The API view

5

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Views will know of the models existence and some of its nature. An
entry field might display or change an instance variable of some Model
class somewhere.

The Controller lets you manipulate a View. Controllers have the most
knowledge of platforms and operating systems. An over-simplification
is that the Controllers handles the input and the Views the output.
Just like Models have no knowledge of its Views, the Views have no
knowledge of its Controllers.[8]

2.4 Reactive programming
Reactive programming is an approach to programming that is an
abstraction on top of imperative systems that allows us to program
asynchronous and event-driven use cases without having to think like
the computer itself.[6]

The short answer to what reactive-functional programming is solving
is concurrency and parallelism. More colloquially, it is solving callback
hell, which results from addressing reactive and asynchronous use
cases in an imperative way.[6]

Reactive programming is useful in scenarios where[6]:

• You process user events or signal changes.

• Handling latency-bound I/O events.

• Handling events pushed to the application

There are many project specifying what reactive is and how to use it,
for example the The Reactive Manifesto[9] and Reactive Streams[10]

2.5 Structured Query Language - SQL – Database
Structured Query Language (SQL) and databases running on it is
currently an important foundation technology. SQL work with one
type of database, called relational databases. When communicating
with a database SQL is used to create a request the database handles
the request and returns something. The process of fetching data from

6

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

a database is called a database query, the name comes from this. In
addition to querying SQL can do so much more such as:

• Data definition

• Data manipulation

• Access control

• Data sharing

• Data integrity

This means that SQL is a comprehensive language for communicating
with and controlling a database management system.[11]

2.6 Java Database Connectivity – JDBC
Java Database Connectivity (JDBC) is a standard. All components
and techniques of JDBC are embedded and implemented in JDBC API.
Basically, the JDBC API is composed of a set of classes and interfaces
used to interact with databases from Java applications. The three main
functions of the JDBC API are:

• Establish connection between Java application and relation database.

• Build and execute SQL statements.

• Process the result.

Different database vendors provide various JDBC drivers to support
their database.

There are two major sets of interfaces in the JDBC API one for the
application developers (driver users) and one lower-level for the driver
developers. [12]

2.7 Reactive Relational Database Connectivity - R2BDC
Reactive Relational Database Connectivity (R2BDC) is a service-
provider interface (SPI) that provides reactive programming access

7

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

to relational databases from Java or other JVM-based languages, it is
currently on version 0.8.1. R2DBC is based on Reactive Streams1 to allow
non-blocking back-pressure-aware data access.[13]

The goal of R2DBC is:

• Enabling Reactive Relational Database Connectivity

• Fitting into Reactive JVM platforms

• Offering Vendor-neutral Access to Standard Features

• Embracing Vendor-specific Features

• Keeping the Focus on SQL

• Keeping It Minimal and Simple

• Providing a Foundation for Tools and Higher-level APIs

• Specifying Requirements Unambiguously

[13]

2.8 Related work
A study described in The Pursuit of Answers in the book. [6] describes a
study in which Netty and Tomcat were compared. RxJava were used in
combination with Netty during the study. The study showed that Netty
and RxJava performed better during heavy load.

The study differs from what i have done by using a different tool
for reactive Java and a different focus in the blocking vs non-blocking
comparison. It measures performance and latency of a web service
while this thesis focuses on database communication

The study SpringBoot 2 performance — servlet stack vs WebFlux reactive stack
by Raj Saxena where he compared the servlet stack vs the reactive stack
for a web service and testing performance under high load. He found
that the reactive stack performs better but that it has a learning curve.
[14]

1Reactive streams specification "https://www.reactive-streams.org/"

8

"https://www.reactive-streams.org/"

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

The similarities between this study and mine is that both compare the
servlet stack and reactive stack in Spring. The difference is that the
study focuses on the amount of requests the web service can handle
and my thesis focuses on the communication with a database.

9

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

3. Methodology
The work I will do during this project is literary studies of different
internet sources, Java coding to implement two different Spring boot
programs and tests for the programs, evaluation and presentation of
the results.

The first weeks will be spent on reading and gathering information on
the Spring boot and the other connected subjects.

I will start by implementing two different programs for performance
testing. One that uses Spring Webflux and a reactive stack and one using
Spring MVC and the servlet stack.

To solve the first goal which is ”Test the following capabilities of the
programs when handling large amounts of data:” and the test sub-goals
”CPU consumption of the programs Memory usage of the programs, Measure
the execution time.” I will run the programs and measure the CPU usage,
memory usage and execution time of database commands and save the
result. The test will consist of inserting and selecting a large amount of
a data units from a SQL database using the features of Spring Webflux
and Spring MVC respectively. The execution time will be measured
from then a request is sent to the program until it has communicated
with a SQL database and after that returned a response to the request
sender. CPU usage will be measured by using a program to record the
CPU usage of the process during the tests. The memory usage will be
measured using a program to record the memory usage of the process
during the tests.

To solve the second goal which is ”Test if it is possible to handle large
BLOBs in a reactive program.” I will read documentation concerning the
handling of BLOBs for the selected implementation of the R2DBC driver
and attempt to add functionality for getting BLOBs in a sustainable
way to the application using R2DBC.

To solve the third goal which is ”Evaluate and present the result from
the second, third goal and potential other observations made during the tests and
draw conclusions.” I will present the result from the second goal in an
appropriate way then look at it and try to analyze the result and based

10

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

on that analysis draw conclusions about the benefits of using a reactive
stack compared to a servlet stack.

11

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

4. Choice of solution
When working with reactive Java you need to have both a reactive
framework for Java and a reactive database driver. There are several
SQL databases and frameworks for reactive Java that one can use,
in this thesis the SQL database drivers following JDBC and R2DBC
specifications will be used. In the following chapter I will mention a
couple of different SQL databases and frameworks for reactive Java and
what is the focus of this thesis and why.

4.1 Reactive Java
There are a couple of ways of making Java reactive some of these are
presented in this section. But first figure 4.1 show how Spring and
RxJava is connected. Core is Reactor core which is used by Spring and the
Reactive Streams Commons is a joint research effort for building highly
optimized Reactive-Streams compliant operators which both Reactor
and RxJava 2 implements.[15]

Figure 4.1: Simple overview of how ReactiveX, Reactor and Spring is
connected.[16]

12

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

4.1.1 Spring webflux
Spring Webflux is a framework for with more then just reactive func-
tionality it is a web framework that runs on server like Netty, Undertow,
and Servlet 3.1+ containers and is fully non-blocking and supports back
pressure. It uses Reactor as reactive library. Since Spring Webflux uses
Reactor as reactive library it has the same base classes:[17]

Class Description
Mono data sequences of 0..1
Flux data sequences of 0..N

Spring Webflux was added in version 5.0 of Spring,[17] version 5.0 was
released in Sep 2017 which mean that Spring Webflux has been released
for a little over 2 years at the time this thesis was conducted.

Figure 4.2 shows how the similarities and differences between the
reactive stack Webflux and the servlet stack Spring MVC.

Figure 4.2: Illustation of how Spring MVC differs from Spring Webflux

4.1.2 RxJava
RxJava makes Java reactive and is a library that implements ReactiveX
in java and builds on the Reactive Streams. RxJava uses the base
classes:[18]

13

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Class Description
Flowable 0..N flows, supporting Reactive-Streams and back-

pressure
Obervable 0..N flows, no backpressure
Single a flow of exactly 1 item or an error
Completable a flow without items but only a completion or error

signal
Maybe a flow with no items, exactly one item or an error

RxJava is currently on version 3.x, version 1.x reached it’s end of life in
March 31, 2018 and version 2.x will reach it’s end of life in February
28, 2021. [18] RxJava version 1.0 were released in Nov 2014.[19] Which
means that version 3.x is the current version, version 2.x is reaching
it’s end of life in about a year and version 1.x reached it’s end of life 2
years before this thesis were conducted.

4.2 SQL database
Since JDBC has been around for a longer time then R2DBC and the
JDBC driver are more developed only the R2DBC drivers features will
be taken into account when deciding on what SQL database to use. The
R2DBC is a quite strict specification and it can be found in its entirety
here [13]. In this section the implemented features and what is next
for the developers of the R2DBC driver is presented, since the R2DBC
drivers are continuously being developed the features implemented
when this thesis is read may not match what is stated in this section,
but this is how it was in mid-February 2020.

4.2.1 PostgreSQL
Driver features of the R2DBC PostgreSQL driver according to the
developers[20]:

• Login with username/password (MD5, SASL/SCRAM) or implicit
trust

• SCRAM authentication

• Unix Domain Socket transport

• TLS

14

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

• Explicit transactions

• Notifications

• Logical Decode

• Binary data transfer

• Execution of prepared statements with bindings

• Execution of batch statements without bindings

• Read and write support for all data types except LOB types (e.g.
BLOB, CLOB)

• Fetching of REFCURSOR using io.r2dbc.postgresql.api.RefCursor

• Extension points to register Codecs to handle additional Post-
greSQL data types

Their next step is Multi-dimensional arrays. [20]

4.2.2 MsSQL
Driver features of the R2DBC MsSQL driver according to the developers
[21]:

• Login with username/password with temporary SSL encryption

• Full SSL encryption support (for e.g. Azure usage).

• Transaction Control

• Simple execution of SQL batches (direct and cursored execution)

• Execution of parametrized statements (direct and cursored execu-
tion)

• Extensive type support (including TEXT, VARCHAR(MAX), IM-
AGE,
VARBINARY(MAX) and national variants, see below for excep-
tions)

The data types CLOB and BLOB is fully materialized in the client
before decoding, their next step is Execution of stored procedures and Add
support for TVP and UDTs. [21]

15

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

4.2.3 MySQL
Driver features of the R2DBC MySQL driver according to the
developers[22]:

• Unix domain socket.

• Execution of simple or batch statements without bindings.

• Execution of prepared statements with bindings.

• Reactive LOB types (e.g. BLOB, CLOB).

• All charsets from MySQL, like utf8mb4_0900_ai_ci,
latin1_general_ci, utf32_unicode_520_ci, etc.

• All authentication types for MySQL, like caching_sha2_password,
mysql_native_password, etc.

• General exceptions of error code and standard SQL state map-
pings.

• Secure connection with verification (SSL/TLS), auto-select TLS
version for community and enterprise editions.

• Transactions with savepoint.

• Native ping command that can be verifying when argument is
ValidationDepth.REMOTE

Their next step is Prepared statements cache and Statement parser cache.
[22]

4.3 Chosen solution
Spring webflux was chosen as the framework for making Java reactive
since it is a part of the larger Spring Framework and they use Spring
Webflux and Spring Framework at Easit and they were the ones that
supplied the assignment and the Spring Framework is also a large and
widely used framework.

MySQL was chosen as the SQL database since it was the only driver
that claimed to have reactive support for BLOB and CLOB types and

16

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

I want to test how a reactive system handles that as well see section
4.2.3 for all the features of the driver. The MySQL driver also had
implemented all the support for simple SQL statements, all drivers had
this.

17

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

5. Implementation
In this chapter the implemented programs and their parts are described.
Figure 5.1 shows the planned overall layout of the system where the
Request sender is a program that sends requests to the different Spring
boot programs, Spring boot program is either the program with servlet
stack or the program with reactive stack. When measuring the CPU
usage, memory usage and execution time the programs will connect to
a remote SQL database, but when this is not the focus of the test some
tests will be run with the database running on the same machine as the
program. The version of Java that will be used in this thesis is Java 11.

Figure 5.1: Simple overview of the layout of the programs.

5.1 Hardware
In this section the two laptops specs will be presented, the second one
is borrowed Easit.

The first laptop is a HP EliteBook 840 G3 with a Intel(R) Core(TM)
i5-6300U CPU @ 2.40GHz, 2496 Mhz, 2 Core(s), 4 Logical Processor(s)
and 8 GB RAM. The laptop runs Windows 10 Pro version 10.0.18363
Build 18363.

18

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

The second laptop is a Dell Latitude 5590 with a Intel(R) Core(TM)
i7-8650U CPU @ 1.90GHz, 2112 Mhz, 4 Core(s), 8 Logical Processor(s)
and 16 GB RAM. The laptop runs Windows 10 Pro version 10.0.18363
Build 18363.

The first laptop will be referred to as the first laptop or the HP laptop, the
second laptop will be referred to as the second laptop or the Dell laptop.

The local installation of the MySQL server on the HP laptop is of
version 8.0.19 (MySQL Community Server - GPL) and the remote
server runs a Mysql server of version 8.0.12 (MySQL Community
Server - GPL)

5.2 Programs
In this section the programs that will be created for testing will
be described. Both of the programs created to test the database
communication will be web clients listening on port 8080 that receives
a request from a third party. To enable this there are some things that
Spring boot auto-configures, these can also be changed if needed. For
example the Spring MVC program needs a Servlet container and the
Spring Webflux needs and async and non-blocking server.

5.2.1 Spring MVC program (Servlet)
The reactive program were created using Spring initializr with the
dependencies Spring web, MySQL Driver, Spring Data JPA and JDBC API,
some of these might not be needed in the end. The Spring MVC
program will be developed to get a baseline to compare the result
from the Spring Webflux program. The program will be created with
Spring boot to shorten the configuration and enable a quick start when
developing.

The program will use the JDBC MySQL driver and use the java.sql.Connection
to communicate with the database. The default embedded Servlet con-
tainer Tomcat will be used.

For inserting values autocommit will be turned off and a java.sql.
PreparedStatement will be used to add insert commands to its batch
and when a set number has been added the batch will commit to the
database and this cycle will repeat until the desired number have been

19

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

inserted into the database. The thing that will be counted is the number
of column values.

For selection values the fetch size will be set and data will be fetched by
executing a java.sql.Statement and adding the return result to a ArrayList
and returning the ArrayList to the Request sender.

5.2.2 Spring Webflux program (Reactive)
The reactive program were created using Spring initializr with the de-
pendencies Spring Reactive Web, MySQL Driver and Spring Data R2DBC.
The dependency R2DBC Proxy will also be added in later. The de-
pendency R2DBC Proxy will be added in to simplify development by
enabling query logging and method tracing.

The program will use the community-driven R2DBC driver for MySQL,
use the default async and non-blocking server Netty.

The program will interact with the database using a feature from the
Spring Framework called repositories, a class called org.springframework
.data.r2dbc.core.DatabaseClient and a class called io.r2dbc.spi.Batch.

When it comes to inserting into and selecting from the database
this will be done in the methods mentioned above and support for
testing what difference the reactive transactions built into the Spring
Framework makes. In addition to this support for getting BLOBs will be
implemented and in such a way that the entire BLOB wont be loaded
into the memory of the application at once.

A client program will be created as one of the Request senders since when
it comes to the response from the reactive program the response might
need to be handled in a reactive way. This will be done by creating
another Spring boot with just the Spring Reactive Web dependency then
configuring a CommandLineRunner Bean to make a GET request to the
reactive program and then handling the response as a Flux or Mono.

5.3 Measurements
Where the test will be run may wary depending on what is measured
if time, CPU usage and memory consumption are measured the test
will be run on the Dell laptop unless stated otherwise.

20

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

The CPU usage and memory usage measurements will be taken with a
program called VisualVM is a troubleshooting tool with good features.
It used to be a part of Oracle JDK 6-8 as Java VisualVM but from JDK 9
it was discontinued and is now a separate program. [23]

Figure 5.2 shows the layout of VisualVM, to the left the currently
running java processes can be seen in a list and if one is double-
clicked the monitoring view for that process pop up in the rest of
the window. The currently shown tab is the Monitor where you can
monitor an application in real-time, in addition to this there are tabs for
Overview, Threads, Sampler and Profiler and these displays information
corresponding to their name. In addition to monitoring resources it is
possible to see how long a process has been running for.

Figure 5.2: Screenshot of one VisualVMs monitoring view.

21

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Execution time will be measured by a program called Postman or by
logging from the program. Figure 5.3 shows the layout of Postman
where you can select what type of request to send, where to send it and
add params if needed among other things. It also displays the response
code, the time it took to send a request and a receive response, the size
of the response and the response itself.

Figure 5.3: Screenshot of Postman

22

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

6. Results
In this chapter the features of the programs are explained, the result
from the performance tests is presented and the result of the study of
the possibility to handle BLOBs in a reactive program is presented.

6.1 Programs
In this section the result of the implementation is presented, the thesis
resulted in three different Spring programs. One JDBC program using
servlet stack, one R2DBC program using reactive stack and one reactive
client that sends a request to the reactive program and receives and
handles the response.

6.1.1 JDBC program
The program is a standard Spring MVC program that is a web service
that runs on the local machine on port 8080 and takes a request
processes it and communicates with a SQL database. The program can
handle GET and POST web requests that correspond to SELECT and
INSERT SQL commands respectively.

To handle INSERTs into the database the program uses a PreparedState-
ments and adds them to a batch this is wrapped in a custom made
BatchHandler that keeps track of the added number of columns values
and when the number of column values equals the batch size the batch
is committed.

To handle SELECTs from the database, the program a JdbcTemplate is
used and created from the connection information to the database the
query is executed and the result is processed. With JdbcTemplate it is
possible to set fetch size which determines the size of each chunk of
the reply. For these tests the default is used.

6.1.2 R2DBC program
The program is a standard Spring Webflux program that is a web service
that runs on the local machine on port 8080 and takes a request
processes it and communicates with a SQL database. The program can
handle GET and POST web requests that correspond to SELECT and
INSERT SQL commands respectively.

23

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Communication with the database will be done in three ways Reposito-
ries a feature of Spring data,Databaseclient a class that sends commands
to a configured database and Batch a class that sends commands to a
configured database by a class called Connection. The main focus is on
the repositories.

When returning data from the database to the request sender it can be
done as a stream of data or chunks.

6.1.3 Reactive client
The program is a simple Spring Webflux application that is a web
service that runs on the local machine on port 8081 and sends a web
request to a specified target in this thesis a GET request to the reactive
R2DBC web service. The program uses a CommandLineRunner to send
the request on startup, the response is later processed. Since it is a
Webflux application communicating with another Webflux application
the returned data will both be sent and processed as either a Flux of
some type or a Mono of some type then printed in the console of the
client application.

6.2 Tests
In this section performance tests are described and the result of the
tests run on the two Spring programs is presented. CPU usage is the
amount of CPU the process takes from the system, memory usage is
the amount of memory the process takes from the system and the
execution time is the time it takes from a program to send a request to
the web service, the web service communicate with the database and
then return the reply to the program that sent the request.

For the insertion tests the data is generated in the same way so it
and the class used in the tests is a custom created class called Book.
Figure 6.1 shows the Java code for the class where internal variables
are present, id is an id that is auto-generated by the database when a
book is added to it, name represents the name of a fake book and price
represents the price of a fake book.

24

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.1: Screenshot of the code for the Book class.

Figure 6.2 show the layout of the table used in the tests taken from
MySQL workbench. Where id is an auto-generated id assigned by
the database when a value is inserted. Name is a 255 characters
long VARCHAR where the name of the fictional book. Price is a 15
characters long NUMERIC where there can be two after the decimal
point.

Figure 6.2: Screenshot of the columns in the table used for the test.

The INSERT tests are run on an empty table in the database and
the database table is removed and recreated with the SQL commands
shown in figure 6.3.

25

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.3: Screenshot of the SQL commands for removing and
recreating the table.

The SELECT tests are run on a table with 1 000 000 rows with id 1 to 1
000 000.

6.2.1 JDBC program
The first test on this program is an INSERT of 200 000 Books using a
batch size of 100 column values. Figure 6.4 is a screenshot of Postman
that shows the type of request and to what address it is sent, the
response from the program and the time it took to get a response on
the request.

Figure 6.4: Screenshot of Postman after sending command to insert 200
000 values in to the table.

Figure 6.5 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an INSERT of 200 000 instances
of the type Book is inserted into the database with batch size 100. It
shows the process uptime, CPU usage, RAM usage, loaded classes and

26

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

threads.

Figure 6.5: Screenshot of VisualVM after sending command to insert
200 000 values in to the table.

The SELECT test was run with 1 000 000 values in the table of the
database run a couple of times and always ended up taking around
five seconds. Figure 6.6 show a screenshot of Postman that shows the
type of request and to what address it is sent, the response from the
program and the time it took to get a response on the request.

Figure 6.6: Screenshot of Postman after sending select command with
1 000 000 values in to the table.

27

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.7 show in more detail where the time of the request were
spent.

Figure 6.7: Screenshot of time details Postman after sending select
command with 1 000 000 values in to the table.

Figure 6.8 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an INSERT of 200 000 instances
of the type Book is inserted into the database with batch size 100. It
shows the process uptime, CPU usage, RAM usage, loaded classes and
threads.

28

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.8: Screenshot of VisualVM after sending select command with
1 000 000 values in to the table.

An almost identical test was run but with the difference that the
heap space was limited to 256 MB. This resulted in a crash of type
java.lang.OutOfMemoryError: Java heap space. In figure 6.9 it is visible
when the program ran out of heap.

29

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.9: Screenshot of VisualVM after sending select command with
1 000 000 values in to the table and limited heap memory.

6.2.2 R2DBC program
The annotation @Transactional enables the built-in reactive transactions
in Spring Webflux, if it is not enabled the default behavior is auto commit.
So result from runs with both the default and the reactive transaction
will be presented in this section.

INSERT

This test on the program is an INSERT of 200 000 Books using a
repository with reactive transactions enabled. Figure 6.10 is a screenshot
of Postman that shows the type of request and to what address it is sent,
the response from the program and the time it took to get a response
on the request.

30

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.10: Screenshot of Postman after sending command to insert
200 000 values in to the table.

Figure 6.11 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an INSERT of 200 000 instances
of the type Book is inserted into the database with a repository with
reactive transactions enabled. It shows the process uptime, CPU usage,
RAM usage, loaded classes and threads.

Figure 6.11: Screenshot of VisualVM after sending command to insert
200 000 values in to the table.

31

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

This test on the program was supposed to be an INSERT of 200 000
Books using a repository with reactive transactions disabled. The test
was canceled after it had been running for one hour. Figure 6.12 shows
the values in the database table after one hour of tests, when the test
was canceled.

Figure 6.12: Screenshot of MySQL workbench after test with inserts of
200 000 values in to the table had been running for an hour.

Figure 6.13 is a screenshot of Postman that shows the type of request
and to what address it is sent and no response or response time since
the request was canceled.

Figure 6.13: Screenshot of Postman after sending command to insert
200 000 values in to the table without the reactive transactions.

Figure 6.14 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an INSERT of 200 000 instances
of the type Book is inserted in to the database with a repository with
reactive transactions disabled. It shows the process uptime, CPU usage,

32

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

RAM usage, loaded classes and threads. which shows that the process
had been running for one hour and eight minutes when the test was
canceled.

Figure 6.14: Screenshot of VisualVM after sending command to insert
200 000 values in to the table.

Due to the very slow speed of not using reactive transactions the rest
of the tests on this program will only be run with reactive transactions
enabled.

Tests with the DatabaseClient class are executed one after another by
using commands like:
databaseClient.execute(”INSERT INTO books (name, price) VALUES (”Test
Book - R2DBC”, 5)”)
And this would result in one statement being sent to the database at a
time and each statement handled individually and that would result in
similar results as the repository tests without reactive transactions. So
no 200 000 INSERT tests were done with the DatabaseClient.

The INSERT test with 200 000 values using Batch class failed with the
output in figure 6.15. Got a packet bigger than ’max_allowed_bytes’.

33

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.15: Screenshot of the error output when inserting 200 000
values.

Figure 6.16 shows the Postman output of the failed test.

Figure 6.16: Screenshot of Postman after failed test.

Figure 6.17 shows the VisualVM output of the failed tests.

34

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.17: Screenshot of VisualVM after failed test.

SELECT

As stated after the first set of insert tests all tests will only be run with
the reactive transactions enabled.

Since the SELECT test consists of just a single select statement. And a
batch is a collection of several statements no select test was conducted
using the Batch class.

The SELECT test with 1 000 000 values using repository and not
streaming the reply back to the sender. Figure 6.18 is a screenshot of
Postman that shows the type of request and to what address it is sent,
the response from the program and the time it took to get a response
on the request.

35

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.18: Screenshot of Postman after non-streaming select with 1
000 000 values.

Figure 6.19 shows more details on where the time the request took was
spent.

Figure 6.19: Screenshot of time details from Postman after the non-
streaming select.

Figure 6.20 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an SELECT with 1 000 000

36

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

instances of the type Book in the database with a repository. It shows the
process uptime, CPU usage, RAM usage, loaded classes and threads.

Figure 6.20: Screenshot of VirutalVM after non-streaming select with 1
000 000 values.

The SELECT test with 1 000 000 values using repository and streaming
the reply back to the sender. Figure 6.21 is a screenshot of Postman that
shows the type of request and to what address it is sent, the response
from the program and the time it took to get a response on the request.

37

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.21: Screenshot of Postman after streaming select with 1 000
000 values.

Figure 6.22 shows a more details on where the time the request took
were spent.

38

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.22: Screenshot of time details from Postman after the streaming
select.

Figure 6.23 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when a SELECT with 1 000 000 instances
of the type Book in the database was returned as a stream with a
repository. It shows the process uptime, CPU usage, RAM usage, loaded
classes and threads.

39

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.23: Screenshot of VirutalVM after non-streaming select with 1
000 000 values.

The SELECT test with 1 000 000 values using DatabaseClient and not
streaming the reply back to the sender. Figure 6.24 is a screenshot of
Postman that shows the type of request and to what address it is sent,
the response from the program and the time it took to get a response
on the request.

40

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.24: Screenshot of Postman after non-streaming select with 1
000 000 values.

Figure 6.25 shows a more details on where the time the request took
were spent.

Figure 6.25: Screenshot of time details from Postman after the non-
streaming select.

Figure 6.26 is a screenshot of VirtualVM showing the hardware metrics

41

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

for the program’s Java process when an SELECT with 1 000 000
instances of the type Book in the database with a DatabaseClient. It
shows the process uptime, CPU usage, RAM usage, loaded classes and
threads.

Figure 6.26: Screenshot of VirutalVM after non-streaming select with 1
000 000 values.

The SELECT test with 1 000 000 values using DatabaseClient and
streaming the reply back to the sender. Figure 6.27 is a screenshot of
Postman that shows the type of request and to what address it is sent,
the response from the program and the time it took to get a response
on the request.

42

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.27: Screenshot of Postman after streaming select with 1 000
000 values.

Figure 6.28 shows a more details on where the time the request took
were spent.

43

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.28: Screenshot of time details from Postman after the streaming
select.

Figure 6.29 is a screenshot of VirtualVM showing the hardware metrics
for the program’s Java process when an SELECT with 1 000 000
instances of the type Book in the database was returned as a stream
with a DatabaseClient. It shows the process uptime, CPU usage, RAM
usage, loaded classes and threads.

44

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.29: Screenshot of VirutalVM after non-streaming select with 1
000 000 values.

A set of tests was run with heap space limited to 256 MB. These
tests could be completed for all select versions of the R2DBC program.
Figure 6.30 is a screenshot of VisualVM after a completed non-streaming
select using a repository.

45

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.30: Screenshot of VisualVM after sending select command
with 1 000 000 values in to the table and limited heap memory.

6.3 R2DBC program - BLOB handling
Tests to see if BLOBs could be handled without loading the entire thing
into memory consisted of tried implementation of this function and
monitoring of the memory usage of the application with ViusalVM. To
test this two BLOBs of three different sizes where added to a local
database on the HP laptop. Since the test was if it was possible to work
with a BLOB without loading it entirely into the memory the fact that
the database was run locally on the laptop the tests were run from does
not matter. The three sizes of the BLOBs where 12.5 kB, 100 kB and
316306 kB (316 MB). According to the documentation of the MySQL
implementation of R2DBC[22] BLOBs map to one of ByteBuffer, Blob or
byte[]

Figure 6.31 shows the layout of the table where id is an auto generated
number and the column test is of the type LONGBLOB.

46

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

Figure 6.31: Screenshot of the layout in the table containing BLOBs.

Tests of trying to use Spring repositories for the table failed. Attempts to
get the BLOBs as a Flux of a type like byte[] resulted in the entire BLOB
being loaded into memory before it could be handled. And attempts to
get them as a Flux of Flux of a class failed. The available heap memory
was lowered to check if it could handle the BLOB without loading the
entire thing into memory. But the program crashed due to it running
out of memory.

47

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

7. Conclusions
Firstly I implemented programs for performance testing in accordance
with what is stated in section 5.2 and what is stated in section 6.3 which
resulted in two programs, one that uses JDBC and servlet stack and one
that uses R2DBC and reactive stack, the features of these programs are
described in section 6.1. The reason for the choices of communication
in the JDBC program is that they were the first ways I encountered
when looking for ways of communicating with a database.

In addition to the database communication ways for a reactive program
mentioned in this thesis it is also possible to send SQL statements by
using the Connection class which is just the connection to the database.
And In addition to the ways mentioned for the JDBC program there
are several other ways.

Secondly, I solved the goal Test the following capabilities of the programs
when handling large amounts of data: and the subgoals: CPU consumption
of the programs., Memory usage of the programs. and Measure the execution
time. I did so by inserting and selecting values from the database.

Due to the fact that one of the main points of reactive programming
is that the program should never ask or send more then the program
can handle. Both the inserts with the DatabaseClient and the Batch
class were considered failures since they would require me to manage
the batch size on my own or sending one statement at a time. Those
were mostly included in the thesis to illustrate that there are other
ways of communicating with a database with R2DBC other then Spring
repositories. But the repositories are the main focus of the select and
insert tests of this thesis. So for the insert tests the only result discussed
further is the repository result from the R2DBC and the JDBC programs
result. From the select tests the repository and DatabaseClient result
from the R2DBC program and the result from the JDBC program is
discussed.

The results from the R2DBC without the reactive transactions are not
mentioned since they were so much slower than all the rest, only
inserting around 90 000 in one hour and eight minutes.

48

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

The insert tests show that both the JDBC and the R2DBC programs
repository tests used about the same amount om memory from a bit over
50 MB up to around 250 MB. But the CPU consumption is noticeably
higher on the R2DBC program, Still not high but since it reached a
maximum of 10% in the test with reactive transactions. The execution
time is significantly shorter for the R2DBC program.

It is possible to make the JDBC program faster by tweaking things like
the batch size and perhaps using another way of communication with
the database, but a better batch size is something that needs to be set
separately for each program by trial and error. This means that R2DBC
repositories provides a much faster way of inserting values ”out of the
box”.

The select tests show that the JDBC program was faster then the R2DBC
program but that the JDBC program runs the risk of crashing if it has
too little memory, which the R2DBC does not.

Here I would like to point out that the fetch size of JDBC program is
like the batch size in the insert tests and tweaking of this would speed
it up. But a to large fetch size or batch size runs the risk of crashing
the database or the program communicating with the database. R2DBC
also gives you this by default in theory and it would seem like it does
it in reality as well since when it worked with less memory it handled
it well. It only asks for the amount of data it can handle.

I would like to further point out that my programs have been
constructed in a very generic way and tested and that optimization
would speed things up. And that you get some of that from free with
the R2DBC repositories that is part of why the inserts it is so much faster
the JDBC program.

Thirdly I solved the goal Test if it is possible to handle large BLOBs in a
reactive program. I did so by trying to implement BLOB support into
the R2DBC program, see section 6.1.2. In my reactive program it is
currently not possible to handle large BLOBs in a reactive program
using R2DBC since it requires a program to load the entire BLOB into
the memory when getting it from the database, see section 6.3. This
leads to problems if the BLOBs in the database is several gigabytes
in size. I have only tried with the MySQL driver implementation of

49

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

R2DBC since it was the only driver implementation at the time of this
thesis that claimed to have Reactive LOB types but what that means is
not explained further. From this I drew the conclusion that it is not
possible to handle large BLOBs in a reactive program that uses R2DBC
to communicate with a SQL database.

If in the future any R2DBC driver implementation allows each BLOB
in a column that stores BLOBs to be fetched in chunks for example
as a Flux of byte[]. So the final returned data would have the type
Flux<Flux<byte[]> > when asking for the entire BLOB column where
the inner Flux represents each BLOB in the column and the outer Flux
represents the column. It might be possible to use R2DBC

Fourthly I solved the goal Evaluate and present the result from the sec-
ond, third goal and potential other observations made during the tests and draw
conclusions.

To summarize and answer the overall goal, the results in chapter 6
shows that benefits seem to be that the R2DBC seem to give the user a
good and fast solution ”out of the box” without the need to optimize
things like how much to send or fetch through trial and error since it
does that for you. In other words you get a lot for free since it does the
best with the hardware you have got. The drawbacks are that it, seems
to have a slower select, is not currently possible to handle BLOBs in
a good enough way as previously explained in this section and that
R2DBC is a very new technology and have not even reached version
1 yet and have no current driver that has implemented the whole
specification. So it is a bit untested and needs more testing before it
can safely be used in products.

Lastly to answer the question asked by the assignment supplier Easit
about the benefits of switching to a reactive stack program. I would say
that they are not big enough to warrant a switch to a reactive program
from a servlet program. Because even though a hardware resource
point of view the thesis shows that the R2DBC might give faster inserts
in my case I assume that they have a better and more developed JDBC
program and handles lower memory better then JDBC program. Since
the one tested here was very simple. Some drawbacks are the fact that
BLOBs is currently loaded into memory in its entirety before it can be
used means that BLOBs can not be handled in a good enough way

50

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

currently with a reactive program using R2DBC. The fact that I during
the process encountered a steep learning curve when trying to learn
and use reactive Java means that this is probably the case for most
Java developers since reactive code differs quite a bit from ”regular”
code and if it were to be used extensive rewrites of current code would
probably be needed to make it reactive.

7.1 Future work
There are several different possibilities for future work. One is a bigger
and more detailed comparison between a non-reactive program and
a reactive program. Even here there are different possibilities some
of these are compare more ways of communicating with a database,
use a different data structure, for example, large ones but fewer for
tests since this one was very small 3 columns and a lot of books, more
extensive comparison not just the execution time of selects and inserts
and include more R2DBC driver implementations in the tests, not just
the MYSQL implementation.

Another direction to go is a more general comparison between reactive
and non-reactive Java since this thesis is focused on the difference
between JDBC and R2DBC, in other words, database communication.

One direction to take future work is to evaluate and try to map what
other code changes are needed to switch from servlet to reactive stack.
This would be very dependant on the software but some general points
and estimations could be produced if the study is large enough.

Another thing that can be seen as future work is to redo the comparison
when the drivers have been developed further. For example when a
driver has implemented the entire version 1.0 R2DBC specification.

7.2 Ethical considerations
Since reactive programming and asynchronous database communica-
tion are not new concepts in themself, just in Java. I can not see any
new ethical considerations, just the ones that are always present when
developing software. For example the fact that the data should always
be safe and not accessible to people that should not have access to it is
one part of it. But since R2DBC and reactive Java only change how the
data sent is handled (the use of Mono and Flux) and not the underlying

51

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

transfer protocols it does not add any new things from this perspective.
It is the same as all the other database drivers and as previously stated
does not create any new ethical considerations, but makes it so that
if there are any special ethical considerations needed when working
with reactive programming and asynchronous database communication
needs to be taken in to account when using Java.

52

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

References
[1] TIOBE, “Tiobe index for february 2020.” https://www.tiobe.com/

tiobe-index/. Accessed: Feb 2020.

[2] TIOBE, “We measure your software code quality.” https://www.
tiobe.com/company/about/. Accessed: May 2020.

[3] S. Tibken, “Ces 2019: Moore’s law is dead,
says nvidia’s ceo.” https://www.cnet.com/news/
moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces/
/-2019/. Accessed: apr 2020.

[4] J. Shalf, “Hpc interconnects at the end of moore’s law,” in
2019 Optical Fiber Communications Conference and Exhibition (OFC),
pp. 1–3, IEEE, 2019.

[5] B. L. Tracy Lee, “Reactive programming is not a trend:
Why the time to adopt is now.” https://news.thisdot.co/
reactive-programming-is-not-a-trend-why-the-time-to-adopt/
/-is-now-b3954ea44aa3. Accessed: Apr 2020.

[6] T. Nurkiewicz and B. Christensen, Reactive Programmingwith RxJava:
Creating Asynchronous, Event-based Applications. ” O’Reilly Media,
Inc.”, 2016.

[7] F. Gutierrez, Pro Spring Boot. Springer, 2016.

[8] J. Deacon, “Model-view-controller (mvc) architecture,”
Online][Citado em: 10 de março de 2006.] http://www. jdl. co.
uk/briefings/MVC. pdf, 2009.

[9] R. K. Jonas Bonér, Dave Farley, M. T. W. the help, and refinement
of many members in the community., “The reactive manifesto.”
https://reactivemanifesto.org/.

[10] “Reactive streams.” https://www.reactive-streams.org/.

[11] J. R. Groff, P. N. Weinberg, and A. J. Oppel, SQL: the complete
reference, vol. 2. McGraw-Hill/Osborne, 2002.

[12] Y. Bai, JDBC API and JDBC Drivers, pp. 89–111. 2011.

53

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/company/about/
https://www.tiobe.com/company/about/
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces // -2019/
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces // -2019/
https://www.cnet.com/news/moores-law-is-dead-nvidias-ceo-jensen-huang-says-at-ces // -2019/
https://news.thisdot.co/reactive-programming-is-not-a-trend-why-the-time-to-adopt // -is-now-b3954ea44aa3
https://news.thisdot.co/reactive-programming-is-not-a-trend-why-the-time-to-adopt // -is-now-b3954ea44aa3
https://news.thisdot.co/reactive-programming-is-not-a-trend-why-the-time-to-adopt // -is-now-b3954ea44aa3
https://reactivemanifesto.org/
https://www.reactive-streams.org/

An Evaluation of Spring WebFlux - With focus on built in SQL features
Karl Dahlin 2020-06-17

[13] Ben Hale, Mark Paluch, Greg Turnquist, Jay Bryant, “R2dbc
- reactive relational database connectivity.” https://r2dbc.io/
spec/0.8.1.RELEASE/spec/html/. Version 0.8.1.RELEASE, 2020-
02-04.

[14] R. Saxena, “Springboot 2 performance — servlet stack
vs webflux reactive stack.” https://medium.com/@the.raj.
saxena/springboot-2-performance-servlet-stack-vs-webflux\
-reactive-stack-528ad5e9dadc.

[15] Reactor, “reactive-streams-commons.” https://github.com/
reactor/reactive-streams-commons.

[16] Reactor, “Reactor.” https://github.com/reactor/reactor.

[17] Pivotal, “Web on reactive stack.” https://docs.spring.io/spring/
docs/current/spring-framework-reference/web-reactive.html.

[18] ReactiveX, “Rxjava: Reactive extensions for the jvm.” https:
//github.com/ReactiveX/RxJava.

[19] ReactiveX, “Rxjava 1.0.” https://github.com/ReactiveX/RxJava/
milestone/2?closed=1.

[20] R2DBC, “Reactive relational database connectivity postgresql im-
plementation.” https://github.com/r2dbc/r2dbc-postgresql. Ac-
cessed: feb 2020.

[21] R2DBC, “Reactive relational database connectivity microsoft sql
server implementation.” https://github.com/r2dbc/r2dbc-mssql.
Accessed: feb 2020.

[22] Mirro Mutth, “Reactive relational database connectivity mysql im-
plementation.” https://github.com/mirromutth/r2dbc-mysql. Ac-
cessed: feb 2020.

[23] VisualVM, “Download.” https://visualvm.github.io/download.
html.

54

https://r2dbc.io/spec/0.8.1.RELEASE/spec/html/
https://r2dbc.io/spec/0.8.1.RELEASE/spec/html/
https://medium.com/@the.raj.saxena/springboot-2-performance-servlet-stack-vs-webflux \-reactive-stack-528ad5e9dadc
https://medium.com/@the.raj.saxena/springboot-2-performance-servlet-stack-vs-webflux \-reactive-stack-528ad5e9dadc
https://medium.com/@the.raj.saxena/springboot-2-performance-servlet-stack-vs-webflux \-reactive-stack-528ad5e9dadc
https://github.com/reactor/reactive-streams-commons
https://github.com/reactor/reactive-streams-commons
https://github.com/reactor/reactor
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava/milestone/2?closed=1
https://github.com/ReactiveX/RxJava/milestone/2?closed=1
https://github.com/r2dbc/r2dbc-postgresql
https://github.com/r2dbc/r2dbc-mssql
https://github.com/mirromutth/r2dbc-mysql
https://visualvm.github.io/download.html
https://visualvm.github.io/download.html

	Abstract
	Acknowledgments
	Table of Contents
	Terminology
	Introduction
	Background and problem motivation
	Overall aim
	Concrete and verifiable goals
	Scope
	Outline
	Contributions

	Theory
	Spring Framework
	Spring Boot
	Model-view-Controller - MVC
	Reactive programming
	Structured Query Language - SQL – Database
	Java Database Connectivity – JDBC
	Reactive Relational Database Connectivity - R2BDC
	Related work

	Methodology
	Choice of solution
	Reactive Java
	Spring webflux
	RxJava

	SQL database
	PostgreSQL
	MsSQL
	MySQL

	Chosen solution

	Implementation
	Hardware
	Programs
	Spring MVC program (Servlet)
	Spring Webflux program (Reactive)

	Measurements

	Results
	Programs
	JDBC program
	R2DBC program
	Reactive client

	Tests
	JDBC program
	R2DBC program

	R2DBC program - BLOB handling

	Conclusions
	Future work
	Ethical considerations

	References

